


Vol. 5 (2016) (/2073-4409/5)
Vol. 4 (2015) (/2073-4409/4)
Vol. 3 (2014) (/2073-4409/3)
Vol. 2 (2013) (/2073-4409/2)
Vol. 1 (2012) (/2073-4409/1)

 (https://serve.mdpi.c

 (https://serve.mdpi.com/www/my_files/cliiik.php?oaparams=0bannerid=6397zoneid=4cb=d0fd7241b1oadest=https%3A%2F%2Fsigtrans.de%2F)





Search by first name, last name, affiliation, 

Editorial Board
Cell Motility and Adhesion Section (/journal/cells/sectioneditors/motility_adhesion)

Cell Signaling Section (/journal/cells/sectioneditors/cell_signaling)

Cell Nuclei: Function, Transport and Receptors Section (/journal/cells/sectioneditors/cell_nuclei)

Autophagy Section (/journal/cells/sectioneditors/autophagy)

Organelle Function Section (/journal/cells/sectioneditors/organelle_function)

Stem Cells Section (/journal/cells/sectioneditors/stem_cells)

Plant, Algae and Fungi Cell Biology Section (/journal/cells/sectioneditors/plant_algae_fungi_cell_biology)

Cellular Immunology Section (/journal/cells/sectioneditors/Cellular_Immunology)

Cellular Pathology Section (/journal/cells/sectioneditors/Cellular_Pathology)

Cells of the Nervous System Section (/journal/cells/sectioneditors/cells_nervous_system)

Cell Proliferation and Division Section (/journal/cells/sectioneditors/CPD)

Cellular Aging Section (/journal/cells/sectioneditors/cellular-aging)

Reproductive Cells and Development Section (/journal/cells/sectioneditors/Reproductive_Cells_Development)

Cellular Metabolism Section (/journal/cells/sectioneditors/Cellular_Metabolism)

Cell Microenvironment Section (/journal/cells/sectioneditors/Cell_Microenvironment)

Cell Methods Section (/journal/cells/sectioneditors/Cell_Methods)

Cellular Biophysics Section (/journal/cells/sectioneditors/Cellular_Biophysics)

Cell and Gene Therapy Section (/journal/cells/sectioneditors/Cell_Gene_Therapy)

Cells of the Cardiovascular System Section (/journal/cells/sectioneditors/Cells_Cardiovascular_System)

Tissues and Organs Section (/journal/cells/sectioneditors/tissues_organs)

Mitochondria Section (/journal/cells/sectioneditors/mitochondria)

Intracellular and Plasma Membranes Section (/journal/cells/sectioneditors/intracellular_and_plasma_membranes)

Members (1501)

Prof. Dr. Cord Brakebusch (https://sciprofiles.com/profile/479931)
Website (https://www.bric.ku.dk/people/brakebusch_group/?pure=en/persons/297166)

Editor-in-Chief
Biotech Research & Innovation Centre, The University of Copenhagen, Copenhagen, Denmark
Interests: Rho GTPases; keratinocytes; mouse disease models
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Alexander E. Kalyuzhny (https://sciprofiles.com/profile/93097)
Website (http://alexkalyuzhnyresearch.umn.edu/)

Editor-in-Chief
Neuroscience, UMN Twin Cities, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
Interests: investigating the mechanisms underlying constitutive and induced heteromerization of opioid receptors
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Yan Burelle (https://sciprofiles.com/profile/1234685) *
Website (https://www2.uottawa.ca/faculty-health-sciences/interdisciplinary/our-professors/yan-burelle)

Associate Editor
Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
Interests: role of mitochondria in acquired and genetic cardiomyopathies; role of mitochondria in acquired and genetic skeletal muscle disorders; pathogenesis of genetic
mitochondrial diseases; bioenergetics; mitochondrial quality control; oxidative stress
* Section: Mitochondria

Back to TopTop

  

 (/)

 (/toggle_desktop_layout_cookie)

https://www.mdpi.com/2073-4409/5
https://www.mdpi.com/2073-4409/4
https://www.mdpi.com/2073-4409/3
https://www.mdpi.com/2073-4409/2
https://www.mdpi.com/2073-4409/1
https://serve.mdpi.com/www/my_files/cliiik.php?oaparams=0bannerid=7058zoneid=2cb=eeb55fc629oadest=https%3A%2F%2Fsciprofiles.com%2F
https://serve.mdpi.com/www/my_files/cliiik.php?oaparams=0bannerid=6397zoneid=4cb=d0fd7241b1oadest=https%3A%2F%2Fsigtrans.de%2F
https://www.mdpi.com/journal/cells/sectioneditors/motility_adhesion
https://www.mdpi.com/journal/cells/sectioneditors/cell_signaling
https://www.mdpi.com/journal/cells/sectioneditors/cell_nuclei
https://www.mdpi.com/journal/cells/sectioneditors/autophagy
https://www.mdpi.com/journal/cells/sectioneditors/organelle_function
https://www.mdpi.com/journal/cells/sectioneditors/stem_cells
https://www.mdpi.com/journal/cells/sectioneditors/plant_algae_fungi_cell_biology
https://www.mdpi.com/journal/cells/sectioneditors/Cellular_Immunology
https://www.mdpi.com/journal/cells/sectioneditors/Cellular_Pathology
https://www.mdpi.com/journal/cells/sectioneditors/cells_nervous_system
https://www.mdpi.com/journal/cells/sectioneditors/CPD
https://www.mdpi.com/journal/cells/sectioneditors/cellular-aging
https://www.mdpi.com/journal/cells/sectioneditors/Reproductive_Cells_Development
https://www.mdpi.com/journal/cells/sectioneditors/Cellular_Metabolism
https://www.mdpi.com/journal/cells/sectioneditors/Cell_Microenvironment
https://www.mdpi.com/journal/cells/sectioneditors/Cell_Methods
https://www.mdpi.com/journal/cells/sectioneditors/Cellular_Biophysics
https://www.mdpi.com/journal/cells/sectioneditors/Cell_Gene_Therapy
https://www.mdpi.com/journal/cells/sectioneditors/Cells_Cardiovascular_System
https://www.mdpi.com/journal/cells/sectioneditors/tissues_organs
https://www.mdpi.com/journal/cells/sectioneditors/mitochondria
https://www.mdpi.com/journal/cells/sectioneditors/intracellular_and_plasma_membranes
https://www.bric.ku.dk/people/brakebusch_group/?pure=en/persons/297166
https://sciprofiles.com/profile/479931
http://alexkalyuzhnyresearch.umn.edu/
https://sciprofiles.com/profile/93097
https://www2.uottawa.ca/faculty-health-sciences/interdisciplinary/our-professors/yan-burelle
https://sciprofiles.com/profile/1234685
https://www.mdpi.com/
https://www.mdpi.com/toggle_desktop_layout_cookie


Prof. Nazzareno Capitanio (https://sciprofiles.com/profile/710849) *
Website (https://www.unifg.it/ugov/person/876)

Associate Editor
Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
Interests: oxidative phosphorylation; reactive oxygen species; bioenergetics; mitochondrial diseases; free radicals; oxidative stress; mitochondrial dynamics; redox
regulation; oxidative stress biomarkers
* Section: Mitochondria

Prof. Dr. Agnieszka Chacinska (https://sciprofiles.com/profile/2797611) *
Website (https://www.imol.institute/agnieszka-chacinska)

Associate Editor
IMol, Polish Academy of Sciences, Warsaw, Poland
Interests: mitochondria; cellular protein homeostasis
* Section: Mitochondria

Prof. Dr. José M. Cuezva (https://sciprofiles.com/profile/867936) *
Website (http://www.cbmso.es/jmcuezva)

Associate Editor
Professor of Biochemistry and Molecular Biology, Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
Interests: mitochondria; ATP synthase; ATPase inhibitory factor 1; cancer; ageing; biomarkers; oxidative stress
* Section: Mitochondria

Prof. Dr. Vito De Pinto (https://sciprofiles.com/profile/926995) *
Website (http://www.biomol.it/chi-siamo/il-team/prof-vito-depinto)

Associate Editor
Department of Biomedical and Biotechnological Sciences, Università di Catania, v.le A. Doria 6, 95125 Catania, Italy
Interests: pore-forming proteins; VDAC; mitochondria; bioenergetics; recombinant and mutagenised membrane protein; biophysics of membrane pores and channels
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Russel T. Hepple (https://sciprofiles.com/profile/1770069) *
Website (https://pt.phhp.ufl.edu/about-us/faculty/russell-t-hepple/)

Associate Editor
Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, FL 32610-0154, USA
Interests: skeletal muscle; mitochondria; mitochondrial permeability transition; mitochondrial permeability transition pore; skeletal muscle atrophy; aging; neuromuscular
junctio
* Section: Mitochondria

Prof. Dr. Cesare Indiveri (https://sciprofiles.com/profile/53996) *
Website (https://www.researchgate.net/profile/Cesare_Indiveri)

Associate Editor
Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende (CS), Italy
Interests: carnitine; cell metabolism; membrane transporters; bioenergetics
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Plácido Navas (https://sciprofiles.com/profile/237858) *
Website (https://www.cabd.es/en/research_groups/control-del-estres-oxidativo/miembros-del-laboratorio-y-colaboradores-132.html)

Associate Editor
Centro Andaluz de Biología del Desarrollo, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, and CIBERER, 41013 Sevilla, Spain
Interests: mitochondria; mitochondria diseases; mitochondria aging; coenzyme Q biosynthesis; coenzyme Q10; aging in mice; dietary fat; coenzime Q deficiency
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals Back to TopTop

  

 (/)

 (/toggle_desktop_layout_cookie)

https://www.unifg.it/ugov/person/876
https://sciprofiles.com/profile/710849
https://www.imol.institute/agnieszka-chacinska
https://sciprofiles.com/profile/2797611
http://www.cbmso.es/jmcuezva
https://sciprofiles.com/profile/867936
http://www.biomol.it/chi-siamo/il-team/prof-vito-depinto
https://sciprofiles.com/profile/926995
https://pt.phhp.ufl.edu/about-us/faculty/russell-t-hepple/
https://sciprofiles.com/profile/1770069
https://www.researchgate.net/profile/Cesare_Indiveri
https://sciprofiles.com/profile/53996
https://www.cabd.es/en/research_groups/control-del-estres-oxidativo/miembros-del-laboratorio-y-colaboradores-132.html
https://sciprofiles.com/profile/237858
https://www.mdpi.com/
https://www.mdpi.com/toggle_desktop_layout_cookie


Prof. Dr. Luca Pellegrini (https://sciprofiles.com/profile/2795894) *
Website (https://cervo.ulaval.ca/en/luca-pellegrini)

Associate Editor
Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada
Interests: mitochondria; endoplasmic reticulum (ER); inter-organelle contacts; organelle purification and proteomic analysis; very-low density lipoproteins (VLDL); lipid
metabolism; electron microscopy; biochemistry
* Section: Mitochondria

Dr. Andrea Rasola (https://sciprofiles.com/profile/1573321) *
Website (https://wwwold.biomed.unipd.it/en/people/rasola-andrea/)

Associate Editor
Department of Biomedical Sciences, Università degli Studi di Padova, 35100 Padua, Italy
Interests: mitochondrial energy metabolism; neoplastic transformation; tumors; genetic syndrome neurofibromatosis type I; mitochondrial chaperone TRAP1; tumorigenic
process; Mitochondrial kinases; tumor cells; mitochondrial permeability transition pore (PTP); neoplastic models
* Section: Mitochondria

