Journal of Physics

Cenference Series

The 11th Biennial Conference on
Classical and Quantum Relativistic
Dynamics of Particles and Fields

VEtIE $1238-2019$
4.7.han 20ala

Ubtan Thatly Unisa

cistor

Verth Iaxd

Thasapen ecces jumel far wiffrerce pacectings
Igeselvnes orty bes

Justification on cyclopropene to propyne isomerization pathway based on vibrational calculations

To cite this article: R Madinah et al 2020 J. Phys.: Conf. Ser. 1568012001

View the article online for updates and enhancements.

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Justification on cyclopropene to propyne isomerization pathway based on vibrational calculations

R Madinah ${ }^{1}$, F Rusydi ${ }^{1,2,{ }^{*}}$, L S P Boli ${ }^{1}$, V Khoirunisa ${ }^{1,3}$, M Z Fahmi ${ }^{4}$ and A H Zaidan ${ }^{1,2}$
1 Research Center for Quantum Engineering Design, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
2 Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
3 Engineering Physics Study Program, Institut Teknologi Sumatera, Lampung 35365, Indonesia
4 Department of Chemistry, Faculty of Science and Technology, Universitas
Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
*rusydi@fst.unair.ac.id

Abstract

We report a density-functional coupled with vibrational calculation on justifying the isomerization pathway of cyclopropene to propyne. The idea is to present the pathway in energy level diagram which the transition state is ensured by tracking a particular mode that supports the cyclic bond breaking and triple bond formation to occur. This mode decreases along the pathway and disappears at the transition state. To verify the designed pathway, the activation energy of the isomerization is used to find the rate constant with respect to experimental data at 500 K and 700 K by using transition state theory (TST). At those temperatures, TST predicts the rate constant at the same order of magnitude with the experimental result. It shows that the trend between calculation and experimental data is qualitatively in a good agreement, which implies that the designed pathway is justified. Furthermore, this study can be used as a guide if one needs to construct an isomerization pathway.

1. Introduction

An isomerization is the simplest chemical reaction. It involves only one molecule; hence, it is called a unimolecular reaction. Kinetically, it is a first-order reaction; consequently, the unit of its rate constant is $1 / \mathrm{sec}$ [1]. In most cases, isomerizations can occur in the gas phase and do not require a catalyst [2,3]. Even though it is simple, the mechanism of isomerization is not always straightforward. An isomerization commonly requires energy from the heat to begin. However, it not always the case, such as in isomerization of trans-HCOH to formaldehyde [4]. In this case, the isomerization occurs even without enough heat (at very low temperature, 11 K). The computational study revealed that the isomerization happens via quantum tunneling [5,6]. Therefore, experimental and computational studies are required to understand the isomerization mechanism.

One of the interesting isomerization to study computationally is cyclopropene to propyne. The reason is because this isomerization involves a $\mathrm{C}-\mathrm{C}$ cyclic bond breaking and a $\mathrm{C}-\mathrm{C}$ triple bond formation. The bond breaking and formation, in this case, hardly occur because of quantum tunneling, such as the case of trans- HCOH isomerization. Therefore, the isomerization is mostly due to the heat. Consequently,
there must be at least one vibrational mode that supports the bond breaking and formation to occur. Furthermore, this cyclopropene isomerization occurs in the gas phase and without catalyst [7]. It implies the isomerization is straightforward, but yet the mechanism is not necessarily simple.

2. Computational detail

2.1. Energy and structure calculations

We designed an isomerization pathway of cyclopropene to propyne as illustrated in the following scheme as shown in figure 1.

Figure 1. Initial and final states of cyclopropene isomerization in Kekule's structure.
We performed routine of ground state calculation [8] on initial and final structures. By tracking the vibrational mode, we predicted the transition state (TS) structure. For the TS structure, we applied TS optimization routine of calculation [8]. We constructed energy level diagram for all states based on density-functional calculations. We employed B3LYP as exchange-correlation functional and 6$311+G(d, p)$ as basis set that integrated in the Gaussian09 software.

