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a b s t r a c t

Water contamination by oil spills causes severe damage to the environment and human
health. Oil adsorbents should be buoyant, effective oil-contact, and regenerable. In
this study, diatomaceous-earth (DE)-incorporated magnetic alginate (Alg)-based beads,
chemically modified to include phthalic or maleic anhydride (denoted as Alg/DE/Fe3O4-
PA and Alg/DE/Fe3O4-MA), were developed. Internal cavities, formed by cavity-forming
agents, made them buoyant. The beads were buoyant and magnetically responsive for
30 days. Maximum oil adsorption capacities of Alg/DE/Fe3O4-PA and Alg/DE/Fe3O4-
MA were 29.7 and 21.0 times their weights, respectively. The pseudo-second order
kinetics model (R2

∼0.999, ARE ≤1.088, and χ2
≤ 0.041) and Freundlich isotherm model

(R2
∼0.999, ARE ≤0.1, and χ2

≤3.37× 10−3) were used to determine these values.
Both beads were magnetically regenerable for up to 20 cycles. DE pores improved oil
adsorption capacity by facilitating intra-bead diffusion of surface adsorbed oil. This was
confirmed by micro-structural characterization using surface micrographs, elemental
distribution, porosity, thermal stability, crystalline phases, molecular vibrational behav-
ior, and magnetic properties. Scanning electron microscopy and X-ray diffractometry
analyses revealed spherical beads with well-distributed Fe3O4 spinel on the surfaces.
The two adsorbent beads satisfied the criteria for oil-removal from water: buoyancy,
high affinity towards various oil types, and magnetic re-collectability.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Seawater contamination due to deliberate or accidental oil spills is a global concern. Growing fossil fuel demand has
ncreased oil spill frequency during oil exploration, transportation, refining, and use. In the Deepwater Horizon oil spill
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(the largest recorded oil spill in history) in the Gulf of Mexico (April 20–July 15, 2010), more than 3.19 million barrels of
oil were accidentally released into the sea, covering the northern gulf coast by an oil layer (Beyer et al., 2016). Oil residues
were detected in the five U.S. Gulf states of Texas, Louisiana, Mississippi, Alabama, and Florida (Thyng, 2019). A large film
of low-biodegradable oil, which spreads rapidly over water, is formed during an oil spill. This floating layer is hazardous
to marine biota and surrounding ecosystems (Campelo et al., 2021).

Numerous techniques have been developed for oil spill clean-up. Thermal, physical, chemical, and biological techniques,
ncluding in-situ burning, using boom-skimmers, dispersants and surfactants, have been used for bioremediation and oil
dsorption (Abidli et al., 2020; Bullock et al., 2019; Hoang, 2018; Ke et al., 2021). In-situ burning is a large-scale method
hat removes oil from water surfaces by direct oil burning (Hoang, 2018). The combustion forms toxic gases, and residues
hat sink to the seabed, harming marine biota. Additionally, the spread of fire is difficult to control. The boom-skimmer
ethod consists of two stages: localizing oil spills with booms and carrying oil into a reservoir using mechanical devices
alled skimmers (Wang et al., 2018). This method requires specific expensive tools. Bacterial consortiums can be used for
il bioremediation with limited efficiency. Not all bacterial species degrade oil, and those that do are substrate-specific
Mapelli et al., 2017). Simple and efficient methods for oil spill clean-up and oil separation are scarce. Oil removal from
ater surfaces using sorbents and sorbent-devices is eco-friendly and cost-effective (Hoang et al., 2021). Several low-
ost adsorbents, such as biochar (Gurav et al., 2021), carbon (Yang et al., 2021), aluminosilicate clay (Akpomie et al.,
019), and cellulose-based materials (Chau et al., 2021; Hoang et al., 2018b), have been extensively investigated for oil
dsorption. Oil-contaminated water clean-up adsorbents should have buoyancy, high affinity towards different oil types,
nd be recoverable for long-term applications.
Alginate (Alg) is naturally abundant and can be extracted from brown algae and seaweeds (Hambali et al., 2018; Nizami