Prof. Dr. Uwe Schlattner (https://sciprofiles.com/profile/799585) *
Website (https://lbfa.univ-grenoble-alpes.fr/node/12/homepage-uwe-schlattner)

Associate Editor
Laboratory of Fundamental and Applied Bioenergetics, University Grenoble Alpes, 38185 Grenoble, France
Interests: energy homeostasis; mitochondrial signaling; AMP-activated protein kinase; NME/NDPK protein family
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Luca Scorrano (https://sciprofiles.com/profile/1227617) *
 ( https://clarivate.com/highly-cited-researchers/2022 ) Website (https://www.vimm.it/scientific-board/luca-scorrano/)

Associate Editor
1. Veneto Institute of Molecular Medicine, 35129 Padova, Italy
2. Department of Biology, University of Padua, via U. Bassi 58B, 35121 Padua, Italy
Interests: mitochondria; fusion-fission; contact sites; metabolism; apoptosis; Bcl-2 family members; autophagy
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals



Prof. Dr. Shey-Shing Sheu *
Website (https://www.jefferson.edu/university/skmc/departments/medicine/our-research/center-translational-medicine/team/sheu.html)

Associate Editor
Division of Cardiology, Thomas Jefferson University, Philadelphia, PA, USA
Interests: mitochondria
* Section: Mitochondria

Prof. Dr. Ildiko Szabo (https://sciprofiles.com/profile/1385119) *
Website (http://www.bio.unipd.it/iicg/)

Associate Editor
Intracellular Ion Channel Group, Department of Biology, Università degli Studi di Padova, Padova, Italy
Interests: ion channels; mitochondria; cancer; pharmacological targeting
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Adam Szewczyk (https://sciprofiles.com/profile/541059) *
Website (https://nencki.edu.pl/laboratories/laboratory-of-intracellular-ion-channels/)

Associate Editor
Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
Interests: cell signaling; cell culture; potassium channels; ion channels; cell biology; molecular biology; channels; chloride channels; mitochondria
* Section: Mitochondria

Back to TopTop

  

 (/)

 (/toggle_desktop_layout_cookie)

https://cervo.ulaval.ca/en/luca-pellegrini
https://sciprofiles.com/profile/2795894
https://wwwold.biomed.unipd.it/en/people/rasola-andrea/
https://sciprofiles.com/profile/1573321
https://lbfa.univ-grenoble-alpes.fr/node/12/homepage-uwe-schlattner
https://sciprofiles.com/profile/799585
https://clarivate.com/highly-cited-researchers/2022
https://www.vimm.it/scientific-board/luca-scorrano/
https://sciprofiles.com/profile/1227617
https://www.jefferson.edu/university/skmc/departments/medicine/our-research/center-translational-medicine/team/sheu.html
http://www.bio.unipd.it/iicg/
https://sciprofiles.com/profile/1385119
https://nencki.edu.pl/laboratories/laboratory-of-intracellular-ion-channels/
https://sciprofiles.com/profile/541059
https://www.mdpi.com/
https://www.mdpi.com/toggle_desktop_layout_cookie


Dr. Bor Luen Tang (https://sciprofiles.com/profile/146299)
Website (https://medicine.nus.edu.sg/bch/faculty/tang-bor-luen/)

Associate Editor
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
Interests: membrane trafficking; neuronal death and regeneration; Sirt1 and aging
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Mark R. Wilson (https://sciprofiles.com/profile/1546679)
Website (https://scholars.uow.edu.au/display/mark_wilson)

Associate Section Editor-in-Chief
Illawarra Health and Medical Research Institute, and Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue,
Wollongong, NSW 2522, Australia
Interests: extracellular proteostasis; chaperones; protein folding; cytotoxicity; flow cytometry; optical microscopy
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Suleyman Allakhverdiev (https://sciprofiles.com/profile/1157001)
 ( https://recognition.webofscience.com/awards/highly-cited/2022/ ) Website (http://cellreg.org/laboratory-of-controlled-biosynthesis/)

Section Editor-in-Chief
К.А. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., 12 7276 Moscow, Russia
Interests: photosynthesis; plant physiology; environmental stress; abiotic stress; UV radiation; cyanobacteria; algal; ROS; nonphotochemical quenching (NPQ); chlorophyll
fluorescence; salt stress; hydrogen energy; artificial photosynthesis
Special Issues, Collections and Topics in MDPI journals



Prof. Dr. Paolo Bernardi (https://sciprofiles.com/profile/582762) *

Section Editor-in-Chief
Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, I-35131 Padova, Italy
Interests: mitochondria; calcium; channels; permeability transition; ATP synthase; cell death
* Section: Mitochondria
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Bruce A. Bunnell (https://sciprofiles.com/profile/646450)

Section Editor-in-Chief
Health Science Center, University of North Texas, Fort Worth, TX, USA
Interests: mesenchymal stem cells; adipose; regeneration; SVF; exosomes; therapy; tissue engineering
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Alexander Dityatev (https://sciprofiles.com/profile/491945)
Website (https://www.dzne.de/en/research/research-areas/fundamental-research/research-groups/dityatev/research-areasfocus/)

Section Editor-in-Chief
Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), D-39120 Magdeburg, Germany
Interests: extracellular matrix; cell adhesion; synaptogenesis; synaptic plasticity; intrinsic plasticity; dementia; schizophrenia; mental retardation; epilepsy
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Christoph Englert (https://sciprofiles.com/profile/479727)
Website (http://www.leibniz-fli.de/research/research-groups/englert/)

Section Editor-in-Chief
Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
Interests: regulation of gene expression; development; organogenesis; cellular and organismic aging
Special Issues, Collections and Topics in MDPI journals

Back to TopTop

  

 (/)

 (/toggle_desktop_layout_cookie)

https://medicine.nus.edu.sg/bch/faculty/tang-bor-luen/
https://sciprofiles.com/profile/146299
https://scholars.uow.edu.au/display/mark_wilson
https://sciprofiles.com/profile/1546679
https://recognition.webofscience.com/awards/highly-cited/2022/
http://cellreg.org/laboratory-of-controlled-biosynthesis/
https://sciprofiles.com/profile/1157001
https://sciprofiles.com/profile/582762
https://sciprofiles.com/profile/646450
https://www.dzne.de/en/research/research-areas/fundamental-research/research-groups/dityatev/research-areasfocus/
https://sciprofiles.com/profile/491945
http://www.leibniz-fli.de/research/research-groups/englert/
https://sciprofiles.com/profile/479727
https://www.mdpi.com/
https://www.mdpi.com/toggle_desktop_layout_cookie


Prof. Dr. Ludger Hengst (https://sciprofiles.com/profile/1750208)
Website (https://www.i-med.ac.at/imcbc/bc/groupleader.html)

Section Editor-in-Chief
Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
Interests: cell cycle; cell proliferation; human diseases; cancer; oncogenesis; cyclin-dependent kinases

Prof. Dr. Alexander V. Ljubimov (https://sciprofiles.com/profile/567569)
Website1 (https://people.healthsciences.ucla.edu/institution/personnel?personnel_id=74962;) Website2 (https://www.cedars-

sinai.edu/research/labs/ljubimov.html) Website3 (https://people.healthsciences.ucla.edu/institution/personnel?personnel_id=74962)
Section Editor-in-Chief
Biomedical Sciences and Neurosurgery, Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Medicine, UCLA School of Medicine, Los Angeles,
CA, USA
Interests: cornea; nanomedicine; wound healing
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Hiroshi Miyamoto (https://sciprofiles.com/profile/224522)
Website (https://www.urmc.rochester.edu/people/22111005-hiroshi-miyamoto)

Section Editor-in-Chief
Director of Genitourinary Pathology, University of Rochester Medical Center, Rochester, NY, USA
Interests: nuclear hormone receptors; androgen receptor; glucocorticoid receptor; antiandrogens; glucocorticoids; urothelial cancer; prostate cancer; genitourinary
pathology
Special Issues, Collections and Topics in MDPI journals

Dr. Christian Neri (https://sciprofiles.com/profile/2024261)
Website (http://www.ibps.upmc.fr/en/research/biological-adaptation-and-ageing/brainc)

Section Editor-in-Chief
CNRS Centre National de la Recherche Scientifique, Laboratory of Neuronal Cell Biology and Pathology, Paris, France
Interests: C. elegans; huntington disease
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Alessandro Poggi (https://sciprofiles.com/profile/60153)
Website (https://moh-it.pure.elsevier.com/en/persons/alessandro-poggi)

Section Editor-in-Chief
Unit of Molecular Oncology and Angiogenesis, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
Interests: mesenchymal stromal cells; NKG2D; innate immunity; leukemia and lymphoma; anti-tumor immunity
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Fulvio Reggiori (https://sciprofiles.com/profile/270524) *
Website (http://cellbiology.umcg.nl/people/reggiori-fulvio-m/)

Section Editor-in-Chief
Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
Interests: autophagy; endosomal traffic; infection; yeast; virus; subversion
* Section: Autophagy
Special Issues, Collections and Topics in MDPI journals

Dr. Francisco Rivero (https://sciprofiles.com/profile/174924)
Website (https://www.hyms.ac.uk/about/people/francisco-rivero-crespo)

Section Editor-in-Chief
Reader in Biomedical Science, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
Interests: actin cytoskeleton; actin-binding proteins; Rho GTPases; cyclase-associated protein; coronin; plastin; cell motility; platelet biology; endothelial cell biology
Special Issues, Collections and Topics in MDPI journals

Back to TopTop

  

 (/)

 (/toggle_desktop_layout_cookie)

https://www.i-med.ac.at/imcbc/bc/groupleader.html
https://sciprofiles.com/profile/1750208
https://people.healthsciences.ucla.edu/institution/personnel?personnel_id=74962;
https://www.cedars-sinai.edu/research/labs/ljubimov.html
https://people.healthsciences.ucla.edu/institution/personnel?personnel_id=74962
https://sciprofiles.com/profile/567569
https://www.urmc.rochester.edu/people/22111005-hiroshi-miyamoto
https://sciprofiles.com/profile/224522
http://www.ibps.upmc.fr/en/research/biological-adaptation-and-ageing/brainc
https://sciprofiles.com/profile/2024261
https://moh-it.pure.elsevier.com/en/persons/alessandro-poggi
https://sciprofiles.com/profile/60153
http://cellbiology.umcg.nl/people/reggiori-fulvio-m/
https://sciprofiles.com/profile/270524
https://www.hyms.ac.uk/about/people/francisco-rivero-crespo
https://sciprofiles.com/profile/174924
https://www.mdpi.com/
https://www.mdpi.com/toggle_desktop_layout_cookie


Prof. Dr. Roger Schneiter (https://sciprofiles.com/profile/1725104) *
Website (https://www.unifr.ch/bio/en/research/biochemistry/schneiter.html)

Section Editor-in-Chief
Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
Interests: membrane homeostasis; lipid droplet biogenesis; lipid transport; sterol export; CAP proteins; fatty acid transport
* Section: Cellular Biophysics
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Naweed I. Syed (https://sciprofiles.com/profile/1582462)
Website (https://research4kids.ucalgary.ca/profiles/naweed-syed)