2.2. Thermochemistry and chemical kinetics calculations

We calculated the standard enthalpy of reaction $\left(\Delta_{r} H^{\circ}\right)$ using the following formula,

$$
\begin{equation*}
\Delta_{r} H^{\circ}=H^{\circ}{ }_{T S}-\Delta G^{\circ}{ }_{I S} \tag{1}
\end{equation*}
$$

with IS and TS are the initial and the transition state, respectively. We calculated activation energy based on electronic energy $\left(E_{B}\right)$, transition state theory $\left(E_{a}\right)$ and Gibbs energy ($\Delta^{\ddagger} G^{\circ}$) using the following formula [1]

$$
\begin{gather*}
E_{B}=E_{T S}-E_{I S} \tag{2}\\
E_{a}=\Delta^{\ddagger} H^{\circ}+R T \tag{3}\\
\Delta^{\ddagger} G^{\circ}=\Delta G^{\circ}{ }_{T S}-\Delta G_{I S}^{\circ} . \tag{4}
\end{gather*}
$$

We also calculated pre-exponential factor (A) using transition state theory as follows [1]:

$$
\begin{equation*}
A=\frac{e k_{B} T}{h c^{\circ}} \exp \left[-\frac{\Delta^{\ddagger} S^{\circ}}{R}\right] \tag{5}
\end{equation*}
$$

The quantities in equation (1), (3), (4) and (5) are temperature dependence which calculated at room temperature. We performed the vibrational calculations at 500 K and 700 K to determine the rate constants which mathematically described as [1]

$$
\begin{equation*}
k(T)=\frac{k_{B} T}{h c^{\circ}} \exp \left[-\frac{\Delta^{\ddagger} G^{\circ}}{R T}\right] \tag{6}
\end{equation*}
$$

which k_{B}, h, R are the constant of Boltzman, Planck and molar gas. c° is the molecule's concentration from the reactant to the transition state (which assume to be 1) [1], and T is the temperature. Then, we compared all these calculation results with experimental data to justify the designed pathway.

3. Results and discussion

3.1. Isomerization pathway design

Figure 2 shows the designed isomerization pathway of cyclopropene to propyne. The isomerization involves $\mathrm{C}-\mathrm{C}$ cyclic bond breaking and a $\mathrm{C}-\mathrm{C}$ triple bond formation. We design our pathway by displacing a hydrogen atom (labeled with H^{\prime} in scheme 2, State A). The displaced H' to C1 causes the C-C cyclic bond between C 1 and C 3 is broken (State B). Then, the triple bond is formed (State C). Finally, the expected product in the final state is formed (State D).

Figure 2. The designed isomerization pathway of cyclopropene to propyne.

3.2. Ground and transition states

Table 1 presents the geometrical parameters from DFT calculations (Calc.) and experiment (Expr.) [9]. Delta (Δ) in Table 1 is the discrepancy between our calculation results and the experimental value. The values of Δ in table 1 are within the accuracy limit according to Young [10]. It implies the selected exchange-correlation and basis set B3LYP/6-311+G(d,p) are suitable to study ground state of the molecules of interest.

Table 1. The selected geometrical parameters of cyclopropene (initial state) and propyne (final state) [9].

State		Bond Length				Bond Angle		
		$\mathrm{C} 1-\mathrm{C} 2$	$\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 1-\mathrm{H}$	$\mathrm{C} 3-\mathrm{H}$	$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{H}$	$\mathrm{C}_{1} \mathrm{C}_{3} \mathrm{H}$	$\mathrm{HC}_{3} \mathrm{H}$
Initial	Calc.	1.510	1.291	1.091	1.076	149.8		113.7
	Expr.	1.505	1.293	1.085	1.072	150.0		114.3
	Δ	0.005	-0.002	0.006	0.004	-0.2		-0.6
	Calc.	1.457	1.202	1.094	1.062		110.9	
	Expr.	1.459	1.206	1.105	1.056		110.2	
	Δ	-0.002	-0.004	-0.011	0.006		0.7	

Table 2 resumes the comparison between the initial state and state A, which are the value of relative energy, E_{r}; selected vibrational frequency, v_{1}; geometrical parameters: bond length (R) and bond angle (A). Energetically, the initial state is more stable than state A , which is as expected. The v_{1} is the deduced as the one which triggers the isomerization as illustrated in figure 3.

