Food Cience and Technology

Ciência e Tecnologia de Alimentos

3 Open Access

Food Science and Technology

Publication of: Sociedade Brasileira de Ciência e Tecnologia de Alimentos

Area: Agricultural Sciences

ISSN printed version: 0101-2061 ISSN online version: 1678-457X

(Updated: 2023/01/11)

About the journal

Basic information

Food Science and Technology, of continuous flow periodicity, Sociedade Brasileira de Food Science and Technology - SBCTA, aiming at publishing scientific articles and communications in the area of food science.

Its abbreviated title is **Food Sci. Technol (Campinas)**, which should be used in bibliographies, footnotes and bibliographical references and strips.

2022 Impact Factor JCR 2.6

Indexing sources

The articles published in the **journal** are abstracted or indexed by:

- Food Science and Technology Abstract (FSTA)
- · Agris
- · Chemical Abstracts
- Peri
- Science Citation Index Expanded (SciSearch)
- · Journal Citation Reports/Science Edition
- · Institute of Scientific Information ISI
- · CAB International
- LATINDEX
- SCOPUS

Intellectual Property

All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY.

Sponsor

The journal receives financial support of the:

FAPESP

CNPq, CAPES e MCT

Editorial board

- Adriano Gomes da Cruz IFRJ, email: food@globo.com
- Carlos Augusto Fernandes de Oliveira USP (carlosaf@usp.br)

Associate editor

- Carlos Humberto Corassin USP (carloscorassin@usp.br)
- Carmem Silva Fávaro Trindade USP (carmenft@usp.br)
- Elane Prudencio UFSC elane.prudencio@ufsc.br
- Erick Almeida Esmerino UFRRJ (erick.almeida@hotmail.com)
- Lucia Maria Jaeger de Carvalho UFRJ (luciajaeger@gmail.com)
- Marciane Magnani UFPB (magnani2@gmail.com)
- Sueli Rodrigues UFC suelir@gmail.com
- Tatiana Colombo Pimentel IFPR (tatipimentel@hotmail.com)
- Renan Campos Chisté UFPA (rcchiste@ufpa.br)

Publication manager

 Marcos Luiz Alves – Sociedade Brasileira de Ciência e Tecnologia de Alimentos – Campinas – São Paulo - Brasil

Editorial board

- Adriana Cristina Oliveira Silva UFF, Brazil
- Adriana Gambaro Universidad de La República, Uruguay
- · Amin Mousavi Khaneghah UNICAMP, Brazil
- Amir Mortazavian Shahid Beheshti University of Medical Sciences, Irã
- Ana Clarissa dos Santos Pires UFV, Brazil
- · Anderson de Souza Sant'Ana UNICAMP, Brazil
- Antonio M. O. S. Vicente University de Minho Braga, Portugal
- Barbara Cristina Euzébio Pereira Dias de Oliveira IFRJ, Brazil
- · Carlos Alberto Rodrigues Anjos, UNICAMP, Brazil
- · Carlos Adam Conte Junior UFRJ, Brazil
- Cínthia Baú Betim Cazarin UNICAMP, Brazil
- Cristiano Ragagnin de Menezes UFSM, Brazil
- · Cristina Alamprese University of Milan, Italy
- Daniel Granato Natural Resources Institute (Luke), Finland
- Daniel Perrone UFRJ, Brazil
- · Denise Rosane Perdomo Azeredo IFRJ, Brazil
- Eliana de Fátima Marques de Mesquita UFF, Brazil
- · Eliane Teixeira Mársico UFF, Brazil
- Erico Marlon de Moraes Flores UFSM, Brazil
- Flávia Aline Andrade Calixto FIPERJ, Brazil
- · Francisco J. Barba University of Valencia, Spain
- Filomena Nazzaro National Research Council of Italia, Italy
- Franco Maria Lajolo FCF/USP, Brazil
- Gabriela Alves Macedo UNICAMP, Brazil
- Giovanni Nero University of Padova, Italy
- Glaucia Maria Pastore FEA/UNICAMP, Brazil
- · Helena Maria André Bolini, UNICAMP, Brazil
- Helena Teixeira Godoy UNICAMP, Brazil
- Hilana Ceotto Vigoder IFRJ, Brazil
- Igor de Almeida UFRJ, Brazil
- Janaina dos Santos Nascimento IFRJ, Brazil
- Jorge Herman Behrens UNICAMP, Brazil
- Jorge Mancini Filho FCF/USP, Brazil
- Jorge Manuel Lorenzo Centro Tecnológico de la Carne de Galícia, Spain
- Juliana Azevedo Lima Pallone UNICAMP, Brazil
- Karen Signori Pereira UFRJ, Brazil
- Leonardo Emanuel de Oliveira Costa IFRJ, Brazil

- Liliana de Oliveira Rocha UNICAMP, Brazil
- Lilian Regina Barros Mariutti UNICAMP, Brazil
- Lourdes Maria Corrêa Cabral EMBRAPA, Brazil
- Lucia Maria Jaeger de Carvalho UFRJ, Brazil
- Marcelo Cristianini- UNICAMP, Brazil
- Marcia Cristina Silva IFRJ, Brazil
- Márcia Cristina Teixeira Ribeiro Vidigal UFV, Brazil
- Maria Alice Zarur Coelho, UFRJ, Brasil
- · Maria Inês Bruno Tavares UFRJ, Brazil
- · Maria Teresa Pedrosa Silva Clerici UNICAMP, Brazil
- Mariana Simões Larraz Ferreira UNIRIO, Brazil
- Marina Venturini Copetti UFSM, Brazil
- · MaryAnne Drake University of Davis, USA
- · Marzia Alzenzio University of Foggia, Italy
- Matthew Mcsweeney Acadia University, Canadá
- Michael Mullan Dairy Science Food Technology, United Kingdow
- · Mônica Queiroz de Freitas UFF, Brazil
- Muthupandian Ashokkumar University of Melbourne, Australia
- Nagendra Shah The University of Hong-Hong, Hong Kong
- Paulo Cesar Stringheta UFV, Brazil
- Paulo Jose do Amaral Sobral USP, Brazil
- · Rana Muhammad Aadil University of Agriculture, Pakistan
- Renata Valeriano Tonon EMBRAPA, Brazil
- Roopesh Mohandas Syamaladevi University of Alberta, Canadá
- Ricardo Nuno Pereira Universidade do Minho, Portugal
- · Ricardo Schmitz Ongaratto UFRJ, Brazil
- · Senaka Ranadheera University of Melbourne, Australia
- Simone Lorena Quitério IFRJ, Brazil
- · Tatiana Saldanha UFRRJ, Brazil
- Vania Margaret Flosi Paschoalin UFRJ, Brazil
- · Veronica Ortiz Alvarenga UFMG, Brazil
- Witoon Prinyawiwatkul Louisiana State University, USA