Section Editor-in-Chief
Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary,
Calgary, AB T2N 1N4, Canada
Interests: neurodevelopment; synapse formation; synaptic plasticity; anesthetics; neurodegeneration; neurite outgrowth; brain-chip interfacing

Prof. Dr. Ritva Tikkanen (https://sciprofiles.com/profile/37029)
Website1 (http://www.uni-giessen.de/fbz/fb11/institute/biochemie/forschungbiochemie/agtikkanen) Website2 (https://gepris.dfg.de/gepris/person/1657848?

context=person&task=showDetail&id=1657848x%x)
Section Editor-in-Chief
Institute of Biochemistry, Medical Faculty, Justus-Liebig University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
Interests: lysosomal storage disorders; vesicular trafficking; endosomal sorting; lysosome biogenesis; mitochondrial diseases; autoimmune disorders
Special Issues, Collections and Topics in MDPI journals

Dr. Kay-Dietrich Wagner (https://sciprofiles.com/profile/608084)
Website (http://ibv.unice.fr/research-team/wagner/)

Section Editor-in-Chief
Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France
Interests: vessel formation in development and disease; transcriptional control; epigenetics; cancer; cardiovascular disease
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Yu Xue (https://sciprofiles.com/profile/1061623)
Website (http://www.biocuckoo.cn/index.php)

Section Editor-in-Chief
Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
Interests: proteomics; phosphoproteomics; bioinformatics; artificial intelligence biology; deep learning; autophagy; protein kinase
Special Issues, Collections and Topics in MDPI journals

Dr. Stephen Yarwood (https://sciprofiles.com/profile/324704)
Website (https://researchportal.hw.ac.uk/en/persons/stephen-john-yarwood/publications/)

Section Editor-in-Chief
Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, William Perkin Building, Heriot–Watt University, Edinburgh
EH14 4AS, UK
Interests: cell signalling; cyclic AMP; gene expression
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Giovanni Abatangelo
Website (https://www.researchgate.net/profile/Giovanni_Abatangelo)

Editorial Board Member
Faculty of Medicine, University of Padova, 35100 Padova, Italy
Interests: hyaluronan; tissue repair
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Hashim Abdul-Khaliq
Website (https://www.kompetenznetz-ahf.de/verzeichnisse/personen/abdul-khaliq-hashim/)

Editorial Board Member
Universitätsklinikum des Saarlandes Medizinische Fakultät der Universität des Saarlandes, Homburg, Germany
Interests: echocardiography; heart failure; congenital heart disease; heart; heart transplantation; pulmonary hypertension; pacemakers; cardiomyopathies; cardiacBack to TopTop

  

 (/)

 (/toggle_desktop_layout_cookie)

https://www.unifr.ch/bio/en/research/biochemistry/schneiter.html
https://sciprofiles.com/profile/1725104
https://research4kids.ucalgary.ca/profiles/naweed-syed
https://sciprofiles.com/profile/1582462
http://www.uni-giessen.de/fbz/fb11/institute/biochemie/forschungbiochemie/agtikkanen
https://gepris.dfg.de/gepris/person/1657848?context=person&task=showDetail&id=1657848x%x
https://sciprofiles.com/profile/37029
http://ibv.unice.fr/research-team/wagner/
https://sciprofiles.com/profile/608084
http://www.biocuckoo.cn/index.php
https://sciprofiles.com/profile/1061623
https://researchportal.hw.ac.uk/en/persons/stephen-john-yarwood/publications/
https://sciprofiles.com/profile/324704
https://www.researchgate.net/profile/Giovanni_Abatangelo
https://www.kompetenznetz-ahf.de/verzeichnisse/personen/abdul-khaliq-hashim/
https://www.mdpi.com/
https://www.mdpi.com/toggle_desktop_layout_cookie


echocardiography; hypertension

Prof. Dr. Soman Ninan Abraham (https://sciprofiles.com/profile/153722)
Website (https://pathology.duke.edu/research/primary-faculty-labs/abraham-lab)

Editorial Board Member
Department of Pathology, Duke University Medical Center (DUMC), Durham, NC 27710, USA
Interests: mast cell biology; host-pathogen interactions; bladder immunology; urinary tract infections; adjuvants and vaccine design

Prof. Dr. Nihal Ahmad
Website (https://dermatology.wisc.edu/staff/ahmad-nihal/)

Editorial Board Member
Department of Dermatology, University of Wisconsin, 1300 University Avenue, 423 MSC, Madison, WI 53706, USA
Interests: cancer Biology; cancer prevention; resveratrol phytoalexin antioxidant; experimental therapeutics of cancer

Prof. Dr. Wado Akamatsu (https://sciprofiles.com/profile/824804)
Website (https://nrid.nii.ac.jp/nrid/1000060338184/)

Editorial Board Member
Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
Interests: neural stem cells; iPS cells; neural development; Parkinson’s disease

Prof. Dr. Payam Akhyari (https://sciprofiles.com/profile/807234)
Website (https://www.ctsnet.org/home/pakhyari)

Editorial Board Member
Department of Cardiac Surgery, Medical Faculty and University Hospital, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
Interests: cardiac surgery; minimally invasive; mitral valve disease; heart transplantation; mechanical circulatory support; cardiovascular tissue engineering

Dr. Moulay Alaoui-Jamali (https://sciprofiles.com/profile/1337966)
Website (http://www.ladydavis.ca/en/moulayalaouijamali)

Editorial Board Member
Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
Interests: tyrosine kinase receptor signaling; tumor microenvironment; cell chemotaxis; metastasis; drug resistance; drug discovery; breast cancer; HNSCC

Prof. Dr. Anthony Albert (https://sciprofiles.com/profile/857491)
Website (https://www.sgul.ac.uk/about/our-institutes/molecular-and-clinical-sciences/research-centres/vascular-biology-research-centre)

Editorial Board Member
Vascular Biology Research Centre, University of London, London, UK
Interests: TRP channels; calcium-sensing receptor; PIP2-binding proteins; G-protein-coupled receptors; cell signalling; Ca signalling; vascular smooth muscle; endothelium
Special Issues, Collections and Topics in MDPI journals

Dr. Adriana Albini (https://sciprofiles.com/profile/700454)
Website (https://eutranslationalmedicine.org/adriana-albini)

Editorial Board Member
School of Medicine and Surgery, University of Milano-Bicocca, Edificio U8, Via Cadore 48, 20900 Monza, MI, Italy
Interests: inflammation; angiogenesis; mechanisms; invasion
Special Issues, Collections and Topics in MDPI journals

Dr. Hakan Aldskogius (https://sciprofiles.com/profile/1320523)
Website (https://katalog.uu.se/profile/?id=N96-3134)

Editorial Board Member
Department of Neuroscience, Uppsala University, Uppsala, Sweden
Interests: neurons; microglia; peripheral nerve or dorsal root injury; injured spinal cord
Special Issues, Collections and Topics in MDPI journals
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Dr. Catherine Alix-Panabieres (https://sciprofiles.com/profile/519902)
Website (https://www.chu-montpellier.fr/en/care-offer/doctors/catherine-panabieres-46883)

Editorial Board Member
University Medical Center of Montpellier, IURC, Laboratory of Rare Human Circulating Cells (LCCRH), 641 avenue du Doyen Gaston Giraud, 34093 Montpellier, France
Interests: circulating tumor cells (CTCs); liquid biopsy; biomarkers, metastasis-competent CTCs
Special Issues, Collections and Topics in MDPI journals

Dr. Richard Allsopp
Website (https://www.ibr.hawaii.edu/343-2/richard-allsopp/)

Editorial Board Member
Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
Interests: telomeres; telomerase; stem cells; aging

Dr. Ezequiel Álvarez (https://sciprofiles.com/profile/1055701)
Website (https://www.usc.gal/en/department/pharmacology-pharmacy-and-pharmaceutical-technology/directory/ezequiel-alvarez-castro-33826)

Editorial Board Member
1. Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
2. Instituto de Investigación Sanitaria de Santiago, 15706 Santiago de Compostela, Spain
3. CIBERCV, Madrid, Spain
Interests: endothelial cells; cardiovascular pharmacology; oxidative stress; acute coronary syndrome; heart failure; vascular biology; vessel-on-a-chip models
Special Issues, Collections and Topics in MDPI journals

Dr. Cristine Alves Da Costa (https://sciprofiles.com/profile/824988)
Website (http://cvscience.aviesan.fr/cv/1094/cristine-alves-da-costa)

Editorial Board Member
Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
Interests: Parkinson’s disease; Alzheimer’s disease, brain tumors; transcription; autophagy; cell death; ER-stress/unfolded protein response
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Stephen E. Alway (https://sciprofiles.com/profile/2614664)
Website (https://www.uthsc.edu/health-professions/about/admin-staff.php)

Editorial Board Member
Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health
Science Center, Memphis, TN, USA
Interests: muscle stem cells; satellite cells; muscle regeneration; muscle fibers; mitochondria function in aging muscle

Dr. Giovanni Amabile (https://sciprofiles.com/profile/334188)
Website (https://www.researchgate.net/profile/Giovanni_Amabile)

Editorial Board Member
Chief Executive Officer, Enthera, Milano, Italy
Interests: induced pluripotent stem cells; epigenetics; hematopoiesis; neurogenesis; early and late stage clinical trials
Special Issues, Collections and Topics in MDPI journals

Prof. Fernanda Amicarelli (https://sciprofiles.com/profile/534468)
Website (https://www.researchgate.net/profile/Fernanda-Amicarelli)

Editorial Board Member
Depertment of Life, Health and Environmental Sciences,University of L’Aquila, via Vetoio – Coppito, 67100 L’Aquila, Italy
Interests: reactive oxygen species; oxidative stress; redox-responsive pathways; dicarbonyl stress; glycation; methylglyoxal; aging; adaptive response; hormesis; stress
response
Special Issues, Collections and Topics in MDPI journals

Dr. Xiuli An (https://sciprofiles.com/profile/2642264)
Website (https://nybc.org/lindsley-f-kimball-research-institute/investigators/xiuli-an/)

Editorial Board Member
New York Blood Center, Lindsley F. Kimball Research Institute, 310 E 67th Street, New York, NY 10065, USA
Interests: regulation of erythropoiesis with focus on mechanisms for erythroblast enucleation; how EBI macrophages regulate erythropoiesis; improving ex vivo red cell
production from stem cells

Dr. Claudia D. Andl (https://sciprofiles.com/profile/2014745)
Website (https://med.ucf.edu/biomed/person/dr-claudia-andl/) Back to TopTop
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Editorial Board Member
Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
Interests: receptor-mediated cell signaling; TGFb signaling; epithelial cell migration and invasion; gastrointestinal cancers

Prof. Dr. Smaragdi Antonopoulou (https://sciprofiles.com/profile/1387157)
Website (https://www.ddns.hua.gr/en/smaragdi-antonopoulou/)

Editorial Board Member
Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, 70 Eleftheriou Venizelou Avenue, 176 71 Kallithea, Greece
Interests: lipids; phospholipids; platelet-activating factor; platelets; monocytes; leukocytes; platelet aggregation; lipoprotein associated phospholipase-A2; lyso-PAF
acetyltransferases; cytidine 5-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase; platelet activating factor acetylhydrolase; mediterranean diet;
inflammation; thrombosis; haemostasis; fibrinolysis; by-products; phospholipases; phenolic compounds