Table 2. Some parameters of initial state and state A.

Parameter	Unit	IS	A
E_{r}	eV	0.00	1.50
v_{1}	$1 / \mathrm{s}$	781	-244
$R \mathrm{C} 1-\mathrm{C} 2$	\AA	1.510	1.873
$A \mathrm{C} 1 \mathrm{C} 2 \mathrm{H}^{\prime}$	\circ	149.8	71.9
$A \mathrm{C} 1 \mathrm{C} 2 \mathrm{C} 3$	\circ	64.7	50.4

The mode fulfills the requirement of our designed isomerization pathway (figure 2): the frequency decreases along the pathway and eventually becomes an imaginary number at state A. The imaginary frequency of State A indicates that structure in State A is close enough with the one in the transition state (TS). Therefore, the structure in State A is called as precursor geometry. The precursor geometry becomes our initial guess to do the TS optimization routine of calculation. Figure 4 illustrates the optimized TS geometry and the corresponding transition state.

Figure 3. The illustration motion of selected vibrational v_{1} of cyclopropene.

Figure 4. Optimized geometrical structure of transition state with $v_{1}=-9271 / \mathrm{s}$.

3.3. Energy level diagram

Figure 5 a and b show the energy level diagram (ELD) of the isomerization. Figure 5 a is based on electronic energy, while figure 5 b is after thermal corrections: enthalpy and Gibbs free energy. These ELDs give us three interesting facts: First, thermal corrections do not change the trend of ELD (there is one transition state which indicates a one-step reaction mechanism). Second, the negative value of $\Delta_{r} H^{\circ}$ indicates an exothermic reaction, which agrees with an experimental fact (expr. $=92.2 \mathrm{~kJ} / \mathrm{mol}$) [6]. Third, the comparison between E_{B}, TST $\left(E_{a}\right)$, and $\Delta^{\ddagger} G^{\circ}$, with experimental data ($E_{a \text { expr. }}=147 \mathrm{~kJ} / \mathrm{mol}$) shows that $\Delta^{\ddagger} G^{\circ}$ gives the most accurate prediction to the activation energy.

Figure 5. Energy level diagrams of the isomerization (a) based on electronic energy and (b) after thermal correction at room temperature (298.15K). The red and blue line in Figure 5(b) is for enthalpy (labeled with h) and Gibbs free energy (labeled with g), respectively. The value of $\Delta^{\ddagger} H^{\circ}$ plus $R T$ factor is $161 \mathrm{~kJ} / \mathrm{mol}$ (the activation energy, E_{a} based on TST).

3.4. Chemical kinetics quantities

Table 3 presented the kinetic quantities based on TST and experimental results [1]. The Δ is the discrepancy between our calculation results and the experimental value. The value of Δ shows that calculation based on TST gives a value that agrees with the experiment. However, the calculation does not give a good prediction for the natural logarithmic of the pre-exponential factor, $\ln (\mathrm{A})$. The prediction of A depends on the vibrational frequency: the higher bond order of $\mathrm{C}-\mathrm{C}$, the higher the error of the calculated C-C vibrational frequency [11]. In this case, the isomerization involves single C-C cyclic bond breaking and $\mathrm{C}-\mathrm{C}$ triple bond formation. Therefore, the error in the vibrational frequency calculations of the isomerization leads to error in the calculated $\ln (\mathrm{A})$.

Table 3. The values of Arrhenius parameter and rate constant from TST (Calc.) and experiment (Expr.) [1].