Extraction of tea polyphenols based on orthogonal test method and its application in food preservation Original Article

AL-HATIM, Raqad Raheem; AL-ALNABI, Dhurgham Ismael Baqer; AL-YOUNIS, Zena Kadhim; AL-SHAWI, Sarmad Ghazi; SINGH, Krishanveer; ABDELBASSET, Walid Kamal; MUSTAFA, Yasser Fakri

Abstract: EN | Text: EN | PDF: EN

Removal of heavy metals using food industry waste as a cheap adsorbent Original Article

MAHMUDIONO, Trias; BOKOV, Dmitry; WIDJAJA, Gunawan; KONSTANTINOV, Igor S.; SETIYAWAN, Khanif; ABDELBASSET, Walid Kamal; MAJDI, Hasan Sh.; KADHIM, Mustafa M.; KAREEM, Hussein Ali; BANSAL, Kapil

Abstract: EN | Text: EN | PDF: EN

Establishment of ddPCR detection technology system for three contaminants in fermented milk Original Article

ZHOU, Wei; LI, Yong-Bo; ZHANG, Ya-Lun; LI, Xian; SHI, Guo-hua; YANG, Xiao-long

Abstract: EN | Text: EN | PDF: EN

Spectral inversion model of the crushing rate of soybean under mechanized harvesting Original Article

CHEN, Man; NI, Youliang; JIN, Chengqian; LIU, Zheng; XU, Jinshan

Abstract: EN | Text: EN | PDF: EN

Research on peanut variety classification based on hyperspectral image Original Article

ZOU, Zhiyong; WANG, Li; CHEN, Jie; LONG, Tao; WU, Qingsong; ZHOU, Man

Abstract: EN | Text: EN | PDF: EN

An assessment of the potential of defatted walnut powder extract against hyperlipidemia-intensified L-arginine-induced acute pancreatitis Original Article

XU, Xiajing; SONG, Yutong; JIANG, Man; LIU, Meihan; ZHANG, Xuanmeng; WANG, Dongmei; PAN, Yingni; REN, Shumeng; LIU, Xiaoqiu

Abstract: EN | Text: EN | PDF: EN

The addition of crude gambir extract in the production of functional robusta coffee powder Original Article

SANTOSO, Budi; WIJAYA, Agus; DIN PANGAWIKAN, Aldila

In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line Original Article

ADIYOGA, Reza; ARIEF, Irma Isnafia; BUDIMAN, Cahyo; ABIDIN, Zaenal

Abstract: EN | Text: EN | PDF: EN

Effect of tomato dregs supplementation on the quality of bovine milk production in the Holstein breed Original Article

DAROUI, Sakina; BOUMENDJEL, Mahieddine; BOUCHEKER, Abdennour; METAI, Abdallah; BOULEZZAZ, Kamel; TAIBI, Hemza; BOUMENDJEL, Amel; MESSARAH, Mahfoud

Abstract: EN | Text: EN | PDF: EN

Effects of ultrasound frequency and process variables of modified ultrasound-assisted extraction on the extraction of anthocyanin from strawberry fruit Original Article

LIAO, Jianqing; XUE, Hongkun; LI, Junling; PENG, Ling

Abstract: EN | Text: EN | PDF: EN

Apigenin inhibits proliferation, migration, invasion and epithelial mesenchymal transition of glioma cells by regulating miR-103a-3p/NEED9/AKT axis Original Article

WAN, Jing; HUANG, Min

Abstract: EN | Text: EN | PDF: EN

Comparative evaluation of proximate composition and biological activities of peel extracts of three commonly consumed fruits

Original Article

SHAH, Mohibullah; KHALIQ, Fazal; NAWAZ, Haq; RAHIM, Fazal; ULLAH, Najeeb; JAVED, Muhammad Sameem; AMJAD, Adnan; NISHAN, Umar; ULLAH, Salim; AHMED, Sarfraz; JALIL, Nur Asyilla Che

Abstract: EN | Text: EN | PDF: EN

Effect of heat-moisture treatment on the physicochemical properties of native canistel starch Original Article

PERTIWI, Sri Rejeki Retna; AMINULLAH,; RAJANI, Rosidah Ulfah; NOVIDAHLIA, Noli

Abstract: EN | Text: EN | PDF: EN

Evaluation of tea stain removal efficacy of ficin Original Article

Investigation of chemical composition and evaluation of antioxidant, antibacterial and antifungal activities of ethanol extract from *Bidens pilosa* L. Original Article

SON, Nguyen Hoang; TUAN, Nguyen Trong; TRAN, Thanh Men

Abstract: EN | Text: EN | PDF: EN

Transcriptome analysis of *Callosobruchus chinensis*: insight into the biological control using entomopathogenic bacteria, *Bacillus thuringiensis* Original Article