Prof. Rami Aqeilan (https://sciprofiles.com/profile/1143332)
Website (https://medicine.ekmd.huji.ac.il/en/research/ramiaq/Pages/default.aspx)

Editorial Board Member
Division of Cell biology, Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Lautenberg Center for Immunology and Cancer Research,
Jerusalem 91120, Israel
Interests: genomic Instability; DDR signalling; DSBs; Common Fragile Sites; osteosarcoma; triple-negative breast cancer; early-onset epilepsy
Special Issues, Collections and Topics in MDPI journals

Dr. Javier Conde Aranda (https://sciprofiles.com/profile/631131)
Website (https://www.researchgate.net/profile/Javier_Conde)

Editorial Board Member
Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
Interests: inflammation; immune-mediated diseases; inflammatory bowel disease; colorectal cancer; resolution of inflammation
Special Issues, Collections and Topics in MDPI journals

Dr. Hugo Arias-Pulido (https://sciprofiles.com/profile/1686309)

Editorial Board Member
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 621 Rubin Building - HB7936, 1 Medical Center Dr., Lebanon, NH 03756, USA
Interests: inflammatory breast cancer; triple-negative breast cancer in young women; patient-derived xenograft models; canine mammary tumors; canine clinical trials;
prognostic and predictive biomarkers
Special Issues, Collections and Topics in MDPI journals

Dr. Robert Arkowitz (https://sciprofiles.com/profile/1428428)
Website (http://ibv.unice.fr/research-team/arkowitz/)

Editorial Board Member
Institute of Biology Valrose (iBV), UMR CNRS7277 - INSERM1091 - Université Côte d'Azur, 06108 Nice, France
Interests: cell polarity; membrane traffic; mechanical forces; lipids; GTPases

Dr. Jane Armstrong (https://sciprofiles.com/profile/908791)
Website (https://www.sunderland.ac.uk/about/staff/health-paramedic-clinical-sciences/janearmstrong/)

Editorial Board Member
Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK
Interests: autophagy; autophagy biomarkers; cell death; cancer biology; lysosome/mitochondria signalling

Prof. Dr. Yvan Arsenijevic (https://sciprofiles.com/profile/1705708)
Website (https://www.ophtalmique.ch/centre-de-recherche/recherche-fondamentale/groupe-retinal-degeneration-and-regeneration/)

Editorial Board Member
Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Hôpital Ophtalmique Jules-Gonin, Fondation Asile des aveugles,
1004 Lausanne, Switzerland
Interests: retinal degeneration; epigenetics; disease mechanisms; disease models; retina organoids; gene therapy; ophthalmology
Special Issues, Collections and Topics in MDPI journals
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Prof. Dr. Thiruma Valavan Arumugam
Website (https://scholars.latrobe.edu.au/display/tarumugam)

Editorial Board Member
Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Melbourne Campus, VIC 3086, Australia
Interests: dementia; stroke; stroke (brain attack) care and prevention

Dr. Anthony Ashton (https://sciprofiles.com/profile/1326670)
Website (https://www.mainlinehealth.org/research/lankenau-institute-for-medical-research/researchers/our-faculty/anthony-ashton)

Editorial Board Member
Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
Interests: G-protein coupled receptors; Angiogenesis; Cardiac remodeling; Pregnancy; Placentation
Special Issues, Collections and Topics in MDPI journals

Dr. Mohammad Asim (https://sciprofiles.com/profile/876481)
Website (https://www.surrey.ac.uk/people/mohammad-asim)

Editorial Board Member
Assistant Professor, Department of Clinical & Experimental Medicine, University of Surrey, Surrey, UK
Interests: androgen receptors; prostate cancer; anti-androgens; kinase signalling; synthetic lethality; transcription/translation regulation
Special Issues, Collections and Topics in MDPI journals

Dr. Peter Askjaer (https://sciprofiles.com/profile/473672)
Website (http://www.cabd.es/en-research_groups-14-52-nuclear-dynamics-in-cell-and-developmental-biology-summary.html)

Editorial Board Member
Andalusian Center for Developmental Biology (CABD), Spanish Research Council, Universidad Pablo de Olavide, Sevilla, Spain
Interests: nuclear envelope; nuclear pore complex; laminopathies; aging; nuclear organization; chromatin structure and function; gene regulation; chromosome
segregation; nucleocytoplasmic transport; live microscopy
Special Issues, Collections and Topics in MDPI journals

Dr. Mukundan G. Attur (https://sciprofiles.com/profile/613034)
Website (https://med.nyu.edu/faculty/mukundan-g-attur)

Editorial Board Member
Department of Medicine, Division of Rheumatology, NYU Grossman School of Medicine, New York, NY, USA
Interests: cartilage; chondrocytes; synovium; mesenchymal stem cells; inflammation; genetics; gene therapy; osteoarthritis; surgical models of OA

Prof. Dr. George Augustine (https://sciprofiles.com/profile/1498387)
Website (https://dr.ntu.edu.sg/cris/rp/rp01210)

Editorial Board Member
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
Interests: neurotransmitter release; membrane trafficking; brain circuitry; optogenetics
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Tomer Avidor-Reiss (https://sciprofiles.com/profile/446257)
Website (https://www.utoledo.edu/nsm/bio/research/AvidorReiss.html)

Editorial Board Member
Department of Biological Sciences, University of Toledo, Toledo, OH 43607, USA
Interests: centriole; centrosome; cilium in sperm and male fertility
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Abdussalam Azem (https://sciprofiles.com/profile/2298601)
Website (https://en-lifesci.tau.ac.il/profile/azema)

Editorial Board Member
George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
Interests: mitochondria; translocating proteins; cytosol; mitochondrial proteins; nuclear genome; oligomeric protein complexes; outer mitochondrial membrane,
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intermembrane space; TIM23 complex; chaperonin family of proteins; genetic diseases

Prof. Dr. Jane Azizkhan-Clifford
Website (https://drexel.edu/medicine/faculty/profiles/jane-azizkhan-clifford/)

Editorial Board Member
Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
Interests: cellular response to DNA damage; regulation of gene expression; cellular proliferation; cell cycle

Dr. Véronique Azuara (https://sciprofiles.com/profile/12057)
Website (http://www.imperial.ac.uk/people/v.azuara)

Editorial Board Member
Epigenetics and Development Group, Stem Cell Biology, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith
Hospital, Du Cane Road, London W12 ONN, UK
Interests: epigenetics; regulation of gene expression; stem cells; cell fate decisions; development

Dr. Yasu-Taka Azuma (https://sciprofiles.com/profile/988373)
Website (http://www.vet.osakafu-u.ac.jp/pham/professor/)

Editorial Board Member
Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Sciences, 1-58 Rinku-
ohraikita, Izumisano, Osaka 598-8531, Japan
Interests: macrophage; dendritic cell; T cell; microglia; cytokine; interleukin; gastrointestinal immunology; liver fibrosis; inflammation; etc
Special Issues, Collections and Topics in MDPI journals

Dr. Eduard B. Babiychuk (https://sciprofiles.com/profile/1213996)
Website (https://www.anatomie.unibe.ch/ueber_uns/team/detail/index_ger.php?id=95)

Editorial Board Member
Institut für Anatomie, Bern, Switzerland
Interests: plasma membrane; plasmalemma; plasmalemmal repair; annexin; microvesicle shedding; bacterial toxins; pore-forming toxins; neutralization of bacterial toxins;
anti-virulence; nanotrap

Prof. Dr. Zsolt Bagi
Website (https://www.augusta.edu/mcg/phy/faculty/phys_faculty_bagi.php)

Editorial Board Member
Medical College of Georgia Augusta, Augusta, GA, USA
Interests: coronary microvascular disease in patients with diabetes mellitus and diastolic heart failure

Prof. Dr. Maryse Bailly
Website (https://www.ucl.ac.uk/ioo/research/academics/bailly)

Editorial Board Member
UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
Interests: tissue contraction; fibrosis, fibroblasts; mechanoregulation; actin dynamics; electron microscopy of actin cytoskeleton; ocular scarring

Dr. Andrei V. Bakin (https://sciprofiles.com/profile/2727964)
Website (https://www.roswellpark.org/andrei-bakin)

Editorial Board Member
Roswell Park Cancer Institute, Buffalo, NY, USA
Interests: ribosome biogenesis and cancer genetics; gene networks; breast epithelial

Dr. Walter Balduini (https://sciprofiles.com/profile/341228)
Website (https://www.researchgate.net/profile/Walter_Balduini)

Editorial Board Member
Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
Interests: cerebral hypoxia/ischemia; neuronal death and regeneration; neuroprotection
Special Issues, Collections and Topics in MDPI journals

Dr. Rina Bandopadhyay
Website (https://www.michaeljfox.org/researcher/rina-bandopadhyay-phd)

Editorial Board Member
UCL Institute of Neurology, London, UK
Interests: molecular mechanisms of neurodegeneration in Parkinson’s disease and fronto-temporal dementias
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Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Debabrata Banerjee (https://sciprofiles.com/profile/704254)
Website (https://burdwandoctors.com/listing/prof-dr-debabrata-banerjee-2/)

Editorial Board Member
Department of Pharmacology, Rutgers, Robert Wood Johnson Medical School (RWJMS), Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
Interests: metabolic cooperation between tumor cells and stromal cells; role of carcinoma associated fibroblasts
Special Issues, Collections and Topics in MDPI journals

Dr. João T. Barata (https://sciprofiles.com/profile/1065272)
Website (https://imm.medicina.ulisboa.pt/investigation/laboratories/joao-barata-lab/#intro)

Editorial Board Member
Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Av. Professor Egas Moniz,  1649- 028 Lisboa, Portugal
Interests: signal transduction; cytokine signaling; cancer; lymphoid leukemia; targeted therapies

Dr. Lucio Barile (https://sciprofiles.com/profile/1653143)
Website (https://search.usi.ch/en/people/33e1efbf0451792a5adc1cd8dacf72bc/barile-lucio)

Editorial Board Member
1. Faculty of Biomedical Sciences, Università Svizzera Italiana, 6962 Lugano, Switzerland
2. Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, CH-6900 Lugano (CH), Switzerland
Interests: cardioprotection; exosomes; cardiac progenitor cells; myocardial ischemia; cardiac aging
Special Issues, Collections and Topics in MDPI journals

Dr. Eytan R Barnea
Website (http://www.comtecmed.com/oc/2015/Uploads/Editor/OC_BIO/Barnea.pdf)

Editorial Board Member
The Society for the Investigation of Early Pregnancy (SIEP), New York, NY, USA
Interests: immune modulation and tolerance; cell and organ repair and regeneration; transplant acceptance; protection against adverse environment (radiation, bacteria
and/or virus)

Prof. Dr. Albert Basson (https://sciprofiles.com/profile/1407310)
Website (http://bassonlab.paulkainth.co.uk/)

Editorial Board Member
Centre for Craniofacial & Regenerative Biology and MRC Centre for Neurodevelopmental Disorders, King’s College London, Floor 27, Guy’s Hospital Tower Wing, London
SE1 9RT, UK
Interests: chromatin; autism spectrum disorders; learning and memory
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Marc D. Basson (https://sciprofiles.com/profile/765774)
Website (https://und.edu/directory/marc.basson)

Editorial Board Member
School of Medicine and Health Sciences, University of North Dakota, PI 58203, USA
Interests: cell signaling; cell migration; intestinal mucosa; surgery; wound healing
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Agnieszka Basta-Kaim (https://sciprofiles.com/profile/436610)
Website (http://if-pan.krakow.pl/en/departments/employees/9/Professor-PhD-Agnieszka--Basta---Kaim/)