Reac. Quantities	Unit	Expr.	Calc.	Δ
E_{a}	$\mathrm{kJ} / \mathrm{mol}$	147	161	14
$\ln (\mathrm{~A})$	$1 / \mathrm{s}$	27.9	30.7	2.8
$k(500 \mathrm{~K})$	$1 / \mathrm{s}$	$5.67 \mathrm{E}-04$	$6.98 \mathrm{E}-04$	same order
$k(700 \mathrm{~K})$	$1 / \mathrm{s}$	$1.35 \mathrm{E}+01$	$4.49 \mathrm{E}+01$	same order

Table 3 shows that the calculated rate constants are in the same order of magnitude with the experimental data. It indicates that the obtained TS geometry, and consequently our designed isomerization pathways (scheme 2) are correct. Also, v_{1} is the vibrational frequency that initiates the isomerization. Accordingly, we have successfully explained the mechanism of isomerization via vibrational movement. Furthermore, this study can be used as a guide if one needs to construct an isomerization pathway.

4. Conclusion

We have successfully justified the constructed isomerization pathway of cyclopropene to propyne based on vibrational calculations. We calculated activation energy in terms of E_{B}, E_{a} (based on TST), and $\Delta^{\ddagger} G^{\circ}$, with $\Delta^{\ddagger} G^{\circ}$ as the most accurate one. Furthermore, the comparison between the calculated rate constants is in the same order of magnitude with experimental data $\left(\sim 10^{-4} 1 / \mathrm{s}\right.$ at 500 K and $\sim 10^{1} 1 / \mathrm{s}$ at 700 K). It implies that the constructed pathway is the correct mechanism of cyclopropene to propyne isomerization. Finally, this study can be used as a guide if one needs to construct an isomerization pathway based on vibrational calculation.

Acknowledgements

The authors thank to Rizka Nur Fadilla and Nufida Dwi Aisyah (Research Center for Quantum Engineering Design, Universitas Airlangga, Indonesia) for their insight and valuable discussions. This research is funded by Research and Innovation Institute, Universitas Airlangga through Riset Kolaborasi Mitra Luar Negeri Universitas Airlangga 2019.

References

[1] McQuarrie D A and Simon J D 1997 Physical Chemistry: A Molecular Approach (California: University Science Books)
[2] Kumaran S S, Lim K P, Michael J V, Tilson J L, Suslensky A and Lifshitz A 1996 Isr J Chem 36 223
[3] Schneider F W and Rabinovitch B S 1962 J Am Chem Soc 844215
[4] Schreiner P R, Resienauer H P, Pickard F C IV, Simmonett A C, Allen W D, Mátyus E and Császár A G 2008 Nature 453906
[5] Fadilla R N, Aisyah N D, Dipojono H K and Rusydi F 2017 Procedia Eng. 170113
[6] Aisyah N D, Fadilla R N, Dipojono H K and Rusydi F 2017 Procedia Eng. 170119
[7] Karni M, Oref I, Barzilai-Gilboa S and Lifshitz A 1988 J Phys Chem A 92(24) 69249
[8] Foresman J B and Frisch A 1995-96 Exploring Chemistry with Electronic Structure Methods (Pittsburgh PA: Gaussian Inc.)
[9] Haynes W M 2015 CRC Handbook of Chemistry and Physics (California: CRS Press)
[10] Young D C 2001 Computational Chemistry: A Practical Guide for Applying Techniques to RealWorld Problems (Third Avenue, New York: John Wiley \& Sons)
[11] Jaramillo J and Scuseria G E 1999 Chem Phys Lett 312269

PAPER • OPEN ACCESS

Editorial Board

To cite this article: 2017 J. Phys.: Conf. Ser. 817011002

Related content

2nd International Symposium on Frontier of Applied Physics (ISFAP 2016)

- International Symposium on Banda Sea Ecosystem (ISBSE) 2017
- Editorial board

View the article online for updates and enhancements.

IOP ebooks"

Bringing together innovative digital publishing with leading authors from the global scientific community.

Start exploring the collection-download the first chapter of every title for free.