WANG, Lei; ZHAO, Yaru

Abstract: EN | Text: EN | PDF: EN

Synthesis of neryl acetate by free lipase-catalyzed transesterification in organic solvents and its kinetics Original Article

SUN, Wenyuan; XIONG, Jian; XU, Hanghang; MA, Mengyuan; HU, Yanyan

Abstract: EN | Text: EN | PDF: EN

Occupational risk analysis in a fish warehouse: a comparative study between GUT matrix and preliminary risk analysis Original Article

RODRIGUES, Yoly Gerpe; PINTO, Elaine de Oliveira; AQUINO, Carlos Renato; COSTA, Gisela da; OLIVEIRA, João Paulo Ferreira Gonçalves de; CAMPOS, Larissa; THODE FILHO, Sérgio

Abstract: EN | Text: EN | PDF: EN

Physical, chemical, tecno-functional, and thermal properties of Leucaena leucocephala seed Original Article

HERNÁNDEZ-SANTOS, Betsabé; QUIJANO-JERÓNIMO, Olivia; RODRÍGUEZ-MIRANDA, Jesús

Abstract: EN | Text: EN | PDF: EN

The effect of cooking with retort pouch system on lipid and phaseolin composition of Pinto Saltillo beans (*Phaseolus vulgaris*) Original Article

MARTINEZ-CENICEROS, Mayra; FERNANDEZ-MONREAL, Karen; DOMÍNGUEZ-ORDAZ, Lenin Efraín; AYALA-SOTO, Juan Guillermo; CHAVEZ-FLORES, David; RUIZ-ANCHONDO, Teresita; SANDOVAL-SALAS, Fabiola; NEDER-SUAREZ, David; HERNANDEZ-OCHOA, Leon

Abstract: EN | Text: EN | PDF: EN

Study on herbicide residues in soybean processing based on UPLC-

MS/MS detection Original Article

PANASENKO, Svetlana; SEYFULLAEVA, Maisa; REBEZOV, Maksim; RAMAZANOV, Ibragim; MAYOROVA, Elena; NIKISHIN, Alexander; PANKINA, Tat'yana; LEONOVA, Julia; KHAYRULLIN, Mars; AL-MAWLAWI, Zaid Shaker

```
Abstract: EN | Text: EN | PDF: EN
```

Growth modeling kinetics of *Alternaria alternata* in dried jujube at different temperatures Original Article

HU, Die; XUE, Yawen; KOU, Xiaomeng; SHAN, Chunhui; JIANG, Caihong; TANG, Fengxian; JI, Hua

```
Abstract: EN | Text: EN | PDF: EN
```

Prebiotic effect of D-allulose and β -glucan on whey beverage with Bifidobacterium animalis and investigation of some health effects of this functional beverage on rats Original Article

RUGJI, Jerina; ÇALIŞKAN, Zühal; DINÇOĞLU, Ahmet Hulusi; ÖZGÜR, Mustafa; EROL, Zeki; ÖZGÜR, Elif Büşra

```
Abstract: EN | Text: EN | PDF: EN
```

Comparative study on the structure and physicochemical of waxy rice starch by phosphorylation, lactylation and dual-modified Original Article

CAO, Chuan; WEI, Dongmei; XUAN, Fengqin; DENG, Changyue; HU, Jingwei; ZHOU, Yibin

```
Abstract: EN | Text: EN | PDF: EN
```

Physicochemical parameters, multi-elemental composition and antiradical activity of multifloral honeys from *Apis cerana cerana* in Hainan province, China Original Article

WU, Jiao; ZHAO, Shan; CHEN, Xin; JIU, Yuanda; LIU, Junfeng; GAO, Jinglin; WANG, Shijie

```
Abstract: EN | Text: EN | PDF: EN
```

Pumpkin landraces from southern Brazil as functional foods

Original Article

PRIORI, Daniela; VALDUGA, Eduardo; VIZZOTTO, Marcia; VALGAS, Ricardo Alexandre; BARBIERI, Rosa Lía

```
Abstract: EN | Text: EN | PDF: EN
```

Comparison of chemical and functional components of different *indica* brown and germinated rice Original Article

```
LIU, Jiao; LI, Yanyi; WANG, Jing; DING, Hua; YANG, Jie; ZHOU, Youxiang
```

```
Abstract: EN | Text: EN | PDF: EN
```

Identification of microflora and lactic acid bacteria in pado, a fermented fish product prepared with dried *Pangium edule* seed and grated coconut Original Article

SYAFITRI, Yosi; KUSUMANINGRUM, Harsi Dewantari; DEWANTI-HARIYADI, Ratih

Abstract: EN | Text: EN | PDF: EN

Effects of subcritical water extraction and cultivar geographical location on the phenolic compounds and antioxidant capacity of Quebranta (*Vitis vinifera*) grape seeds from the Peruvian pisco industry by-product Original Article

BARRIGA-SÁNCHEZ, Maritza; ROSALES-HARTSHORN, María

Abstract: EN | Text: EN | PDF: EN

Optimization of preparation of calcium propionate from eggshell by Response Surface Methodology (RSM) Original Article

YAO, Yutong; SHI, Yueru; AN, Peipei; ZHANG, Run; WANG, Zhaoying; HU, Xin; WAN, Youzhong

Abstract: EN | Text: EN | PDF: EN

Effect of hop mixture containing xanthohumol on sleep enhancement in a mouse model and ROS scavenging effect in oxidative stress-induced HT22 cells Original Article

MIN, Byungjick; PARK, Chun Woong; AHN, Yeljin; HONG, Ki-Bae; CHO, Hyeok-Jun; LEE, Jang Hyun; JO, Kyungae; SUH, Hyung Joo

Abstract: EN | Text: EN | PDF: EN

Effect of adding *Theobroma grandiflorum* and *Hylocereus polyrhizus* pulps on the nutritional value and sensory characteristics of bread