t al., 2020). It entraps water pollutants (heavy metal ions, basic dyes, and pharmaceuticals) due to its high content of
cidic carboxylate groups (Nasrollahzadeh et al., 2021). However, recovery of contaminant-loaded Alg hydrogel from the
edium is difficult, limiting its utility as an adsorbent. To overcome this limitation, magnetic iron-based particles of
agnetite (Fe3O4) have been used (Ali et al., 2021). In this study, magnetic Alg was physically modified with diatomaceous
arth (DE), followed by hollow bead-shaping in an ionic crosslinking solution to enhance buoyancy, porosity, surface area,
nd thermal stability. As reported in a previous publication, NaHCO3 and CaCO3 form internal cavities, endowed with
agnetic beads, for buoyancy and stability. These properties facilitate oil removal from water surfaces (Sakti et al., 2021).
E filler was used for its physicochemical properties, such as particle size, surface area, porosity, thermal stability, and
cid resistance. DE is an eco-friendly adsorbent (Sriram et al., 2020), sensor (Leonardo et al., 2016), catalyst (Ðă.ng et al.,
021), and drug delivery system (Phogat et al., 2021). Although DE-based adsorbents effectively adsorb water pollutants,
heir sinkable behavior and difficult post-adsorption recovery make investigations challenging, and adsorption information
carce. There are no published reports on oil-contaminated water clean-up using DE-based floating adsorbents.
This study evaluated oil removal from water surfaces using floating DE-incorporated magnetic beads. Chemical

odification of attaching acid anhydride groups, by adding phthalic anhydride (PA) and maleic anhydride (MA), was
erformed to enhance adsorption affinity of the beads towards various oil types, on the surface of various water types.
il removal tests were performed by varying parameters such as initial pH, contact time, initial oil concentration, oil
ype, and water type, to evaluate oil clean-up feasibility of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA. Kinetics, isotherms,
ecoverability, recyclability, floating stability, and magnetically driven properties were also studied. Physical and chemical
roperties of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA that influence the clean-up performance were evaluated by various
echniques. The magnetic, buoyant, and recyclable Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA beads facilitated effective,
apid, and eco-friendly oil-contaminated water clean-up.

. Materials and methods

.1. Materials

Analytical quality materials and chemicals were used in the experiment and used as received without any further
urification, unless otherwise specified. DE and sodium alginate (Na(C6H6O6)n) were supplied by Wako (Japan). Magnetite
Fe3O4, >90%) was obtained from Kishida Chemical Co., Ltd. (Japan). Acetic acid (CH3COOH, 98%), acetone (C3H6O,
9.5%), ammonium hydroxide (NH4OH, 28%–30%), calcium carbonate (CaCO3, 99.5%), hydrochloric acid (HCl, 37%), sodium
icarbonate (NaHCO3, 99.8%), and sodium hydroxide (NaOH, 97%) were purchased from Sigma-Aldrich (Germany). Calcium
hloride (CaCl2· 2H2O, 100%), ethanol (C2H5OH, 97%), hexane (C6H14, 99%), MA (C4H2O3, 99%), and PA (C6H4(CO)2O, 99%)
ere obtained from Merck (Germany). Artificial seawater powder (Marine Art-SF-1) was purchased from Osaka Yakken.
o., Ltd. (Japan). Castor oil, coconut oil, olive oil, and vegetable oil were purchased from a local market. Crude oil was
btained from oil drilling in Indonesia. Tap water was collected from our university.

.2. Fabrication of buoyant DE/magnetic Alg composite bead

DE was activated through 3 M HCl solution contact for 2 h, 4000 rpm centrifugation for 15 min, repeated neutralization
ith demineralized water, and 100 ◦C oven drying for 12 h. Activated DE (0.25 g) was dispersed in 50 mL 1.5 wt% Alg

olution and mixed at 750 rpm for 30 min. Fe3O4, NaHCO3, and CaCO3 (1:1:1) were dispersed in the mixture and stirred

2
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for 30 min. The black viscous suspension obtained was dropped into 300 mL of 5 wt% CaCl2 solution and stirred for
omplete gelation. Black beads formed were collected using a magnet, immersed in 300 mL of 6% CH3COOH solution for
4 h, repeatedly neutralized with water, lyophilized, and labeled as Alg/DE/Fe3O4. Alg/Fe3O4 was prepared using a similar
ethod, without DE addition.

.3. Surface functionalization of the composite bead with acid anhydride

Alg/DE/Fe3O4 was stirred in acetone overnight before modification. It was refluxed with 0.05 mol L−1 PA in acetone
t 55 ◦C for 3 h. After esterification, the black beads were magnetically recovered and washed with acetone, ethanol,
nd water. The lyophilized beads were labeled Alg/DE/Fe3O4-PA and used for characterization and adsorption tests.
lg/DE/Fe3O4-MA was prepared by a similar method, with MA used for modification instead of PA. Bead preparation
nd modification are shown in Fig. S1.