Editorial Board Member
Department of Experimental Neuroendocrinology, Institute of Pharmacology of the Polish Academy of Sciences, Krakow, Poland
Interests: schizophrenia; anti-psychotic drugs; neuroinflammation; neurodegeneration; immune response; resolution of inflammation; metabolic processes
Special Issues, Collections and Topics in MDPI journals

Prof. Dr. Olivier Baud (https://sciprofiles.com/profile/349013)
Website (https://neurocenter-unige.ch/research-groups/pathogenesis-of-perinatal-brain-damage-and-neuroprotection-of-the-developing-brain/)

Editorial Board Member
Senior Clinician and Research Head, Division of Neonatology and Pediatric Intensive Care, Department of Pediatrics, University Hospitals Geneva, 1206 Geneva,
Switzerland
Interests: perinatal brain damage; neonatal brain damage; angiogenesis; brain development; brain imaging; brain lesions; cortical connectivity
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multifactorial disease, with inflammation being a critical factor in its pathogenesis. It has previously been postulated that the crosstalk between the
retinal pigmented epithelial cells and the innate immune cells infiltrating the sub-retinal space drives AMD progression. We generated genetically
engineered mouse models and a unique bioinformatics tool (ligand–receptor loop) to demonstrate that soluble factors derived from diseased RPE
trigger microglial activation to the M1 phenotype. The pro-inflammatory M1 microglia in turn activate neutrophils, inducing early RPE changes and
switching the para-inflammatory state to chronic inflammation; therefore, preventing microglia–neutrophil interactions may be a novel strategy for
blocking the para- to chronic inflammation switch in atrophic AMD and delaying disease progression. View this paper (https://www.mdpi.com/2073-
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Abstract: Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Accu-
mulating evidences have highlighted the importance of exosomes and non-coding RNAs (ncRNAs)
in cardiac physiology and pathology. It is in general consensus that exosomes and ncRNAs play a
crucial role in the maintenance of normal cellular function; and interestingly it is envisaged that their
potential as prospective therapeutic candidates and biomarkers are increasing rapidly. Considering
all these aspects, this review provides a comprehensive overview of the recent understanding of
exosomes and ncRNAs in CVDs. We provide a great deal of discussion regarding their role in the
cardiovascular system, together with providing a glimpse of ideas regarding strategies exploited
to harness their potential as a therapeutic intervention and prospective biomarker against CVDs.
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Thus, it could be envisaged that a thorough understanding of the intricacies related to exosomes
and ncRNA would seemingly allow their full exploration and may lead clinical settings to become a
reality in near future.

Keywords: cardiovascular disease; exosomes; ncRNA; miRNA; lncRNA; circRNA

1. Introduction

Cardiovascular diseases (CVDs) represent one of the major causes of death annually
and poses a serious burden to the healthcare sector of the society. The World Health Or-
ganization estimates that the number of people succumbing to CVDs may cross almost
25 million by 2030 [1]. With the advancements in healthcare systems and infrastructure, the
quality of life of CVDs patients has improved substantially. Nevertheless, despite such in-
terventions, the prevalence of heart failure (HF) still remains relatively high. As a matter of
fact, cardiac tissues are composed of different types of cells which work in perfect harmony
with each other owing to various delicate inter- and intra-cellular communication systems
between these cells. This homeostasis is basically achieved through regulated orchestration
of various signaling pathways involving autocrine, paracrine, and endocrine release of
chemicals/mediators in a feedback loop system. Nevertheless, when this homeostasis is
perturbed, pathological conditions are inevitable, and CVDs represent such a multifaceted
phenomenon with wide range of pathologies. Accumulating evidences have highlighted
the importance of exosomes and non-coding RNAs (ncRNAs) in cardiac physiology and
pathology [2–4]. It is widely accepted that exosomes and ncRNAs play crucial role in
maintenance of the normal cellular function and their potential as prospective biomarkers
and therapeutic candidates are rapidly increasing. Considering all these aspects in mind,
this review collates a comprehensive overview of the recent understanding of exosomes
and ncRNAs in CVDs with special converge on hypertension induced cardiac complication.
We provide a great deal of discussion regarding their role in cardiovascular system together
with providing a glimpse of ideas regarding strategies exploited to harness their potential
as therapeutic intervention and prospective biomarker against CVDs.

1.1. General Introduction of Exosomes

Extracellular vesicles (EVs) are membranous lipid assemblies, which carries a vari-
ety of cellular cargo including lipids, proteins, nucleic acids, metabolites, and so on [5].
Generally, these EVs are categorized based on their size and the nature of their biogen-
esis [6]; nevertheless, there is some overlap within this nomenclature leading to some
contradiction [7]. As of yet, there are no set rules to fully categorize EVs. As a result, the
International Society of Extracellular Vesicles has advocated the generic term “EVs” for
the vesicles released from the cell [8]. Nevertheless, broadly speaking, there are two major
classes namely microvesicles (MVs) and exosomes. MVs are also known as ectosomes,
microparticles, or shedding vesicles, are vesicles having size ranging from ∼100–1000 nm
and are formed from the outward budding of the plasma membrane [9,10]; whereas, ex-
osomes are the vesicles ranging from ∼40 to 120 nm and are formed through a complex
process that involves inward budding of endosomes [10–12]. Since the discovery of EVs,
intensive research has been on-going; nevertheless, as of yet the biology of these EVs espe-
cially exosomes are not completely understood. It has been envisaged that exosomes are
virtually being released from almost every cell type and they basically facilitate transport
of various molecular entities, including nucleic acids, proteins, lipids, and metabolites,
both locally and systemically [5,13–17]. Research in the frontiers of exosomes are rapidly
increasing; basically a PubMed search with the keyword “exosomes” shows more than
thousands of literature been published on the subject, highlighting their importance in the
present scenario. Accumulating evidences have ascertained their imperative role in the
context of cardiovascular physiology and pathology [18–20]. The origin and evolutionary
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perspective of exosomes and their primordial origin remains enigmatic and understanding
of its plausible relation with single celled organism also remains relatively obscure. Ex-
osomes which were once thought to be merely associated with the recycling machinery
of the cell, playing role in cellular homeostasis, have undergone pragmatic shift in the
field of translational medicine. They are released from wide spectrum of cells, including
immune cells such as B cells, T cells, dendritic cells and stem cells, and are present in
various biological fluids, such as cerebrospinal fluid, serum, saliva, urine, etc. Evidence
has shown that exosomes are mechanistically and functionally diverse from its canonical
counterpart and are also more heterogeneous, depending upon its origin [21]. Persistent
to its endosomal origin, studies have shown the presence of major lipid rafts components
consisting of ceramide, cholesterol, sphingomyelin, phosphoglycerides, long and saturated
fatty-acyl chains, etc., in the exosomes. Additionally, since exosomes and multivesicular
bodies (MVBs) generally originate with the aid of endosomal sorting complex required for
transport (ESCRT) pathway, the proteins related to ESCRT are very prevalent and, in fact,
many of them, such as HSP70, HSP90, TSG101, Alix, and tetraspanin family proteins, are
considered “signature proteins” of exosomes. This, however, does not imply the absence of
any other proteins since exosomes can also arise independent of classical ESCRT pathway
and also it is to be noted that they act as a carrier for various protein molecules; thus, their
protein profile seems to be wide and varied depending on the conditions. Recent studies
have highlighted the importance of membrane proteins in the exosomes which can be
leveraged to understand their origin, their preferred cellular destination and pathology
of diseased state [21]. In addition to lipids and proteins, exosomes also comprise nucleic
acid molecules, including mRNA, miRNA, lncRNA, circRNA, etc., as discussed below. A
representative figure highlighting the biogenesis of exosomes and the typical structure of
exosomes are presented in Figure 1. As a matter of fact, it is in general consensus that once
these exosomes are secreted from the parent cell, they interact with the recipient/responder
cells through various mechanism including clathrin-mediated endocytosis, lipid-raft me-
diated, and/or caveolin-mediated endocytosis, receptor-ligand mediated internalization,
phagocytosis or micropinocytosis, and/or direct fusion with the plasma membrane. Lately,
it has been evident that these pathways are not mutually explicit and plausibly could co-
exist for the internalization of a same population of exosomes [10,22]. For example, Isabella
et al., 2009 showed exosome uptake by melanoma cells through the plasma membrane
fusion [23]. Similarly, another study identified exosome uptake in neurosecretory PC12
through clathrin-mediated endocytosis [24]. Perhaps, through these mechanisms, these
exosomal particles modulate the activity of the recipient cells. The mechanism of exosome
uptake is shown in classical cellular cargo transport physiology [10,25]. Further, it has been
envisaged that the mode and level of internalization of exosomes by different cells varies
widely depending on the cell type and environmental conditions. Unfortunately, but not
surprisingly, it has been highlighted that the uptake of exosomes is highest in fibroblast
cells and least in cardiomyocytes. Nevertheless, the underlying intricacies regulating exo-
somal targeting/internalization by cardiomyocyte still remains incompletely understood.
Interestingly, Eguchi et al., highlighted that stem cell-derived exosomes containing the
anti-apoptotic miRNA-214 are up-taken by the cardiac cells through clathrin-mediated
endocytosis [26]. With paucity in the literature underlying molecular intricacies in exoso-
mal internalization and interaction in cardiac cells, not much could be ascertained in the
present scenario. Albeit certain speculations could be made based on the understanding
obtained from reports on exosomes cell interaction with other cell types. It is envisaged
that alteration in its profile gives plethora of information in relation to perturbation in the
physiological homeostasis of the body. Interestingly, multiple lines of studies have shown
that exosomes with their signature molecules plausibly act as an excellent and minimally
invasive biomarker for diagnosis and prognosis of various diseases in general and CVDs
in particular. To this end, much literature reviews are available highlighting the potential
of exosomal signatures molecules as intriguing biomarkers for variety of pathological
conditions including CVDs [27–29].
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Figure 1. Representative figure highlighting the biogenesis of exosomes (A) and the typical structure
of exosomes (B). Basically, exosome biogenesis starts with the inward vagination of the cellular
membrane to form early endosomes. Thereafter, the intraluminal vesicles (ILVs) are formed, and
the endosomes mature to multivesicular bodies (MVBs). MVBs fuse with the cellular membrane
to release ILVs into the extracellular space, where thereafter they are denoted as exosomes. On the
other hand, these MVBs can fuse with lysosomes of the cell, resulting in the degradation of ILVs (A).
Exosomes contain various molecular entities, including nucleic acids (DNA and/or RNA), membrane
anchored-proteins, cytosolic proteins, and lipids (B). The figures are prepared with the BioRender
Software (biorender.com).