Original Article

AMORIM, Isabelly Silva; AMORIM, Danyelly Silva; LOPES, Ana Beatriz Rocha; LEAL, Andreza de Brito; MONTEIRO, Jamille de Sousa; CASTRO, Vinícius Costa Gomes de; BRAGA, Adriano Cesar Calandrini; SILVA, Bruna Almeida da

Abstract: EN | Text: EN | PDF: EN

Biochemical composition, heavy metal content and their geographic variations of the form species *Nostoc commune* across China

Original Article

LIANG, Yansheng; SHU, Xiao; WANG, Weibo

Abstract: EN | Text: EN | PDF: EN

Volatile compounds of unripe fruits from different cultivars (*Persea americana* Mill.) Original Article

VARGAS-ABASOLO, Reyna; CRUZ-LÓPEZ, Leopoldo; ROJAS, Julio Cesar; GONZÁLEZ-HERNÁNDEZ, Héctor; EQUIHUA-MARTÍNEZ, Armando; ROMERO-NÁPOLES, Jesús

```
Abstract: EN | Text: EN | PDF: EN
```

Chemical composition and antioxidant activity of date (*Phoenix dactylifera* L.) varieties at various maturity stages Original Article

BANO, Yasmeen; RAKHA, Allah; KHAN, Muhammad Issa; ASGHER, Muhammad

```
Abstract: EN | Text: EN | PDF: EN
```

Use of green (*Opuntia megacantha*) and red (*Opuntia ficus-indica* L.) cactus pear peels for developing a supplement rich in antioxidants, fiber, and *Lactobacillus rhamnosus* Original Article

OCHOA-VELASCO, Carlos Enrique; PALESTINA-RIVERA, Jesús; ÁVILA-SOSA, Raúl; NAVARRO-CRUZ, Addí Rhode; VERA-LÓPEZ, Obdulia; LAZCANO-HERNÁNDEZ, Martín Alvaro; HERNÁNDEZ-CARRANZA, Paola

```
Abstract: EN | Text: EN | PDF: EN
```

Shelf-life extension of chilled beef by sodium lactate enhanced with Natamycin against discoloration and spoilage Original Article

TIAN, Tian; LIU, Yang; WANG, Xinhui

Abstract: EN | Text: EN | PDF: EN

Effect of biosynthesized silver nanoparticles by *Garcinia mangostana* extract against human breast cancer cell line MCF-7 Original Article

ALOBAID, Hussah Mohammed; ALZHRANI, Amal Hassan; MAJRASHI, Nada Ali; ALKHURIJI, Afrah Fahad; ALAJMI, Reem Atalla; YEHIA, Hany Mohamed; AWAD, Manal Ahmed; ALMURSHEDI, Alanood Sunhat; ALMNAIZEL, Ahmad Tayseer; ELKHADRAGY, Manal Fawzy

```
Abstract: EN | Text: EN | PDF: EN
```

The use of prehistoric foods for resilience in heritage tourism: a case of Çatalhöyük, Turkey Original Article

ERDOĞAN, Hasan Ali; GÜNDÜZ, Ramazan; SEÇİM, Yılmaz

```
Abstract: EN | Text: EN | PDF: EN
```

Chemical composition and mineral content of Black Borgoña (*Vitis labrusca L.*) grapes, pomace and seeds, and effects of conventional and non-conventional extraction methods on their antioxidant properties Original Article

BARRIGA-SÁNCHEZ, Maritza; HIPARRAGUIRRE, Hanna Cáceres; ROSALES-HARTSHORN, María

DOI: https://doi.org/10.1590/fst.111721

Removal of heavy metals using food industry waste as a cheap adsorbent

Trias MAHMUDIONO¹, Dmitry BOKOV^{2,3}, Gunawan WIDJAJA^{4,5}, Igor S. KONSTANTINOV^{6*}, Khanif SETIYAWAN⁷, Walid Kamal ABDELBASSET^{8,9}, Hasan Sh. MAJDI¹⁰, Mustafa M. KADHIM^{11,12}, Hussein Ali KAREEM¹³, Kapil BANSAL¹⁴

Abstract

Due to the high capacity of food factories, a lot of waste is generated. Due to the presence of nutrients in them can increase pollution in the sewerage network and cause environmental problems. To animal feed, grain waste can be used to produce fertilizer, compost, fuel, soil cover, etc. The natural pigment lycopene, thickeners, proteins, etc., can be produced from the seeds and skin of the tomato paste factory waste. In the present paper, soybean oil residue was used to remove cadmium, zinc, and lead ions from aqueous solutions. Discontinuous experiments to investigate the effect of initial concentration (100-300 ppm), solution pH (1-5), contact time (1-60 min), adsorbent amount (0.02-2 g) on the uptake of cadmium, zinc, and lead ions by soybean oil residues. The results showed that with increasing the pH, the value of the contact time, the amount of adsorbent, and the adsorption rate increases with increasing the initial concentration of metal ions, the adsorption rate decreases. According to the results, the best pH for adsorption of metal ions is about 3-5, and the equilibrium time for cadmium ions is 40 minutes, for zinc ions is 20 minutes, and for lead, the ion is 10 minutes.

Keywords: soybean oil waste; heavy metals; absorbents; adsorption; food industry waste.

Practical Application: Soybean oil residue is used to remove cadmium, zinc, and lead ions from aqueous solutions.