.4. Characterization of as-prepared beads

Bead morphology was examined using a FlexSEM-1000 system (Hitachi, Japan) at 5 kV accelerating voltage. Freeze-
ried beads were coated with a thin gold layer, using a sputtering system, to enhance electrical conductivity. Elemental
omposition was determined, and mapping was conducted, using an EDX system. Crystal structure was observed using X-
ert MPD (Philips, Germany) with 1.54443 Å Cu-Kα radiation, 5–90◦ diffraction angle, and 5 ◦C min−1 scan step. Thermal
egradation was evaluated using a TGA 4000 system (Perkin Elmer, USA). Dried beads (15 mg) were placed inside a
rucible and heated under pure N2 atmosphere, from 30–800 ◦C, at a heating rate of 5 ◦C min−1, and 20 mL min−1

2 flow rate. Magnetic properties were examined using a VSM-7400 series (Lake Shore, USA), by exposing dried beads
25 mg) to -8–8 kOe magnetic field range, at room temperature. The Brunauer–Emmett–Teller (BET) surface area, pore
olume, and pore size distribution were analyzed using an accelerated surface area and porosimetry system (ASAP 2020,
icromeritics, USA). An IRTracer-100 spectrophotometer (Shimadzu, Japan) was used to investigate functional moieties
n each bead. Powdered beads were mixed with KBr, and multiple scans were collected at 4 cm−1 resolutions, in the
000–400 cm−1 wavenumber range. Alg/Fe3O4, Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA bead sizes were measured using
digital caliper (Krisbow, Indonesia).

.5. Oil removal and bead regeneration experiments

Coconut oil, vegetable oil, olive oil, and castor oil are widely used, and commonly found in domestic wastewater. Crude
il, an oil-drilling product, can be found in seawater around ports and oil-storage warehouses in Indonesia. Therefore,
hese oil removals were chosen as objects of research and analysis. Oil clean-up performance by Alg/Fe3O4, Alg/DE/Fe3O4-
A, and Alg/DE/Fe3O4-PA beads, at variable oil–water mixture pH, contact time, and initial oil concentration, have been
ublished previously with a slight modification (Singh et al., 2017; Soares et al., 2017; Yaacob et al., 2018). The synthesized
eads (0.015 g) were placed in contact with 15 mL of 66.67 g L−1 oil–water mixture, to investigate the influence of oil–
ater mixture pH on oil removal. Initial pH of the mixture was regulated using 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH,

and the mixture was equilibrated using an orbital shaker at 200 rpm for 2 h. Oil adsorbed by the beads at equilibrium
(qe, g of oil g of beads−1) was calculated using Eq. (1) shown below (Hoang et al., 2018a):

qe =
moil

m0
=

mtotal − mwater − m0

m0
(1)

Here, moil and mwater are the masses (g) of adsorbed oil and water, respectively; mtotal and m0 are the bead masses
g) before and after adsorption, respectively. Similar protocols were used to examine adsorption kinetics and isotherms,
y varying contact time in the range 5–120 min. Initial oil concentration was varied from 40 to 120 g L−1. Experimental
etup and tools for examining these variables are presented in Fig. 1.
Regeneration potential was investigated by equilibrating the beads with 15 mL of 100 g L−1 oil–water mixture at

00 rpm for 2 h. The beads were recovered magnetically, and repeatedly washed with n-hexane, methanol, water, and
yophilized before the next cycle. Twenty adsorption–desorption cycles were conducted to assess oil removal performance
f the beads. Even though all adsorption experiments were carried out using the same method and under the same
onditions, errors in the experiments could not be eliminated. Therefore, all oil adsorption measurements were performed
n triplicate to maximize accuracy and reduce experimental errors.

. Results and discussion

.1. SEM analysis and EDX mapping

The micrographs show a significant difference between micro-surface and cross-section construction of the synthesized
eads (Fig. 2). The surface micrograph showed spherical Alg/Fe3O4 beads with a coarse surface. Fe3O4 microaggregates
ere distributed all over the surface, confirming Fe O attachment to the Alg matrix. Sieve-shaped DE disks were observed
3 4

3
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Fig. 1. Experimental setup of oil adsorption by as-synthesized beads.

Fig. 2. Surface SEM micrograph (inset: whole bead micrograph) and EDX-mapping of (a,b) Alg/Fe3O4 , (c,d) Alg/DE/Fe3O4-MA (e,f) Alg/DE/Fe3O4-PA and
ross-section SEM micrograph (inset: whole bead micrograph) and EDX-mapping of (g,h) Alg/Fe3O4 , (i,j) Alg/DE/Fe3O4-MA, and (k,l) Alg/DE/Fe3O4-PA.