1.1.1. Exosomes in Cardiac Physiology and Pathology

As a matter of fact, exosome-mediated crosstalk amongst various cell types in heart tis-
sues have been highlighted to play crucial role in the maintenance of cardiac homeostasis, as
well as in the pathogenesis of cardiac diseases [27,30]. It is well recognized that in response
to various stresses, heart tissue undergoes cardiac remodeling and development of cardiac
hypertrophy, apoptosis, and fibrotic responses, which eventually contribute to HF [31,32].
Albeit, understanding the molecular intricacies underlying cardiac remodeling is one of the
main challenges in cardiovascular medicine. However, it has been highlighted that these
responses, in part, involves vesicle-mediated cellular cross talk among cardiomyocytes
and other cells in the myocardium [33,34]. Reports have shown that cardiac cells under
stress have increased secretion of exosomes and the exosomal content/composition are also
altered; all these aspects eventually activate or suppress various molecular signaling in the
recipient cells [30,35]. Interestingly, Lyu and group have highlighted that cardiac fibroblast
(CF)-derived exosomes enhanced Renin–Angiotensin System (RAS) signaling in cardiomy-
ocytes; and it was found that attenuation of these exosome secretion considerably reversed
Angiotensin II-induced cardiac injuries [36]. Similarly, researchers have highlighted that
CF-derived exosomes, which were plausibly enriched with miRNAs, ensues in induction of
hypertrophic responses[37]; whereas Yang et al., highlighted that exosomes derived from
cardiomyocytes ensued in cardiac fibrosis through myocyte-fibroblast cross-talk [38]. Li
and group has shown that plasma exosomal seemingly regulates inflammatory responses
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during cardiopulmonary bypass surgery through plausible involvement of miR-223 [39].
These studies explicitly highlighted the importance of exosomes in cardiac homeostasis
and disease biology. In addition to playing an imperative role in maintaining cardiac
homeostasis and pathophysiology; they have been highlighted to endow with potentials to
revolutionize cell based therapeutic intervention against CVDs by being a potential means
of cell free therapeutic strategy [40]. Accordingly, in the subsequent section, newer area into
the exploration of exosomes as cell free therapeutic intervention, intriguing drug delivery
platform, and novel biomarkers for CVDs had been discussed.

1.1.2. Exosomes-Based Therapeutic Interventions against CVDs

Over the years, efforts have continuously been laid down to develop effective thera-
peutic strategies that would certainly improve the quality of the CVDs clientele. Newer
therapeutic strategies are being developed, focusing not only to protect the heart tissue but
also to regenerate the myocardium. To this end, accumulating evidence has highlighted the
potential of stem cell therapies against CVDs; nevertheless, as of yet, these therapies refrain
from showing promising results in clinical trials. Meanwhile, it has been envisaged that
most of the favorable outcomes of the transplanted cells were usually indirect. Reports have
highlighted that when mesenchymal stem cells (MSCs) were injected in animal model, only
6% of the injected cells were finally being retained in the infarct site [41]. It has been argued
that the transplanted cells may secrete various factors/mediators, including extracellular
vesicles (EVs), exosomes, growth factors, etc., that might actually play important role in
mediating the beneficial effects of cell therapy. This has reinforced the holistic and emerging
view of exosomes as an alternative and viable therapy. Nevertheless, despite many promis-
ing studies, the precise mechanism of exosome induced perturbations in the recipient cell
still remains poorly understood. Meanwhile, taking note of other aspects, a forward leap in
the arena of exosomes-based therapeutic interventions has been development of synthetic
exosomes with drug delivery potentials, especially the bio-engineered targeted exosomes
as detailed in the subsequent sections. Interestingly, many studies clearly indicated that
exosomes in general and engineered exosomes in particular have opened newer frontier in
arena of intriguing drug delivery platform and there is a high probably that these strategies
may find a prosperous status in biomedical sciences in near future.

(A) Exosomes as Cell-Free Therapeutic Strategies against CVDs

Owing to their various intriguing characteristics, they are increasingly being employed
as a means of cell-free therapeutic interventions for myriads of obstinate diseases, including
CVDs [40]. Accumulating evidence has reported that exosomes from cardiosphere-derived
stem cells (CDCs) have been shown to simulate the therapeutic effects of CDCs to a large
extend in animal models of heart disease [42–45]. They have been underscored to modulate
cardiomyocyte hypertrophic and apoptotic responses, induce angiogenesis, and stimulate
endogenous cardiomyocyte proliferation [46]. Interestingly, Zhu and the group have re-
ported the application of human umbilical cord mesenchymal stem cell (UMSC) derived
exosomes against aging related cardiac complications. In their study, the authors have as-
certained that UMSC derived exosomes through the release of novel metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) lncRNA suppressed aging-related cardiac
complications through subsequent attenuation of NF-κB/TNF-α signaling cascade [47].
Further, it has been highlighted that exosomes produced by CDCs have been demon-
strated to stimulate myocardial regeneration via transportation of miRNA to the cardiac
cells [42,44,48]. In addition, Limana and group have demonstrated that exosomal from
pericardial fluid considerably improved myocardial performance following myocardial
infarction (MI) and has ascertained that exosomal protein clustering, an important medi-
ator of TGF-β signaling, was plausibly responsible for the underlying cardiac protective
effects [49]. Interestingly, these discoveries rationalize the use of exosomes as intriguing
therapeutic intervention against CVDs.
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(B) Bio-Engineered Exosomes as Next-Generation Therapeutic Intervention

As a matter of fact, exosomes have been comprehended as an important cellular
communication agent embodying potentials to transport diverse range of molecular en-
tities within the biological system [50,51]. Because of their intrinsic ability to delivery
molecular entities, they are considered as a promising drug delivery system (DDS) for
various bioactive compounds and small molecular drugs and has been demonstrated to
considerably improve their pharmacological properties against various diseases in general,
and CVDs in particular. Compared with conventional drug delivery platforms, such as
micelles, microemulsion, nanospheres, liposomes, and metallic nano-particulate system;
exosomes offer many desirable advantages, such as lower toxicity, lower immunogenicity,
high stability in circulation, better biocompatibility, and biological barrier permeability,
which makes them attractive platforms for efficient delivery of therapeutic agents. Interest-
ingly, exosomes have been used to deliver therapeutic drug and small molecules to many
tissues, including the heart [52–58]. In fact, in recent years, engineered exosomes has been
harnessed for targeted co-delivery of chemotherapeutics drug and RNA in fight against
various diseases [59]. Nevertheless, exosomes in analogy with other drug delivery plat-
forms also suffer from the drawback of endocytosis by the mononuclear phagocyte system
(MPS). It has been highlighted that, when unmodified/neat exosomes were administrated
systemically in animal model, they were found preferentially accumulated in the MPS
organs such as liver, kidney, and spleen, which, thereafter, were rapidly cleared by bile
excretion, renal filtration, and/or were phagocytized, leading to minimal accumulation
of the therapeutics in the intended tissues or organs and undue delivery to un-intended
tissues [60]. This bio-distribution profile and off-target effects limited the clinical accept-
ability of the unmodified exosomes [60–62]. Therefore, attempts have been made to modify
exosomes for effective targeting to desired tissue. One method that has been harnessed is
modification of exosomes with homing ligands or peptides, which confers them targeting
capability to tissues or organs carrying the corresponding receptors. In cardiovascular
system, several homing ligands/peptides are been explored for targeted therapy [52,63–65].
Moreover, many peptides endowed with homing potential to different cardiovascular
systems, such as normal cardiomyocyte, ischemia/reperfusion injured cardiomyocytes, the
vascular system etc. offers exciting avenues for exosome targeting ligands [63,64,66–68].
Interestingly, exosomes can be derived from an individual differentiated hematopoietic
stem cells (HSC) and used for tissue-targeted cargo delivery through the expression of
tissue-specific peptides. Thereafter, by loading miRNA and/or siRNA of the targeted
gene, these modified tissue targeted exosomes can selectively regulate gene expression
in the specific tissue corresponding to the homing peptides. Interestingly, Vandergriff
et al., developed an infarct-targeting exosomes, through the use of cardiac homing peptide
(CHP: CSTSMLKAC (IMTP)) to increase the efficacy and decrease the effective dose of intra-
venously delivered exosomes [63,64]. They basically conjugated cardiac stem cell-derived
exosomes with cardiac homing peptide IMTP through a click chemistry approach using
dioleoylphosphatidyl ethanolamine N-hydroxy succinimide linker. Interestingly, increased
retention of the IMTP-exosomes within the ischemia/reperfusion injured heart tissues
were observed to a considerable extent and improvement in cardiac function was also
achieved thereof [69]. Similarly, molecular cloning and lentivirus packaging techniques
were employed to engineer exosomal enriched membrane protein, i.e., Lamp2b fused
with ischemic myocardium-targeting peptide IMTP. Such a fusion resulted in peptides
being displayed on the surface of exosomes. Interestingly, these IMTP-exosomes displayed
efficient internalization by hypoxia-injured embryonic cardiomyocyte H9c2 cells compared
to blank-exosomes and subsequent increased accumulation in ischemic heart tissue were
also obtained [65]. Meanwhile, attenuation of the inflammatory, apoptotic, and fibrotic
responses was observed and enhanced vasculogenesis, and improved cardiac function
were detected following IMTP-exosome treatment in ischemic heart. Further, Mentkowski
and Lang bio-engineered a cardiomyocyte targeted exosomes that demonstrated improved
cardiac retention in in vivo system [52]. Further, Mentkowski and Lang bio-engineered
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a cardiomyocyte targeted exosomes that demonstrated improved cardiac retention in an
in vivo system [52]. To this end, the researcher selected a cardiomyocyte-specific peptide
(CardioMyocyte Peptide (CMP): WLSEAGPVVTVRALRGTGS) [63,70]; which has proven
ability to specifically target cardiac tissues [53,69,71,72]. The researcher ligated this CMP
to the extra-exosomal N-terminus of Lamp2b. Interestingly, these cardiac-targeted CDC
exosomes showed improved uptake into cardiac cells in an in vitro model; thereby leading
to improved cardiac retention in in vivo system and, eventually, reduced cardiac apopto-
sis [52]. It has been envisaged that decorating the surfaces of the exosomes with homing
ligand/entities will certainly reduce the time exosomes require to reach the therapeutic
concentration in targeted tissues, and will considerably reduce the off-target effect, thereby
leading to enhanced therapeutic potential. For detailed outline for the generation and
isolation of the engineered exosomes; readers are advised to go through various previously
published articles [52,59,65,68,69,73]. An overview of procedures for generation of engi-
neered exosomes for specific targeting of the therapeutic molecules to desired tissue along
with the workflow of differential ultracentrifugation for the isolation of the exosome are
represented in Figure 2.
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1.1.3. Exosomes as Prospective Biomarkers for CVDs

Accumulating evidences have shown that exosomes contain diverse biological contents
that plausibly is a reflection of a particular state of the system [74]. Along these lines, the
vast repertoire of molecular entities that are packaged within exosomes, their versatile
appearance in nearly all body fluids marks their potential candidature for prospective
novel non-invasive biomarkers [75].

Amongst the exosomes content, exosomes proteins and RNA molecules especially
miRNA are increasingly been reported as promising biomarkers [76]. In fact, exosomal
miRNAs have been the most studied for their role as novel biomarkers for CVDs. A distinct
miRNA profile has been reported by various workers in CVD patients compared to normal
individuals. To this end, Matsumoto and group reported that p53-responsive circulating
exosomes miRNAs viz. hsa-miR-192, hsa-miR-194 and hsa-miR-34a, were considerably
upregulated in the serum of acute MI clienteles that have experienced development of HF
in short period. This study highlights the importance of these exo-miRNA as plausible
prognostic biomarkers for acute MI [77]. Further, studies have also shown that serum
exosomal miR-9 and miR-124 levels were significantly higher in stroke patients. Concomi-
tantly, circulating exosomal miR-9 and miR-124 might be promising biomarkers for stroke
diagnosis [78]. Further, Gidlof and colleagues have demonstrated that upregulation of
plasma levels of hsa-miR-208b and hsa-miR-499-5p corresponded to increase in the risk of
HF, highlighting their prognostic biomarker potential [79].