1 Introduction

Industrial development and subsequent production of various industrial products in the world have led to many environmental pollutions, which is one of the worrying problems of this century (Seyyedi & Ayati, 2021). Untreated effluents in industries and mines are often the most dangerous types of effluents (Fan et al., 2019). Heavy elements entering water and soil resources are absorbed by plants and animals and enter the human food chain, leading to dangerous and incurable diseases (Youssef et al., 2018). Heavy metals are one of the dozens of sustainable materials that do not decompose in nature and can enter the environment with wastewater or sewage from various industries (Odobašić et al., 2020). These metals are usually needed in small quantities for normal body function, but their excessive entry into the body will cause poisoning (Seğmenoğlu & Baydan, 2021). Studies show that heavy metals can affect human health in India, so the removal of heavy metals is essential, and various methods for the removal of heavy metals in the form of physical, chemical, and biological methods such as membrane methods are used, chemical precipitation, electrochemical purification, ion therapy, surface adsorption and bioremediation (Herrera-Barros et al., 2021). Researchers have always stated that heavy metals have destructive effects and that it is necessary to remove and purify these metals from water and soil (Hamid et al., 2021). Offering the advantages and disadvantages of heavy metal removal methods, it is possible to easily choose the appropriate method in terms of cost and access to technical knowledge (Onac et al., 2021). Excessive amounts of heavy metals in soil and water are important issues that can threaten ten aquatic ecosystems, agriculture, and public health (Singh Sankhla et al., 2016). Environment through human activities such as mining, production of metal ingots such as lead, zinc, copper, cadmium, etc., production of fuel and energy, use of agricultural pesticides, battery industry,

Received 23 Oct., 2021

Accepted 27 Dec., 2021

¹Departemen of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia

²Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation

³Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation

⁴Faculty of Public Health, Universitas Indonesia, Jakarta, Indonesia

 $^{{}^{\}scriptscriptstyle 5}\textsc{Faculty}$ of Law, Universitas Krisnadwipayana, Jakarta, Indonesia

 $^{^6} Russian\ State\ Agrarian\ University\ -\ Moscow\ Timiryazev\ Agricultural\ Academy,\ Moscow,\ Russian\ Federation$

⁷Department of Mechanical Engineering, Faculty of Science and Technology, Universitas Muhammadiyah Kalimantan Timur, Indonesia

Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia

⁹Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt

¹⁰Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, Iraq

¹¹College of technical engineering, The Islamic University, Najaf, Iraq

¹²Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq

 $^{^{13}} Department\ of\ Medical\ Laboratory,\ College\ of\ Health\ and\ Medical\ Technology,\ Al-Ayen\ University,\ Thi-Qar,\ Iraq$

 $^{^{14}}$ Department of Management, GLA University, Mathura, India

^{*}Corresponding author: i.konstantinov@rgau-msha.ru

and dyeing with heavy metals it is possible (Sheng et al., 2021). These metals can enter the body directly through water, air, and soil (drinking water and inhaling heavy metal-contaminated air) or indirectly (eating products, fruits, and meat of heavy metalfed animals) be human. Due to the lack of decomposition and decomposition, these metals accumulate in the body and cause many problems in the body (Tadesse et al., 2018). The most important toxicity properties of heavy metals include A) these toxic elements are abundant in the environment and in the body, b) the toxicity of some heavy metals such as mercury in a particular environment increases over time, c) accumulation of heavy metals and increasing the concentration of heavy metals in the body increases their toxicity and damages the body's physiological activities, d) the concentration and toxicity of heavy metals are different; but arsenic, cadmium, and mercury can be toxic even at very low levels (Fomina & Gadd, 2014). Contact with heavy metals can cause skin, digestive, respiratory, kidney, liver, and cancer problems (Jan et al., 2015). Heavy metals such as chromium, arsenic, cadmium, mercury, and lead have a greater potential for harm to health (Matta & Gjyli, 2016). Due to the destructive effects and serious problems of heavy metals in drinking water and agriculture for human health, action should be taken to eliminate and reduce heavy metals. There are several methods used to remove heavy metals in the world (Hamid et al., 2020).

Due to the side effects of these effluents, removal, and control of some heavy metals from these effluents are recommended (Abbas, 2020). In order to remove heavy metals from the factory output, different methods such as reverse osmosis, chemical deposition, ion exchange, membrane processes, evaporation, and solvent extraction are suggested. Most of these methods face disadvantages such as the cost of equipment and sludge production operations. Also, the need for energy and a lot of space is another disadvantage of these methods, which has led to their limited use. Therefore, recognizing and diagnosing inexpensive methods to eliminate water pollution is very appropriate for this reason; the use of adsorbents to remove heavy metals is a cheap and convenient method that has attracted the attention of many researchers today (Xu et al., 2018). In the past decades, activated carbon was the most common and efficient adsorbent used to adsorb pollutants, but due to orientation and problems in its preparation, it forced researchers to replace it with other adsorbents that, in addition to it is cheaper, cheaper, and easier to prepare. In this regard, mineral, natural adsorbents, and food industry and agricultural wastes such as diatomite, pulp, olive, chitosan, sawdust, red mud, etc., are used to remove heavy metal contamination. In this study, soybean, which is one of the absorbers of the food industry, was used. Oil extracted from soybeans is one of the most important types of oils. This oil contains very high linoleic acid; soybean oil waste is a byproduct of the lubrication industry and is used for human and animal consumption. It also contains a significant amount of linoleic acid. With different hydroxyl groups and fatty acids, this material has a good potential for adsorption of metal ions (Bitonto et al., 2019). In this study, soybean oil residue has been used to remove cadmium, zinc, and lead metals from aqueous samples, and the influence of various factors such as

metal concentration, adsorbent amount, contact pH, etc., in the adsorption process has been investigated.