Editorial Board

Chief Editor

Febty Febriani (febty.febriani@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong,
Tangerang Selatan 15314,
Indonesia

Keisuke Takahashi (Keisuke.takahashi@eng.hokudai.ac.jp)
 Hokkaido University
 Graduate School of Engineering
 North 13, West 8
 Sapporo, 060-8628
 Japan

Peng Han (hanpeng407@gmail.com)
Institute of Statistical Mathematics
Risk Analysis Research Center (Statistical Seismological Research Project)
10-3 Midori-cho, Tachikawa
Tokyo 190-8562
Japan
Siwei Chen (chen-sw@criepi.denken.or.jp)
Central Research Institute of Electric Power Industry
Materials Science Research Laboratory
2-11-1 Iwadokita, Komae-shi
Tokyo 201-8511
Japan
Xinhong Qiu (qxinhong@gmail.com)
Wuhan Institute of Technology
School of chemistry environmental engineering
No.693, Xiongchu Avenue, Hongshan District Wuhan, Hubei Province, P.R.
China

Mohsen Farahat (mohsen105@hotmail.com)
Central Metallurgical Research and Development Institute (CMRDI)
Mineral Processing and Agglomeration
P.O. Box 87 Helwan, Cairo

Egypt
Young-Ho Ko (yhko@etri.re.kr)
Electronic and Telecommunications Research Institute (ETRI)
Photonic/Wireless Convergence Components Research Department
218 Gajeong-ro, Yuseong-gu, Daejeon, 34129
Korea

Eni Sugiarti (eni.sugiarti@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong,
Tangerang Selatan 15314,
Indonesia
Titi Anggono (titi.anggono@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong,
Tangerang Selatan 15314, Indonesia

Isnaeni (isnaeni@lipi.go.id) Indonesian Institute of Sciences (LIPI) Research Center for Physics Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Yuliati Herbani (yuliati.herbani@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Ferensa Oemry (ferensa.oemry@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Hubby Izzuddin (hubby.izzuddin@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Widi Astuti (widi.astuti@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research and Development Division for Mineral Technology
Jl. Ir Sutami Km. 15 Tanjung Bintang, Lampung Selatan
Lampung. 35361
Indonesia
Wahyu Bambang Widayatno (wahyu.bambang.widayatno@lipi.go.id) Indonesian Institute of Sciences (LIPI)

Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Deni Shidqi Khaerudini (deni.shidqi.khaerudini@lipi.go.id) Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Kirana Yuniati Putri (kirana.yuniati.putri@lipi.go.id) Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Fredina Destyorini (fredina.destyorini@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Nurfina Yudasari (nurfina.yudasari@lipi.go.id) Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Qolby Sabrina (qolby.sabrina@lipi.go.id)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong,
Tangerang Selatan 15314, Indonesia

Risma Sundawa (risma.sundawa@gmail.com)
Indonesian Institute of Sciences (LIPI)
Research Center for Physics
Komplek PUSPIPTEK Serpong, Tangerang Selatan 15314, Indonesia

Journal of Physics: Conference Series 〕

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United Kingdom	Physics and Astronomy Physics and Astronomy (miscellaneous)	IOP Publishin	
Universities and research institutions in United Kingdom		g Ltd.	
	$\leftarrow \quad$ Ads by Google		
	Stop seeing this ad		
	Why this ad? (i)		

PUBLICATION TYPE

Conferences and Proceedings
17426588, 17426596
2005-
2020

INFORMATION

Homepage

How to
publish in
this journal
jpcs@ioppub
lishing.org

SCOPE

The open access Journal of Physics: Conference Series (JPCS) provides a fast, versatile and cost-effective proceedings publication service.

External Cites per Doc Cites per Doc会

Journal of Physics: Conference Series	Show this widget in your own website
Not yet assigned quartile	Just copy the code below and paste within your html code:
SJR 2019	<a href="https://www.scimas O.23

Table of contents

Volume 1568
2020
4 Previous issue Next issue＊
4th－Padjadjaran International Physics Symposium 2019 （4th－PIPS－2019）13－14 November 2019，Bandung， West Jawa，Indonesia