Further, studies have envisaged the importance of various other exosomal proteins
for prospective biomarkers for CVDs. To this end, Pironti et al., have reported that cir-
culating exosomes induced by cardiac pressure overload contain functional angiotensin
II type 1 receptors (AT1Rs); they have envisaged that the transfer of AT1Rs plausibly deteri-
orates cardiac function during blood pressure (BP) overload, thus, could help in analyzing
the prognosis of the pressure overload diseased patients [80]. Similarly, the adenosine 2A
receptors and dopamine receptors have also been packed within EVs and transferred to
other cells, leading to an increase in BP and cardiac remodeling thereof [81]. These findings
seemingly highlight for usage of these exosomal proteins as prognostic biomarkers for
hypertension clienteles.

Collectively, it is reasonable to argue that many studies are being performed in basic
and clinical research to understand the roles of exosomes in CVDs and to explore their
prospective therapeutic, drug delivery, and biomarker potential. In parallel, it is also envis-
aged that albeit exosome therapy for CVDs looks promising and tempting; nevertheless,
researchers in this field face numerous problems. Not only lack of thorough knowledge
about cellular and molecular intricacies; but also purely technical issues as well. The
issue related to low level of endocytosis in cardiomyocytes well describes the situation,
and, therefore, it seems really challenging to treat CVDs or other diseases with exosomes
that have not been sufficiently modified. Another problem of all the works investigating
exosomes is the impossibility of isolating pure exosome preparation. Nonetheless, the
research fraternities are highly optimistic and as more and more are gleaned about these
aspects, it will be highly helpful in providing scope for improvisation.

1.2. General Introduction of Non-Coding RNAs

It is widely accepted notion that, albeit the human genomes are transcribed into RNA;
nevertheless, approximately only 2% of these transcripts have protein coding functions.
Reckoning with these, researchers have started to investigate the role of ncRNAs in regula-
tion of various physiological and pathological conditions, including CVDs. In fact, in recent
years, the role of ncRNAs in cardiovascular physiology and pathophysiology has become
the focus of many research endeavors [82–84]. It is argued that a better understanding of
the involvement of ncRNAs in CVDs will offer better comprehension of the underlying in-
tricacies which will certainly aid in novel therapeutic insights [85]. In terms of classification,
basically, these ncRNAs are broadly classified based on their size; usually transcripts with
nucleotide lengths < 200 nucleotides are considered as small noncoding RNAs (sncRNA);



Cells 2022, 11, 3664 9 of 19

for, e.g., microRNA (miRNA), piwi-interacting RNA (piRNA), small nucleolar RNAs (snoR-
NAs) etc.; whereas transcripts with nucleotide lengths > 200 nucleotides are considered
as long noncoding RNAs (lncRNA); for, e.g., lncRNA, which comprises of long intergenic
RNA (lincRNA), enhancer RNAs (eRNAs), and sense or antisense transcripts (AS), as
discussed below [86–88]. It is in general consensus that the cellular and temporal specificity
drives the mechanism of action of ncRNAs. Basically, ncRNAs are found within the nucleus,
nucleolus, cytoplasm, and even in the mitochondria. Nevertheless, extracellular ncRNAs
were found outside of the cells as well. For example, ncRNA, specifically miRNA, was first
observed in the plasma of the esophageal and melanoma cancer patients [89] and later on
established as a potential blood biomarker for various cancer diagnoses [90]. Furthermore,
ncRNAs can be transported from one cell to another through various means. For example,
Valadi et al. showed that miRNA transport through exosome and they termed these RNA
components as exosomal shuttle RNA [17]. Interestingly, another study found that miRNA-
126 can also be transported between cells through apoptotic bodies [91]. In addition to
these, ncRNAs could also be transported through carrier proteins. For example, Kasey et al.,
demonstrated the stable transfer of functional miRNA through high density lipoprotein
(HDL) into the atherogenic mouse model [92].Interestingly, ncRNAs can be sorted and
packaged into the exosome and circulate into the plasma and transported to the recipient
cells [93]. Another pioneering study of plasma derived exosomal RNA profiling revealed
the presence of various forms of ncRNA, including miRNA as the most abundant form in
the blood circulation [94]. Horizontal transfer of ncRNAs from one cell type to another cell
type has been recently established as means of intercellular communication. For example,
an interesting report showed the exosome mediated miRNA transport from T-cells to the
antigen presenting cells (APCs), wherein they modulate the gene expression profile of
APCs [95]. Furthermore, these exosomal RNAs are involved in many pathophysiological
conditions. Recently, a group showed exosomal associated lncRNAs mediated modula-
tion of the function of l-Lacto-dehydrogenase B (LDHB), high mobility group protein 17
(HMG17) and CSF2RB which causes changes in nucleosomal architecture, and thereof
enhances the cell viability [96]. These studies are attracting much attention; nevertheless,
at this moment of time, it is reasonable to argue that the detailed intricacies about the
exact mode of function and biology of these ncRNAs is still a matter of great interest; and
with much concerted efforts from different research fraternities; more and more would be
gleaned about these intricacies in near future. A representative table providing the lists of
ncRNAs highlighted in various cardiac pathophysiology are depicted in Table 1.

1.2.1. General Introduction of Long Non-Coding RNAs (lncRNAs)

In the recent past, studies have envisaged the importance of lncRNAs in orchestration
of various cardiovascular signaling cascades [97–99]. As already mentioned, lncRNAs
comprise a subclass of ncRNAs broadly classified as transcripts > 200 nucleotides in length
with limited coding functions. Further, depending on its location in the genome and its
relative distance from protein encoding genes; they can be classified as sense lncRNAs,
antisense lncRNAs, bidirectional lncRNAs, intronic lncRNAs, and intergenic lncRNAs,
respectively [100]. Evidence has shown that most of these lncRNAs are nuclear; however,
recent studies have shown that they are also present in the cytoplasmic compartment as
well. The genetic loci of lncRNAs are quite similar to that of mRNAs, but they show less
coherent co-transcriptional splicing and, in addition, they predominantly possess only
one intronic region. Further, in general, the expression level of lncRNAs is relatively less
but more specific than normal protein coding genes, although some discrepancies can
be observed in this depending on the tissue type [101]. Since the expression of lncRNAs
are finely regulated, they provide vital clues regarding the developmental stages of the
cell and/or disease state. Additionally, they are increasingly becoming popular for their
regulatory roles in gene expression, chromatin modification, cellular differentiation besides
acting as scaffolds/guides with intriguing spatial control. These functional roles are not
very exclusive and many lncRNAs seem to obfuscate this notion and perform more than
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one function simultaneously. Interestingly but not surprisingly, the advent of newer high
throughput technologies, such as RNA-seq, microarray, next-generation sequencing, and
advanced transcriptomic technologies together with bioinformatic tools have heralded a
new paradigm shift in our understanding of diverse functionalities of lncRNAs. Although
the prevalence of such class of RNA has been known since the 1980s, there has been surge of
studies showing its increasing novel regulatory functions and its role in disease progression
over several decades. Interestingly, an intricate lncRNAs map was developed by Iyer et al.,
wherein they have characterized lncRNAs from different tissues, cancerous cells, and cell
lines [102]. Similarly, Cabili et al., assembled a reference catalogue of lncRNAs from variety
of body tissues and cell type [103]. This has also necessitated a comprehensive annotation
resource for lncRNAs which would help researchers in better understanding of lncRNAs.
These resources include GENCODE (https://www.gencodegenes.org/), LNCipedia (https:
//lncipedia.org/info), NONCODE (http://www.noncode.org/), TANRIC (https://www.
tanric.org/), LNCat (http://biocc.hrbmu.edu.cn/LNCat/), etc. [104].

(A) LncRNAs in Cardiac Physiology and Pathology

As a matter of fact, many studies have highlighted the role of lncRNAs in regulation of
CVDs; studies have envisaged the role of lncRNAs in cardiac remodeling, including cardiac
hypertrophy, apoptosis, and fibrotic responses [47,105–113]. To this end, Zhang and group
have characterized the intricacies of a lncRNA named cardiac hypertrophy-associated
regulator (CHAR) in cardiac hypertrophy and delineated the underlying signaling cas-
cade thereof [105]. Further, several studies have ascertained linkage between lncRNA and
miRNA in cardiac injuries. For example, the lncRNA Plscr4 and lncRNA taurine upregu-
lated gene 1 (TUG1) has been shown to regulate cardiac hypertrophy seemingly through
regulation of miR-214 and miR-29b-3p, respectively [114,115]. Similarly, lncRNA H19/miR-
675 axis has been ascertained to regulate cardiac apoptosis through suppression of VDAC1
in diabetic cardiomyopathy [116]; moreover, lnRNA myocardial infarction-regulatory fac-
tor (MIRF), i.e., lnRNA MIRF has been highlighted to promote cardiac apoptosis through
regulation of the miR-26a–Bak1 axis [109]. Moreover, lncRNA ANRIL has been shown
to regulate myocardial apoptosis through regulation of IL-33/ST2 pathway in acute MI
animal model [117]. In addition, lncRNA NONMMUT022555, also known as pro-fibrotic
lncRNA, has been reported to play intriguing role in fibrogenesis process plausibly by
favoring proliferation of cardiac fibroblasts through modulation of let-7d level in MI mouse
model [118]. Further, Micheletti et al., have shown that Wisp2 super enhancer associated
RNA (Wisper) was associated with cardiac fibrosis and cardiac dysfunction in a murine
model of MI and in aortic stenosis human patients [119]. Moreover, exosomal lncRNA
AK139128 derived from cardiomyocytes under hypoxia condition has been reported to
induce apoptosis and attenuate cellular proliferation in cardiac fibroblasts [120].

(B) LncRNA as Therapeutic Interventions and Biomarkers in CVDs

Meanwhile, lncRNAs have been attracting lots of attention as a potential therapeutic
candidates, as well as a prospective biomarker for CVDs. A recent comprehensive study
by Hu and group sheds light on the differential profile of exosomal lncRNA and mRNA
in rheumatic heart disease (RHD). Interestingly, it was found that there were almost 231
lncRNA, which were differentially expressed in RHD patients in comparison to healthy
clienteles. This pioneering transcriptomic analysis of the exosomal lncRNA and mRNA
has provided valuable information not only for plausible biomarker for prognosis but
also provided insights into intriguing therapeutic targets [121]. Further, a study by Shao
et al., 2017 showed that terminal differentiation-induced ncRNA (TINCR) considerably
attenuated cardiac hypertrophy through epigenetic regulation of the protein kinase CAMKII
in transverse aortic constriction mouse model [122]. Previously, Micheletti and group have
shown that silencing Wisper lncRNA through antisense oligonucleotide technology resulted
in attenuation of cardiac dysfunction and MI-induced fibrosis in an in vivo model [119].

https://www.gencodegenes.org/
https://lncipedia.org/info
https://lncipedia.org/info
http://www.noncode.org/
https://www.tanric.org/
https://www.tanric.org/
http://biocc.hrbmu.edu.cn/LNCat/
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As a matter of fact, evidences have shown that lncRNAs displays dynamic alteration
under pathological conditions and have long term stability in the body fluids [123]. All these
features make lncRNAs as a potential non-invasive prognostic and diagnostic biomarker. To
this end, Kumarswamy and group have explored the potential of lncRNAs as a prognostic
biomarker for HF. Basically, the group have identified mitochondria-derived lncRNA long
intergenic non-coding RNA predicting cardiac remodeling (LIPCAR), as a novel biomarker
of cardiac remodeling and could certainly predicts future death in patients with HF [123]. In
addition, LIPCAR was also ascertained as an intriguing biomarker for diastolic dysfunction
and remodeling in type 2 diabetic clienteles [124]. Furthermore, Wang and group has
revealed augmented plasma levels of LIPCAR and the paternally imprinted lncRNA H19
in clienteles with coronary artery disease (CAD) [125]. Further, Xuan et al., 2017 have
ascertained the role circulating lncRNAs, i.e., non-coding repressor of NFAT (NRON) and
myosin heavy-chain-associated RNA transcripts (MHRT) as novel predictive biomarkers
of HF [126].