Heavy metals are commonly found in wastewater from various industries. Plating has resulted in significant amounts of effluents containing heavy metals such as cadmium, zinc, lead, chromium, nickel, copper, vitamin A, platinum, silver, and titanium. Metals such as cadmium, zinc, copper, nickel, lead, mercury, and chromium there are several examples of heavy metals that originate not only from metal plating activities but also from mining activities, battery production, oil refining, and paint production. In addition, wastewater from the leather, textile, pigment, and paint industries, products, wood, and photographic film production contain significant amounts of heavy metals, which are toxic and harmful to humans and animals. Low-cost attractions in general, an adsorbent is called low-cost because it requires few processing methods or is abundant in nature and can even be a by-product of industry. Natural materials or effluents from industrial or agricultural operations are one of the important sources of low-cost absorbers (Wang et al., 2019). In general, these materials are available in large quantities and are cheap. The removal of heavy metals using low-cost adsorbents is very practical; the development of these attractions has been done using agricultural and industrial wastes (Guo et al., 2018). Commercially, an adsorbent should have high selectivity to facilitate separation, easy transport, kinetic properties, heat and chemical stability, mechanical strength, deposition resistance, regenerative capacity, and low solubility in the liquid. The adsorption process has many advantages over conventional heavy metal removal methods. The advantages of the adsorption process include economic efficiency, metal selectivity, playability, naught of toxic algae, metal recovery, and, most importantly, the effectiveness of this method. Absorbents are mainly agricultural wastes, industrial by-products, natural materials, or modified biopolymers. (Rangabhashiyam & Balasubramanian, 2019).

2 Material and methods

To prepare other solutions, dilute an appropriate amount of the initial solution of cadmium, zinc, and lead, which was prepared by dissolving their nitrate salts in distilled water, was used. A five-digit decomposition scale was used for weighing in this study. Dilute hydrochloric acid, and sodium hydroxide solutions were also used to adjust the pH.

In the present paper, the soybean oil residue was first washed two to three times with distilled water and then dried at a temperature of 60 °C. It was then ground to the exact size of the particles and used in an aqueous solution for heavy metal adsorption experiments.

2.1 Adsorption method

Methods for removing heavy metals from aqueous solutions include physical, chemical, and biological processes (Gunatilake, 2015). Adsorption is the process of adsorption of atoms and molecules in a fluid by a solid surface away from equilibrium, in which the solid tends to capture some of these ions to reach equilibrium. The adsorption process usually begins with the blade force of the rolling board and ends with the short force such as

metal and ionic bonds. The surface adsorption method is one of the most widely used methods for the removal of heavy metals due to its high yield and ease of application. In this process, the contaminated water is passed through a substrate or filter, and the arsenic and heavy metal are separated from the water by the bonds they make with the adsorbent. Activated alumina, activated carbon, and iron oxide are among the solids that are widely used as adsorbents (Azimi et al., 2017). The greater the temperature difference between the solid surface and the adsorbent, the faster the adsorption occurs because the thermal energy of the material is the driving force of the adsorption on the surface. In general, ten adsorption pads occur due to their properties on the solid surface (Marczewski et al., 2016). Advantages of the adsorption method include the extraction of the removed metal in case of recovery from the adsorbent surface, a suitable method for the removal of heavy metals in dilute solutions, low cost, and simple process design. Disadvantages of this method include the loss of adsorbent efficiency over time and the inability to activate dozens of adsorbents in many cases (Rahel & Bhatnagar, 2017).

2.2 Method of performing adsorption tests

All adsorption experiments were performed intermittently. To do this, adsorbent and solution containing metal ions with a certain concentration were poured into a human and placed on a shaker at a suitable speed, after the required time, the adsorbent particles. It was separated from the solution using a strainer and an atomic absorption device; it was used to determine the concentration of metal ions in the initial solution and after adsorption. The adsorption capacity or the amount of adsorbed material on the adsorbent surface in milligrams per gram of adsorbent, as well as the adsorption percentage, are obtained from Equation 1.

$$q_t = \frac{(c_0 - c_t)v}{w} \tag{1}$$

In this regard, " q_t " with adsorption capacity, the amount of adsorbed material in equilibrium in mg/g of adsorbent, " c_t " the equilibrium concentration of metal in mg/L, " c_0 " its initial concentration in mg/L, "v" the volume of the solution in liters, "v" is the mass of adsorbent used in grams.

3 Results and Discussion

In this section, the results related to the effect of pH, contact time, solution concentration, and adsorbent amount are discussed.

3.1 The effect of pH

Changes in the concentration of hydronium ions are a very important factor in the adsorption capacity, and the adsorption dependence is due to the competition for surface locations between metal ions and hydrogen ions. Figures 1 to 3 shows that as the pH increases, the adsorption of metal ions increases. Hydrogen ions compete with metal ions at low pH to occupy active sites on the adsorbent surface, so adsorption efficiencies are very low. As these results show, for all the studied pounds, the best pH for adsorption of metal ions is about 3-5, and with increasing the concentration of metal ions, the amount

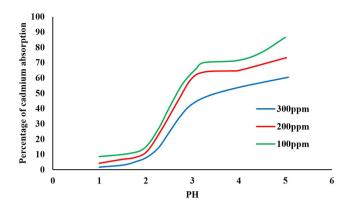


Figure 1. Effect of pH on the absorption of cadmium.

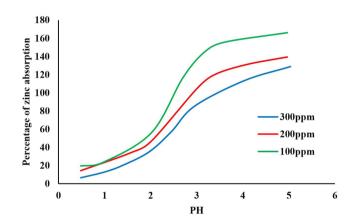


Figure 2. Effect of pH on the absorption of zinc.

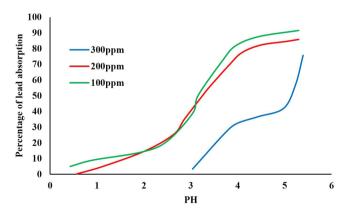


Figure 3. Effect of pH on the absorption of lead.

of adsorption decreases. According to the Figures, zinc has a higher adsorption rate than other ions. The effect of pH on the absorption of cadmium, zinc, and lead by soybean oil residues has been investigated, and test conditions are stirring speed $1000~\rm rpm$, adsorbent value $0.6~\rm g$, stirring time $40~\rm min$, solution volume $60~\rm mL$, and test temperature $25~\rm ^{\circ}C$.