n the Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA micro-surfaces, confirming homogeneous blending of DE. Compared
o Alg/Fe3O4, Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA had rougher (with many wrinkles) surfaces with more pores,
acilitating rapid intra-bead diffusion. An oval-shaped cavity was observed in the cross-sectional micrographs of Alg/Fe3O4,
lg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA, due to the reaction of NaHCO3 (as a porogen inside beads) with acetic acid. To
aintain its spherical structure after NaHCO3 dissolution by acetic acid, CaCO3 was added as an internal crosslinking
gent. Alg reacted with Ca2+, a product of CaCO3 dissolution, to form a rigid structure through ionotropic gelation.
Ca distribution on the outer and inner surfaces of the synthesized beads indicated complete ionotropic gelation. EDX

apping confirmed the presence of Fe on both outer and inner surfaces of Alg/Fe3O4, indicating successful entrapment of
e3O4 in the Alg matrix (Fig. 2). DE presence in Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA was confirmed by observing Si (the
ajor component of DE) distribution. CO2 formation during NaHCO3 and CaCO3 dissolution forced inner DE to the outer

surface, causing higher Si detection on the outer surface of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA, than the inner surface.
Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA surface contained 23%–27% Si, facilitating intra-bead diffusion. Small quantities
(<5%) of DE minor components, Al and K, were also detected. Si, Al, and K were not detected on the Alg/Fe O surfaces.
3 4

4
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Fig. 3. (a) Swelling property (inset: self-floating property) in demineralized water, tap water and seawater and (b) XRD diffractogram of Alg/Fe3O4 ,
Alg/DE/Fe3O4 , Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA.

3.2. Physical dimensions, swelling, and buoyancy

Alg/DE/Fe3O4-PA and Alg/DE/Fe3O4-MA were observed to slightly increase in size, with unmodified shape, on DE
entrapment and PA/MA attachment (Table 1). Penetration of water molecules into the gel bead-matrix through DE pores
caused swelling. After MA/PA modification, bead surface hydrophilicity decreased, reducing water penetration into the gel
matrix, decreasing the swelling ratio. Spherical shape enabled multi-directional oil diffusion into Alg/DE/Fe3O4-MA and
Alg/DE/Fe3O4-PA, and both beads floated on demineralized water, tap water, and seawater, maintaining buoyancy for up
to 30 days (Fig. 3(a)). Thus, high contact occurred between water-surface oils and Alg/DE/Fe3O4-MA, or Alg/DE/Fe3O4-PA.

.3. XRD analysis

As shown in Fig. 3(b), sharp peaks observed in the Fe3O4 XRD pattern at 2θ values of 30.46◦, 35.84◦, 43.50◦, 53.98◦,
7.38◦, and 62.92◦ corresponded to (220), (311), (400), (422), (511), and (440) plane reflections (Ghoochian et al., 2019;
akthi Sri et al., 2020) of cubic Fe O (JCPDS card No. 79-0418), respectively. For DE, amorphous and quartz phases of
3 4

5
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Table 1
Physical dimension, textural and magnetic properties of Alg/Fe3O4 , Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA.
Magnetic bead Component Average bead sizea SBETb VT

b DP
b Hcc Msc Mrc Mr/Ms

(mm) (m g−1) (cm3 g−1) (nm) (G) (emu g−1) (emu g−1)

Alg/Fe3O4 Alginate, Fe3O4 2.81 ± 0.11 15.476 0.017 4.161 130.450 41.489 5.313 0.128
Alg/DE/Fe3O4-MA Alginate, Fe3O4 ,

Diatomaceous earth,
Maleic anhydride

3.01 ± 0.21 24.740 0.038 4.931 118.440 29.008 3.484 0.120

Alg/DE/Fe3O4-PA Alginate, Fe3O4 ,
Diatomaceous earth,
Phthalic anhydride

3.14 ± 0.19 35.058 0.045 5.832 120.440 23.094 2.850 0.123

aAverage bead size was measured using a digital caliper (n = 100).
bSBET , VT and DP were obtained from N2 adsorption–desorption analysis.
cHc, Ms, and Mr were measured using a vibrating sample magnetometer (VSM).

SiO2 showed a broad peak centered at 22.14◦, and a sharp peak at 28.20◦. Crystalline quartz is commonly present in DE
(Mota dos Santos and Cordeiro, 2021). After co-entrapment of Fe3O4 and DE in Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA,
nly peaks associated with Fe3O4 were detected in the diffractogram. This phenomenon is observed for Fe3O4 entrapment
n other materials (Ewis et al., 2020; Li et al., 2020; Nuryono et al., 2016). This could be due to distribution of crystalline
e3O4 on Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA surfaces, as confirmed by SEM analysis. Amount of entrapped Fe3O4 was
onfirmed to be higher in Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA, than DE, by EDX mapping.