Accepted papers received： 22 May 2020
Published online： 03 July 2020

Open all abstracts

Preface

OPEN ACCESS

Preface
＋Open abstractView article
戌 PDF

OPEN ACCESS
Peer review statement
＋Open abstract
興 PDF

Computational and Modelling

OPEN ACCESS

Justification on cyclopropene to propyne isomerization pathway based on vibrational calculations R Madinah，F Rusydi，L S P Boli，V Khoirunisa，M Z Fahmi and A H Zaidan
＋Open abstractView article
（4．PDF

OPEN ACCESS
The experimental quest on dimension and material of microsphere for photonic jet microscopy
A Abdurrochman，E Septianingsih，I F Amatillah，B S Susedy，N C Khairunissa and L Safriani

+ Open abstract 国 View article PDF

OPEN ACCESS
A first－principles study on the quantum tunneling of methylhydroxycarbene isomerization in various solvents

E D Susanti，F Rusydi，I Puspitasari，R N Fadilla，N D Aisyah and A Ahmad
＋Open abstract 国 View article 四 PDF
 andaCysisiesfaplidesired event that leads to the initiation of early warning system of Kartini reactor

S Syarip and Muhtadan
＋Open abstract
View article
PDF

OPEN ACCESS
Effects of Boron Nitride on the optical properties of Silicene：density functional theory calculations
M A Pamungkas，A E Ghozali and Abdurrouf
＋Open abstractView article
PDF

Instrumentation and Electronics

OPEN ACCESS

Development of precision pump and high voltage DC－regulator for electrospinning apparatus：
experimental test with preparation of PVA microfiber
F Faizal，A M Al－Fikri，A Abdurrochman，I M Joni and C Panatarani
＋Open abstract 国 View article PDF

OPEN ACCESS
Determination of generated ultrasonic wave characteristics by a bipolar square burst excitation
D Hidayat，N Suhendi Syafei，Emiliano，N Rohadi，Setianto and B M Wibawa
＋Open abstractView article
明 PDF

OPEN ACCESS

012008
The difference between several methods of sound power level for determining the sound energy emitted by a sound source

B Purwanto，M Sabrina and D Rusjadi
＋Open abstract 国 View article PDF

OPEN ACCESS

The traceability of acoustics measurement in Indonesia nowadays
D Rusjadi，C C Putri，M R Palupi，B Dwisetyo，F B Utomo and N R Prasasti
＋Open abstract
国 View article
四 PDF

OPEN ACCESS
012010
Simple measurement instrument of moisture content for Indonesia coffee powder based on capacitive sensor

D A Firmansyah，B J Negara，Y Maulana，V Firmansyah and E Juliastuti
＋Open abstract
View article
咀 PDF

OPEN ACCESS
012011
Gamma ray dosimeter using Ag－Tragacanth gel
M Astuti and Cuk Imawan

+ Open abstract 国 View article 回 PDF

This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy

Measurement optimization of high accuracy check master based on interferometry method in National
Standardization Agency of Indonesia：a preliminary study for measuring range of 10 mm to 400 mm
O Novyanto and N Alfiyati
＋Open abstract 国 View article PDF

Energy

OPEN ACCESS

012013
Comparative study of conceptual design of gas－cooled fast reactor core type tall versus pan cake based on MCANDLE－B burn up strategy

F Monado，M Ariani，I Royani and Z Su＇ud
＋Open abstractView article
PDF

OPEN ACCESS

Testing of a three－stage looped－tube thermoacoustic sound generator
I Setiawan，A B S Utomo and Mitrayana
＋Open abstract 国 View article 因 PDF

OPEN ACCESS

Optimized core design for small long－life gas cooled fast reactors with natural uranium－thorium－ blend as fuel cycle input

M Ariani，Supardi，A Johan，F Monado，Z Su＇ud and H Sekimoto
＋Open abstract 国 View article 国 PDF

OPEN ACCESS

Gravitational water vortex pico hydro power modeling for aquaculture implementation
D W Maulana，F M Rizwan，C Mulyana，F Faizal，C Panatarani and I M Joni
＋Open abstract 国 View article PDF

OPEN ACCESS

Study on performance characteristics of thermoelectric generator string
N A Mahardiono，T Haiyunnisa，R W Firmansyah and I Purnama
＋Open abstract 国 View article 国 PDF