3.2 The effect of the contact time of the heavy metal solution with the adsorbent

Increasing the contact time of the adsorbent with the solution increases the amount of adsorption due to the possibility of more contact of the adsorbent material with the adsorbent. To study the effect of contact time on the amount of adsorption, adsorption tests were performed in the presence of a certain amount of adsorbent at different times, and other effective factors were kept constant.

The effect of time on the absorption of cadmium, zinc, and lead by soybean oil residues has been investigated. Test conditions are stirring speed 1000 rpm, pH of 5, solution volume 60 mL, adsorbent amount 2 g, and test temperature 25 $^{\circ}$ C.

The results of the experiments showed that the amount of adsorption increased with increasing contact time. Then, after a certain period of time, it reached equilibrium. The equilibrium time for cadmium ions is 40 minutes, for zinc ions is 20 minutes, and for lead, the ion is 10 minutes, after which time the amount of adsorption does not increase significantly (Figures 4 to 6).

3.3 The effect of the amount of adsorbent and concentration of heavy metals

According to the results, as the amount of adsorbent increases, more surface area of the active adsorbent sites is available, and

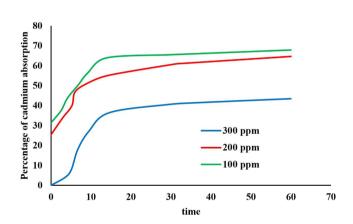


Figure 4. Effect of time on the absorption of cadmium.

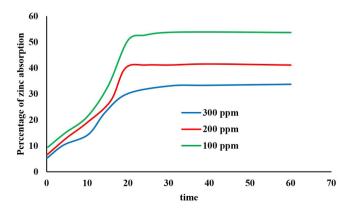


Figure 5. Effect of time on the absorption of zinc.

the adsorption efficiency increases. Figures 7 to 9 show that the percentage of adsorption decreases with the increasing concentration of metal ions. The amount of adsorption increases with increasing the amount of adsorbent at a constant concentration. According to the results of this section, lead has the least impact.

The effect of the initial concentration of cadmium, zinc, and lead on their absorption by soybean oil residues has been

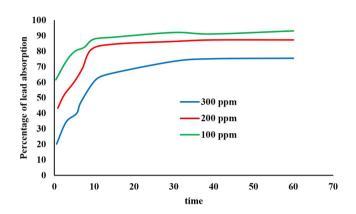


Figure 6. Effect of time on the absorption of lead.

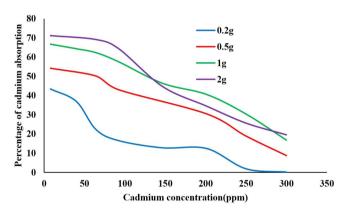


Figure 7. Effect of initial concentration of cadmium.

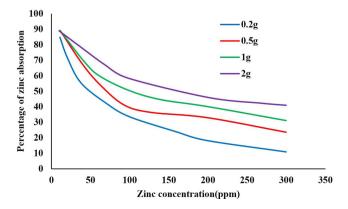


Figure 8. Effect of initial concentration of zinc.

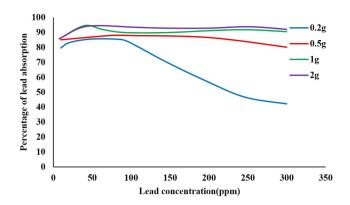


Figure 9. Effect of initial concentration of lead.

investigated. Test conditions are stirring speed 1000 rpm, time 40 minutes, pH of 5, solution volume 55 mL, and test temperature $25\,^{\circ}$ C.

4 Conclusion

The results of experiments proved that biosorbents have a high ability to remove heavy metals from contaminated water. Also, these results showed that changes in the concentration of hydronium ions are a very important factor in adsorption capacity. It is the surface between metal ions and hydrogen ions. As the pH increases, the adsorption of metal ions increases. For all studied pounds, the best pH for absorption of metal ions is about 3-5 may, and with increasing the concentration of metal ions, the amount of absorption decreases. Increasing the contact time of the adsorbent with the solution increases the amount of absorption due to the possibility of more contact of the adsorbent material with the adsorbent. To study the effect of contact time on the amount of adsorption, adsorption tests were performed in the presence of a certain amount of adsorbent at different times, and other effective factors were kept constant. The results of these experiments showed that the amount of adsorption increased with increasing contact time. Then, after a certain period of time, they reach equilibrium; also, with increasing the concentration of metal ions, it decreases, and with increasing the amount of adsorbent at a constant concentration, the amount of absorption increases.

Acknowledgements

The article was written with the support of the Ministry of Science and Higher Education of the Russian Federation in accordance with agreement N° 075-15-2020-905 date November 16, 2020, on providing a grant in the form of subsidies from the Federal budget of Russian Federation. The grant was provided for state support for establishing and developing a World-Class Research Center "Agrotechnologies for the Future."

References

Abbas, M. (2020). Experimental investigation of activated carbon prepared from apricot stones material (ASM) adsorbent for removal of malachite