.4. Thermal stability

TGA and DTG curves of Fe3O4, Alg, Alg/Fe3O4, Alg/DE/Fe3O4, Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA, are presented
n Fig. 4(a–b). No decomposition was observed for Fe3O4 over the entire temperature range examined, because of
ts high thermal stability. In contrast, the thermograms of bare Alg beads and composite beads exhibited multistage
egradation, with 205.65, 273.05, and 737.37 ◦C Tmax values, respectively, corresponding to multi-step decomposition.
ass degradation at temperatures below 200 ◦C is associated with release of physically bound water molecules (Rigueto
t al., 2021). In the first stage (below 200 ◦C), the bare Alg beads and Alg/Fe3O4 exhibited 9% and 7.78% mass losses,
espectively, while Alg/DE/Fe3O4, Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA lost less than 5% of their masses. In the second
egradation stage (200–350 ◦C), caused by combustion of organic material, 38.32% bare Alg beads were degraded at Tmax
273.05 ◦C) through polysaccharide ring splitting (Metin et al., 2020). In contrast, Alg/Fe3O4 and Alg/DE/Fe3O4 exhibited
4.52% and 12.24% mass losses, respectively, indicating suppression of decomposition, and enhancement of thermal
tability on introduction of Fe3O4 and DE into the Alg matrix. Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA experienced 14%
ass loss due to combustion of Alg matrix and MA/PA groups. In the final stage, 26.22% bare Alg bead mass was retained
s an inorganic residue from the carbonization process (da Silva Fernandes et al., 2018), while the residual masses of
lg/Fe3O4, Alg/DE/Fe3O4, Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA, were 66.24%, 72.71%, 64.86%, and 64.02%, respectively.
his indicated improvement of Alg bead thermal stability by more than 2.4-fold on introduction of Fe3O4, DE, MA, and
A. By comparing their residual masses to that of Alg/DE/Fe3O4, the amount of MA and PA attached to the surface of
lg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA were found to be 7.85% and 8.69%, respectively.

.5. Texture and pore distribution

As presented in Fig. S2(a–c), the N2 adsorption/desorption isotherms were type IV, according to International Union
f Pure and Applied Chemistry (IUPAC) classification, indicating mesoporous nature of Alg/Fe3O4, Alg/DE/Fe3O4-MA, and
lg/DE/Fe3O4-PA (Song et al., 2019). A mesoporous H4 type hysteresis loop could be observed in the isotherms at P/P0

alues of 0.21–0.86, 0.35–0.8, and 0.25–0.81 for Alg/Fe3O4, Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA, respectively. Owing
o DE on the surfaces, an H4 type hysteretic loop, associated with the presence of slit-like pores, was more evident in
lg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA, than in Alg/Fe3O4 (Song et al., 2021). Textural parameters and pore structures
etermined by N2 adsorption/desorption experiments are listed in Table 1. Owing to higher porosity, Alg/DE/Fe3O4-MA
nd Alg/DE/Fe3O4-PA could generate more active sites for oil removal than Alg/Fe3O4.

.6. Magnetic responsiveness of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA

Magnetic responsiveness determined recovery of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA from oil–water mixtures.
s shown in Table 1 and Fig. S2(d), Ms value of Alg/Fe3O4 was lower than that of bare Fe3O4 (75.7 emu g−1). DE
ntrapment and anchoring of magnetically non-responsive PA or MA, further reduced Ms values in Alg/DE/Fe3O4-PA
nd Alg/DE/Fe3O4-MA by 2.6-fold and 3.2-fold, respectively, compared to bare Fe3O4. Encapsulation effects, such as the
resence of magnetically non-responsive Alg, DE, PA, and MA, caused this reduction. Similar phenomenon, on coating
agnetic cores by different magnetically non-responsive matrices in similar materials, has been previously reported

Narita et al., 2019; Nuryono et al., 2020, 2014; Sakti et al., 2020, 2015; Armedya et al., 2019; Nuryono et al., 2014;
ahmi et al., 2020).
6
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Fig. 4. (a) TGA thermogram (inset: thermogram of non-magnetic alginate) and (b) DTG thermogram (inset: thermogram of non-magnetic alginate)
f Alg/Fe3O4 , Alg/DE/Fe3O4 , Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA.