OPEN ACCESS
Analysis of Mo－99 production as function of CAMOLYP reactor power
D Bartolomeus and S Syarip
＋Open abstract
View article
風 PDF

Biophysics

Phantom design for analysis of CT image quality from Single－source and Dual－source CT scan
Khis site uses coakies Bin，Gentinuing to to se thisjite you agree to our use of cookies．To find out more，see our Privacy and Cookies policy．
興 PDF

OPEN ACCESS
Acoustic parameters used in dental hypnosis practices
G Yubiliana，A Abdurrochman，A Hamdani，L Luthfiah and R S Primarti
＋Open abstract 国 View article PDF

OPEN ACCESS

The effect of bioprocess product of coconut husk on the stability of ration water，durability and floatability of fish feed

K Haetami，Abun and Junianto

+ Open abstract 国 View article 気 PDF

OPEN ACCESS
012022
Distribution dose profile of Computed Tomography（CT）along the z －axis with pitch variation：in－ house phantom study

Marwazi，I Lestariningsih，Nurlely and D S Soejoko
＋Open abstractView article
PDF

OPEN ACCESS
012023
Designing phantom in－house for quick check computed radiography（CR）and digital radiography （DR）system

R Muharam，I Lestariningsih，Nurlely and D S Soejoko
＋Open abstractView article
閊 PDF

Geophysics

OPEN ACCESS

012024
Spatial distribution and diurnal characteristics of rainfall in South Sumatra and surrounding areas based on Tropical Rainfall Measuring Mission（TRMM）data

O C Satya，M Arsali，A K Affandi and P M Mandailing

+ Open abstract 国 View article 風 PDF

OPEN ACCESS
Source mechanism identification using regional waveform inversion approach，case study：July 7，
2019 Molucca Sea earthquake
A D Prasetio，T Anggono，Syuhada，F Febriani，C N Dewi，B Soedjatmiko and A Amran

+ Open abstract 国 View article PDF

OPEN ACCESS

Study of passive seismic tomography with various grid by using Matlab
I R Palupi，W Raharjo and G Yulianto
＋Open abstract 国 View article PDF
This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy

The ULF geomagnetic anomalous signal associated with Nias earthquake M5．3 North Sumatra Indonesia on September 6， 2018
C N Dewi，F Febriani，T Anggono，Syuhada，B Soedjatmiko，A D Prasetio and S Ahadi
＋Open abstract
View article
PDF

OPEN ACCESS
Study of groundwater level and its correlation to soil moisture on peatlands in South Sumatra
M Irfan，N Kurniawati，M Ariani，A Sulaiman and I Iskandar
＋Open abstractView article
PDF

OPEN ACCESS

Variation of thermodynamic layers over the South Coastal Java Region（SJCR）and their influences on nutrient abundance

N Kurniawati，D O Lestari，Fauziyah，D Setiabudidaya and I Iskandar
＋Open abstract 国 View article PDF

OPEN ACCESS

Crustal structure beneath Simeulue Island，Indonesia：Preliminary study from a joint inversion of receiver function and surface wave dispersion
T Anggono，Syuhada，F Febriani，A Amran，B Soedjatmiko，A D Prasetio and C N Dewi
＋Open abstract 圁 View article 四 PDF

OPEN ACCESS
Subduction modelling by Tomography inversion around Lombok
I R Palupi，W Raharjo and O D Alfiani
＋Open abstract \qquad凬 PDF

OPEN ACCESS
012032
Analysis of overburden and interburden layer to predict acid mine drainage by use of Geo－
Penetrating Radar Investigation
S Siti，Erni，V Frinsyah，I Eddy，S Dedi and H M Faizal

+ Open abstract 国 View article 禺 PDF

JOURNAL LINKS

Journal home
Journal Scope
Information for organizers
Information for authors
Contact us
Reprint services from Curran Associates

This site uses cookies．By continuing to use this site you agree to our use of cookies．To find out more，see our Privacy and Cookies policy．