1.2.2. General Introduction of Circular Non-Coding RNAs (circRNAs)

CircRNA represents another large class of ncRNAs which as the name suggests are
circular covalently closed and show spatiotemporal expression pattern in tissues and
cells. They carry out their function by acting as RNA-binding proteins, sequestering
agents, transcriptional regulators, as well as miRNA sponges. In addition to these, it has
been reported that some selected circRNAs are converted into functional proteins as well.
Despite the absence of poly-adenylation site and capping region, circRNA localizes to the
cytoplasmic compartment and forms a very stable circular structure resistant to exonuclease.
Albeit studies related to circRNA are accelerating; nevertheless, information regarding the
function of circRNA and the ability of it to regulate the physiological and pathological
conditions are relatively in infancy. In addition, most of the studies on circRNA have
been carried out with limited size of cohort which results in inconclusive interpretations.
Additionally, the lack of standardized procedure for evaluating circRNA has resulted in data
inconsistency between different groups. These factors have limited the scope of circRNA.
Nevertheless, as with lncRNA, several annotation resources for circRNA have been created
which the help of researchers in better comprehension of these molecules. A repertoire of
tissue specific circRNA database was created recently by Liu et al. and named generically
as circRNA database (http://circnet.mbc.nctu.edu.tw/). Several other databases to further
accelerate research on circRNA has also been created, such as CircRNABase (http://
starbase.sysu.edu.cn/starbase2/mirCircRNA.php), circBase (http://www.circbase.org/),
Circ2Traits (http://gyanxet-beta.com/circdb/), CircInteractome (https://circinteractome.
nia.nih.gov/), etc.

(A) CircRNA in Cardiac Physiology and Pathology

Evidence has shown that circRNA has emerged as regulatory molecule in CVDs. In
addition, they are considered as novel biomarkers for CVDs, besides being considered
as important therapeutic targets. With the help of high sequencing technologies, recent
studies have found plenty of circRNA in heart tissues from human and mouse origin.
Interestingly, heart-related circRNA (HRCR) was the pioneer circRNA, which was found to
be considerably suppressed in hypertrophic heart and in HF model [127–129]. It has been
reported that HRCR acts as a sponge for miR-223, which has been implicated in cardiac
hypertrophic responses [128]. Intriguingly, it has also been shown that overexpression
of HRCR could provide protection against hypertrophy plausibly through attenuation of
miR-223 in a mouse model [127]. Further, whole transcriptome analysis revealed that five
circRNA, namely circRNA26, circRNA261, circRNA1191, circRNA4251, and circRNA6913,
were differentially expressed following cardiac hypertrophic induced by high glucose treat-
ment. These circRNA was found to have around ~60 target miRNA for regulation [130].
Concomitantly, these differentially expressed circRNA ascertained the biologically relevant
RNA markers and corresponding regulatory network in high glucose induced cardiomy-

http://circnet.mbc.nctu.edu.tw/
http://starbase.sysu.edu.cn/starbase2/mirCircRNA.php
http://starbase.sysu.edu.cn/starbase2/mirCircRNA.php
http://www.circbase.org/
http://gyanxet-beta.com/circdb/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/


Cells 2022, 11, 3664 12 of 19

opathies. Further, Wu et al., using circRNA microarray and in silico analysis ascertained
that 59 plasma circRNA were differentially expressed (46 circRNAs were significantly upreg-
ulated and 13 were significantly downregulated) in human hypertensive plasma samples.
Amongst these differentially expressed circRNA, has_circ_0005870 was further validated
to be considerably downregulated in hypertensive clienteles [131]. In another study, re-
searchers have highlighted the role of circRNA_000203 to promote cardiac hypertrophy
plausibly through inhibition of miR-26b-5p and miR-140-3p which regulate Gata4 expres-
sion levels [132]. Further, CircRNA microarray studies have ascertain that three circRNA
namely chr8:71336875j71337745, chr5:90817794j90827570, and chr6:22033342j22038870 were
overexpressed in case of rat coronary artery endothelial cells (CAEC) treated with TGF-
β1 [133]. This study interestingly highlighted the potential role of differentially expressed
circRNAs during TGF-β1-related CVDs.

(B) CircRNA as Therapeutic Interventions and Biomarkers against CVDs

Further, recent studies have exploited circRNA as therapeutic interventions against
CVDs. Interestingly, in the case of atherosclerosis, circANRIL has been demonstrated to
bestow athero-protection through modulation of ribosomal RNA (rRNA) maturation and
governing pathways related to atherogenesis [134]. Similarly, circRNA_010567 was shown
to ameliorate MI through attenuation of TGF-β1 [135]. Likewise, a promising study by
Zeng et al. evaluated the potential of circRNA circ_Amotl1, which is highly expressed in
neonatal cardiac tissue and manifests cardio-protective functions by binding to PDK1 and
AKT1 [136].

As already mentioned, linear RNA molecules have been highlighted as potential
biomarkers [137]; to this end, as circRNAs are more stable and resistant to exonucleases
compared to linear RNAs, as a result it bestows more advantageous properties for its
potential to act as a biomarker [138]. Thus, it is highly reasonable to argue that circRNAs
are more superior to its analogous mRNAs and lncRNAs as prospective biomarker can-
didates in terms of abundance, stability, and specificity. In analogy with lncRNAs, Zhao
and group have envisaged the potential of peripheral blood circular RNA hsa_circ_0124644
as a diagnostic biomarker of CAD [139]. A recent meta-analysis of several databases have
demonstrated that two circRNA namely circCDKN2BAS and circMACF1 have prospec-
tive potentials to be used as circulating biomarker in CVDs [140]. Furthermore, a study
in 2017 highlighted the usage of the circRNA, myocardial infarction associated circular
RNA (MICRA) to predict the risk in MI clienteles [141]. Further, the circRNA HRCR
described above could also be potentially considered for biomarker repository [138,142].
Likewise, hsa-circ-0005870 described above might represent a novel diagnostic biomarker
for hypertension [131].

Collectively, the aspects that they are abundant, stable, as well as evolutionally con-
served in tissues, saliva, exosomes, and blood offers enormous potential to extend the
current landscape of prognostic and diagnostic biomarkers for CVDs, as well as for other
diseases [123,143]. However, it is a matter of great interest that amongst exosomes, ncRNA,
and exosomal ncRNA, which one would show better candidature as prospective biomarkers
for CVDs is still not known.

Taken together, although each molecular entities viz. exosomes and ncRNA have dis-
tinctive role in cardiovascular system; nevertheless, the importance of cross talks between
these molecular entities as regulator of various events in cardiovascular system should not
be overlooked at the same time [144].
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Table 1. Representative table providing the lists of ncRNAs highlighted in various cardiac pathophysiology.

RNA Disease Mechanism/Functions References

LncRNA

TINCR Cardiac Hypertrophy Silencing of CaMKII protein kinase [122]

Plscr4 Cardiac Hypertrophy/
Heart Failure Down-regulation of miR-214 expression [114]

TUG1 Cardiac Hypertrophy Down-regulation of miR-29b-3p [115]

CHRF Cardiac Hypertrophy Down-regulation of miR-489 [106]

MIAT Cardiac Hypertrophy Regulation of TLR4 expression by
sponging miR-93 in cardiomyocytes [107]

FTX Cardiac Apoptosis Modulation of Bcl212 expression;
Inhibition of miR-29b-1-5p [108]

MIRF Cardiac Apoptosis Inhibition of miR-26a [109]

ANRIL Cardiac Apoptosis Regulation of IL33/ST2 [117]

H19 Cardiac Apostosis/
Cardiac Fibrosis

Reduction of VDAC-1; Increment in
collagen and TGF-β levels, reduction of

Dus5 expression
[116,125]

NONMMUT022555 Cardiac Fibrosis Reduction in level of let-7d [118]

Wisper Cardiac Fibrosis Regulation of expression of a profibrotic
form of lysyl hydroxylase 2 [119]

(GAS5) Cardiac Fibrosis
Inhibition of miR-21; Modulation of
endothelial cells via exosomes and

macrophage apoptosis
[110,111]

Mhrt Cardiac Fibrosis Interaction with the
chromatin-remodeling factor Brg1 [126]

SRA1 Cardiac Fibrosis Inhibition of miR-148b [112]

MEG3 Myocardial infarction Regulation miR-183 level [113]

AK139128 Myocardial infarction Regulation of cellular activities of cardiac
fibroblasts in vitro and in vivo [120]

MALTA1 Aging induced cardiac dysfunction Inhibition of NF-κB/TNF-α signaling
pathway [47]

CircRNA

HRCR Cardiac Hypertrophy/
Heart Failure Acts as sponge for miR-223 [127–129]

CircRNA_0005870 Hypertension - [131]

CircRNA_000203 Cardiac Hypertrophy Inhibition of miR-26b-5p and miR-140-3p
which regulate Gata4 expression levels [132]

CircANRIL Artherosclerosis
Regulation of ribosomal RNA (rRNA)

maturation and modulation of pathways
related to atherogenesis

[134]

CircRNA_010567 Myocardial Infarction Attenuation of TGF-β1 [135]

CircRNA_Amotl1 Doxorubicin induced
cardiomyopathy Binding to PDK1 and AKT1 [136]

2. Conclusions

Since the discovery of exosomes and ncRNAs, they have garnered much attention
across the research fraternities; nevertheless, their intricacies, especially in relation with
CVDs, are not completely understood. Nonetheless, in recent years, research in these fields



Cells 2022, 11, 3664 14 of 19

has expanded greatly. It is argued that as the challenges in the field are gradually addressed,
it will be highly instrumental to better understand the underlying intricacies regarding
their biology and function, especially in CVDs. However, there are still various daunting
challenges that are important stumbling blocks to truly harness their potential in clinical
settings. These includes establishment of optimal dose and route of administration, better
understanding of the immunogenicity of these molecular entities upon administration to the
model animals, improved understanding of their pharmacokinetics and pharmacodynamic
parameters, development/optimization of tools to comprehensively characterize them, etc.
At this moment of time, it is reasonable to argue that these challenges need to be addressed
on an urgent basis. Accordingly, a better understanding of these intricacies, along with
addressing the underlying challenges will provide a fundamental basis for improving their
efficacy for improved therapeutic intervention to efficiently deal with not only CVDs but
also other debilitating diseases as well with equal potency.
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