3.7. Oil removal performance of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA

3.7.1. Effect of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA dosage and initial pH
As illustrated in Fig. 5(a), 0.25 g L−1 Alg/DE/Fe3O4-PA demonstrated higher adsorption capacity (19.2 g g−1) than

Alg/Fe3O4 and Alg/DE/Fe3O4-MA. At higher adsorbent dosage (1 g L−1), it exhibited 1.5-fold increase in adsorption capacity,
due to the presence of more vacant adsorption sites. However, increasing adsorbent dosage further (>1 g L−1) caused
insignificant change in oil adsorption due to reduction in contact area of oil with Alg/Fe3O4, Alg/DE/Fe3O4-MA, and
lg/DE/Fe3O4-PA, making fewer vacant sites and pores accessible.
Fig. 5(b) depicts oil adsorption efficiency as a function of pH, at optimum adsorbent to oil–water volume ratio.

il adsorption changed negligibly with pH variation, indicating predominantly non-electrostatic forces in interfacial
nteractions of oil with Alg/Fe3O4, Alg/DE/Fe3O4-MA, and Alg/DE/Fe3O4-PA. At pH 6, considered to be the optimum
H, adsorption efficiency exhibited 9.5-fold increase in Alg/DE/Fe3O4-PA compared to Alg/Fe3O4. Phthalic benzene ring
–π interactions in Alg/DE/Fe3O4-PA enhanced adsorption efficiency by amplifying non-electrostatic interactions. Oil
dsorption was not conducted under highly basic conditions to avoid saponification of the oil layer by OH−, and to prevent
ead rupture and DE release by Ca(OH) , formed by reaction of Ca2+ (crosslinker) with excess OH−.
2
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Fig. 5. Effect of (a) Alg/Fe3O4 , Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA dosage (condition: C0: 66.67 g L−1, pH: 6, t: 2 h, T: 25 ◦C, and n: 3) and (b)
nitial pH on removal of crude oil (condition: C0: 66.67 g L−1 , bead dose: 1 g L−1 , t: 2 h, T: 25 ◦C, and n: 3).

.7.2. Influence of contact time on oil removal

Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA adsorbed oil up to 8.7 and 12 times their weights in the first 5 min, respectively,

nd oil adsorption increased exponentially with increasing contact time (Fig. 6(a)). This could be due to attachment of

il to the available active sites and pores of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA. Gradually, most active sites and

ores were occupied by oil, and equilibrium, indicated by a plateau region in the adsorption curve, was attained within

0 min. After equilibrium, oil adsorption by Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA became constant. The as-prepared

eads attained oil-removal equilibrium within a short time, indicating their applicability in large-scale systems.
8
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f
P

P

Fig. 6. (a) The non-linearized plot for PFO, PSO and Elovich kinetics model and (b) The linearized plot for IPD kinetics model (condition: C0: 66.67 g
L−1 , bead dose: 1 g L−1 , pH 6, T: 25 ◦C, and n: 3).

3.7.3. Evaluation of kinetics
Kinetics analysis (Fig. 6(a) and Table S1) revealed that oil removal by Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA did not

ollow the pseudo-first order and Elovich models, because both models produced low R2 and high χ2 and ARE values. The
SO model revealed a better fit to experimental data, with R2 close to unity and lower χ2 and ARE values. This indicated

that oil removal by Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA could be analyzed by the PSO model. Alg/DE/Fe3O4-MA and
Alg/DE/Fe3O4-PA were confirmed to be porous by SEM images and N2 adsorption–desorption isotherms. Role of diffusion
in their oil removal mechanism was assessed using the intraparticle diffusion (IPD) kinetics model. Fig. 6(b) shows that
the IPD curve did not exhibit a single linear plot over time. It exhibited two segments, representing two different diffusion
mechanisms. The first segment represented diffusion of oil to the external surface of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-
A, passing through the boundary layer. This rapid surface-diffusion caused sharp increase in oil adsorption. Slow oil
9
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Fig. 7. Equilibrium Langmuir, Freundlich, Sips and Redlich–Peterson isotherms for removal of crude oil on deionized water surface by Alg/Fe3O4 ,
Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA at (a) 25 ◦C, (b) 35 ◦C, and (c) 45 ◦C (condition: bead dose: 1 g L−1 , pH 6, t: 2 h, and n: 3).

adsorption, controlled by intra-bead diffusion, was represented by the second segment. In this segment, diffusion occurred

inside DE pores, on Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA surfaces, resulting in lower value of K2-IPD than K1-IPD. As

presented in Table S1, the K of Alg/DE/Fe O -PA was approximately 10 times higher than that of Alg/Fe O , due to
2-IPD 3 4 3 4
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differences in surface morphology and pore profile, confirmed by SEM and N2 adsorption–desorption analysis, respectively.
lg/Fe3O4 had a less porous surface, inhibiting rapid IPD of oil.