- green (MG) from aqueous solution. *Adsorption Science and Technology*, 38(1-2), 24-45. http://dx.doi.org/10.1177/0263617420904476.
- Azimi, A., Azari, A., Rezakazemi, M., &Ansarpour, M. (2017). Removal of heavy metals from industrial wastewaters: a review. *ChemBioEng Reviews*, 4(1), 37-59. http://dx.doi.org/10.1002/cben.201600010.
- Bitonto, L., Reynel-Avila, H. E., Mendoza-Castillo, D. I., Pastore, C., &Bonilla-Petriciolet, A. (2019). Mexican biomass wastes: valorization for potential application in bioenergy. *Bulgarian Chemical Communications*, 51, 99-102.
- Fan, X., Ming, W., Zeng, H., Zhang, Z., &Lu, H. (2019). Deep learning-based component identification for the Raman spectra of mixtures. Analyst, 144(5), 1789-1798. http://dx.doi.org/10.1039/C8AN02212G. PMid:30672931.
- Fomina, M., &Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. *Bioresource Technology*, 160, 3-14. http://dx.doi.org/10.1016/j.biortech.2013.12.102. PMid:24468322.
- Gunatilake, S. K. (2015). Methods of removing heavy metals from industrial wastewater. *Journal of Multidisciplinary Engineering Science Studies*, 1(1), 12-18.
- Guo, X., Tang, S., Song, Y., &Nan, J. (2018). Adsorptive removal of Ni2+ and Cd2+ from wastewater using a green longan hull adsorbent. *Adsorption Science and Technology*, 36(1-2), 762-773. http://dx.doi.org/10.1177/0263617417722254.
- Hamid, A., Wasim, A., Azfar, A., Amjad, R., & Nazir, R. (2020). Monitoring and health risk assessment of selected trace metals in wheat rice and soil samples. *Food Science and Technology*, 40(4), 917-923. http://dx.doi.org/10.1590/fst.23319.
- Hamid, A., Yaqub, G., Ayub, M., &Naeem, M. (2021). Determination of malathion, chlorpyrifos, λ-cyhalothrin and arsenic in rice. Food Science and Technology, 41(2), 461-466. http://dx.doi.org/10.1590/ fst.01020.
- Herrera-Barros, A., Tejada-Tovar, C., &Gonzalez-Delgado, A. D. (2021). Comparative assessment of Al₂O₃ modified biomasses from agricultural residues for nickel and cadmium removal. *Journal of Water and Land Development*, 49, 29-34.
- Jan, A. T., Azam, M., Siddiqui, K., Ali, A., Choi, I., &Haq, Q. M. (2015). Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. *International Journal of Molecular Sciences*, 16(12), 29592-29630. http://dx.doi.org/10.3390/ ijms161226183. PMid:26690422.
- Marczewski, A. W., Seczkowska, M., Deryło-Marczewska, A., &Blachnio, M. (2016). Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: effect of temperature. Adsorption, 22(4-6), 777-790. http://dx.doi.org/10.1007/s10450-016-9774-0.
- Matta, G., &Gjyli, L. (2016). Mercury, lead and arsenic: Impact on environment and human health. *Journal of Chemical and Pharmaceutical Sciences*, 9(2), 718-725.
- Odobašić, A., Ahmetović, M., Šestan, I., &Kovačević, L. (2020). Removal of Cd and Ni Ions from water using biosorbent based on corn residues. *International Journal for Research in Applied Sciences and Biotechnology*, 7(6), 12-18. http://dx.doi.org/10.31033/ijrasb.7.6.3.
- Onac, C., Topal, T., &Akdogan, A. (2021). Investigation of the nutritional environment of the differences in toxicity levels of some heavy metals and pesticides examined in gilthead bream fishes. *Food Science and Technology*. In press. http://dx.doi.org/10.1590/fst.27921.
- Rahel, C., &Bhatnagar, M. (2017). Adsorption of heavy metals and phenol from aqueous solution onto fly ash as low cost adsorbent: a review. *International Journal of Innovative Research in Science, Engineering and Technology*, 6(2), 2479-2497.

- Rangabhashiyam, S., &Balasubramanian, P. (2019). The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application: a review. *Industrial Crops and Products*, 128, 405-423. http://dx.doi.org/10.1016/j.indcrop.2018.11.041.
- Seğmenoğlu, M. S., &Baydan, E. (2021). Comparison of heavy metal levels of organic and conventional milk and milk products in Turkey. Food Science and Technology, 9(4), 696-700.
- Seyyedi, M., & Ayati, B. (2021). Treatment of petroleum wastewater using a sequential hybrid system of electro-Fenton and NZVI slurry reactors, future prospects for an emerging wastewater treatment technology. *International Journal of Environment and Waste Management*, 28(3), 328-348. http://dx.doi.org/10.1504/IJEWM.2021.118369.
- Sheng, J., Zuo, J., Liu, K., Ma, L., Li, C., Li, Y., &Kong, D. (2021). Highly selective enrichment of aflatoxin B1 from edible oil using polydopamine-modified magnetic nanomaterials. *Food Science and Technology*, 41(2), 321-327. http://dx.doi.org/10.1590/fst.34619.
- Singh Sankhla, M., Kumari, M., Nandan, M., &Kumar, R. (2016). Heavy metal contamination in soil and their toxic effect on human health: a review study. *International Journal of All Research Education and Scientific Methods*, 4(10), 13-19.

- Tadesse, M., Tsegaye, D., &Girma, G. (2018). Assessment of the level of some physico-chemical parameters and heavy metals of Rebu River in oromia region, Ethiopia. *MOJ Biology and Medicine*, 3(3), 99-118. http://dx.doi.org/10.15406/mojbm.2018.03.00085.
- Wang, Z., Yang, X., Qin, T., Liang, G., Li, Y., &Xie, X. (2019). Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves. *Environmental Science and Pollution Research International*, 26(8), 7463-7475. http://dx.doi.org/10.1007/s11356-019-04172-8. PMid:30656586.
- Xu, A. R., Chen, L., Guo, X., Xiao, Z., &Liu, R. (2018). Biodegradable lignocellulosic porous materials: fabrication, characterization and its application in water processing. *International Journal of Biological Macromolecules*, 115, 846-852. http://dx.doi.org/10.1016/j.ijbiomac.2018.04.133. PMid:29704601.
- Youssef, M., Hagag, A., &Ali, A. H. (2018). Synthesis, characterization and application of composite derived from rice husk ash with aluminium oxide for sorption of uranium. *Adsorption Science and Technology*, 36(5-6), 1274-1293. http://dx.doi.org/10.1177/0263617418768920.