.7.4. Influence of initial oil concentration
Significant increase in oil adsorption was observed at low initial oil concentration due to concentration gradient

etween the bulk oil–water mixture and Alg/DE/Fe3O4-MA, or Alg/DE/Fe3O4-PA surfaces (Fig. 7(a)). Increase of initial
il concentration intensified collisions between oil and Alg/DE/Fe3O4-MA or Alg/DE/Fe3O4-PA, leading to an increase in
il adsorption. At equilibrium, the active sites and pores of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA were occupied, making
il adsorption constant. Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA showed 6.7-fold and 9.5-fold increase in Langmuir qmax in
omparison to Alg/Fe3O4, respectively, indicating contribution of DE, MA, and PA to oil-molecule accommodation during
dsorption.

.7.5. Temperature dependence of isotherm models
Quality parameters from Langmuir, Freundlich, Sips, and Redlich–Peterson isotherm fittings were compared. The

reundlich parameter demonstrated a better fit for oil adsorption by Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA at 25 ◦C,
ith R2 values close to unity, χ2

≤ 3 × 10−4, and ARE ≤ 0.0995 (Fig. 7(a–c) and Table S2.). Freundlich isotherm
odels revealed multilayer oil adsorption on Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA heterogeneous surfaces. The surfaces
ere heterogeneous due to DE pores and MA/PA attachment, as indicated by SEM images, N2 adsorption–desorption
rofiles, and FTIR spectra. The homogeneous Alg/Fe3O4 surface adsorbed oil in the monolayer mode, as described by the
angmuir isotherm having R2, χ2, and ARE values of 0.9997, 6.94 × 10−5, and 0.1375, respectively. The introduction of
E and MA/PA altered the synthesized adsorbent surface from homogeneous to heterogeneous, changing oil adsorption
echanism. Similar oil adsorption by Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA was observed at elevated temperatures

Table S2). Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA oil adsorption adhered to the Freundlich isotherm model at all studied
emperatures (25–45 ◦C), while adsorption by Alg/Fe3O4 was best interpreted using the Langmuir model. The Langmuir
max value of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA decreased with temperature increase. This demonstrated influence
f temperature on interfacial behavior of oil and the synthesized adsorbents. Decrease in oil viscosity on temperature
levation increased oil solubility and decreased Langmuir qmax values. Furthermore, non-electrostatic interaction between
il and Alg/DE/Fe3O4-MA or Alg/DE/Fe3O4-PA weakened with temperature increase, allowing easy oil detachment from
he adsorbent pores and surfaces during post-adsorption recollection. Similar reduction in Langmuir qmax values with
ncreasing temperature have been reported in previous publications (Mahmoud, 2020; Raj and Joy, 2015). Comparison
f qmax values of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA with Alg/Fe3O4, at all studied temperatures, confirmed that
ntroduction of DE and MA/PA suppressed the reduction of Langmuir qmax.

.8. Mechanism of oil removal

Oil removal mechanism was investigated by FTIR spectrophotometry of fresh and oil-loaded Alg/DE/Fe3O4-MA and
lg/DE/Fe3O4-PA, as shown in Fig. S3(a–d). In the FTIR spectrum of Fe3O4, several peaks were observed at 3665, 576,
nd 451 cm−1, associated with O-H vibrations of adsorbed water, tetrahedral sites of Fe–O stretching, and octahedral
ites of Fe-O stretching vibrations, respectively (Shahrashoub and Bakhtiari, 2021). After Fe3O4 incorporation, new peaks
ere observed at 1622 and 1419 cm−1, corresponding to Alg C==O stretching (Lv et al., 2017). A weak peak at 1012 cm−1

as assigned to the Alg pyranose ring C–O group. DE presence in Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA was detected
y peaks at 1091 and 802 cm−1, associated with stretching vibration of siloxane (Si–O–Si) (Song et al., 2021, 2019). The
ttachment of MA and PA on the surface of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA, respectively, was confirmed by a peak
t 1720 cm−1, assigned to MA/PA ester carbonyl group asymmetric stretching. A peak at 1595 cm−1 was attributed to
==C in MA/PA. A peak at 2850 cm−1, assigned to C-H stretching vibrations, indicated ester bond formation (Yadav et al.,
019).
Crude oil, castor oil, coconut oil, vegetable oil, and olive oil consist mainly of hydrocarbons; therefore, related peaks

ere observed in the FTIR spectra. Peaks at 2910 and 2850 cm−1, associated with C–H asymmetric and –CH2– symmetric
tretching vibrations, respectively, were observed in all the oil spectra (Neves and Poppi, 2020). A peak at 1745 cm−1,
ttributed to C==O stretching vibration of the fatty acid ester group, was observed in the FTIR spectra of edible oils, such
s castor oil, coconut oil, vegetable oil, and olive oil (Jamwal et al., 2021). This peak was absent in the FTIR spectrum
f crude oil (mainly composed of aliphatic and aromatic structures of carbon and hydrogen). A peak at 1456 cm−1 was
ssigned to C–H bending of –CH2– or –CH3 (Tarhan, 2020). After oil adsorption, the above-mentioned peaks were observed
n the FTIR spectra of oil-loaded Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA, indicating adsorbed oil molecules. A slight shift
o lower wavenumbers could be observed for C==O and C-H vibrations of edible oils after adsorption, indicating physical
ttachment of the oil (Ewis et al., 2020). Interactions (π–π ) facilitated by DE pores, between oil and MA/PA moieties of

lg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA, could be responsible for this attachment.
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3.9. Practical feasibility analysis

Oil spills can occur in various aquatic environments. The components of simulated seawater are listed in Table S3. To
valuate applicability of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA in oil-contaminated water clean-up, various water types
ere used as adsorption test media. Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA exhibited similar oil adsorption, regardless
f water type used. Oil adsorption was slightly higher from seawater than demineralized or tap water. Screening effect
ould be responsible for this phenomenon. High concentration of counter ions in seawater, such as Na+, Mg2+, and Ca2+
an cause Alg matrix-surface neutralization, diminishing adsorbent-oil electrostatic repulsion. Furthermore, oil solubility
n high-salinity seawater is low, leading to many effective collisions of oil with Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA,
nhancing oil adsorption (Diraki et al., 2019).
Oil adsorption by Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA increased in the following order: crude oil < olive oil <

egetable oil < coconut oil < castor oil. This could be explained by oil density. Liquid pollutants such as high-density
ils can easily accumulate in adsorbents. Thus, the adsorption of high-density oil was relatively higher than that of low-
ensity oil. The relationship between oil density and adsorption for Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA is illustrated
n Fig. S4(a). Differences in adsorption capacities of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA towards various oil types were
egligible, indicating their wide applicability.
Fig. S4(b–d) shows the reusability of Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA for removal of various oil types from

ifferent aqueous media. Reusability of the as-synthesized adsorbents, obtained by comparing oil adsorption before and
fter 20 adsorption cycles, decreased in the following order: Alg/DE/Fe3O4-PA > Alg/DE/Fe3O4-MA > Alg/Fe3O4. After
0 adsorption cycles, Alg/DE/Fe3O4-PA exhibited up to 95% adsorption capacity, regardless of oil or water type, while
lg/Fe3O4 lost more than 15% of its adsorption capacity. Thus, DE, MA, or PA introduction improved reusability and
dsorption capacity of the synthesized beads. As presented in Table S4, Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA exhibited
igher adsorption than previously reported magnetic adsorbents. Several reported Fe3O4-based adsorbents have higher
s and shorter teq values due to their small sizes. However, small size enables facile oxidation of Fe3O4 to Fe2O3 after
everal adsorption–desorption cycles, especially in high-salinity seawater, weakening magnetic properties, making post-
dsorption recovery difficult, and causing secondary pollution. The Alg matrix in Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA
rotected Fe3O4 from oxidation. Both Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA maintained their buoyancy over several
il adsorption–desorption cycles. Therefore, the as-synthesized Alg/DE/Fe3O4-MA and Alg/DE/Fe3O4-PA beads meet the
riteria for effective and eco-friendly oil removal from aquatic environments.

. Conclusions

This study reports the synthesis of magnetically driven Alg/DE composite beads, modified with PA/MA, for oil-
ontaminated water clean-up. High buoyancy of beads allowed intensive contact with aqueous oil films, removing oil
ithin 30 min, following the PSO model (R2

∼0.999, χ2
≤ 0.041, and ARE ≤ 1.088). Owing to the presence of DE molecules

nd PA/MA groups, the modified magnetic beads exhibited high adsorption capacity towards different oils, with maximum
dsorption capacity values up to 29.7 times their weights, described by the Freundlich model, with R2

∼0.999, χ2
≤ 3.37×

0−3, and ARE ≤ 0.1. Oil adsorption was pH independent and extremely effective in deionized water, tap water, and
eawater. Owing to high Ms values, confirmed by VSM data, the as-prepared beads were magnetically recoverable and
egenerable over 20 oil adsorption–desorption cycles. Unique features of the magnetically driven PA/MA-modified Alg/DE
omposite beads demonstrated their potential as efficient and eco-friendly adsorbents for oil-contaminated water clean-
p. Future research could include real-time analysis of the as-synthesized beads in environmental applications, evaluating
heir environmental effects, and biodegradability. Combination of the composite beads with other techniques, such as
loating booms or oil-degrading mechanisms, could also be investigated for cost-effective solutions to mitigate the adverse
ffects of a large-scale oil spill.
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