Fiber bundle sensor for detection of formaldehyde concentration in fish

by Miratul Khasanah

Submission date: 23-Nov-2022 01:19PM (UTC+0800)

Submission ID: 1961835100

File name: e_sensor_for_detection_of_formaldehyde_concentration_in_fish.pdf (1.3M)

Word count: 2480

Character count: 13720

Contents lists available at ScienceDirect

Optical Fiber Technology

journal homepage: www.elsevier.com/locate/yofte

Fiber bundle sensor for detection of formaldehyde concentration in fish

M. Yasin^{a,*}, N. Irawati^a, A.H. Zaidan^a, Kismiyati^b, A.T. Mukti^b, A. Soegianto^c, D.K.P. Rosalia^d, R.A. Wardani^d, M. Khasanah^e, H.J. Kbashi^f, A.M. Perego^{f,*}

- Department of Physics, Faculty of Science and Technology, University of Airlangga, Surabaya 60115, Indonesia
- b Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, University of Airlangga, Surabaya 60115, Indonesia Department of Biology, Faculty of Science and Technology, University of Airlangga, Surabaya 60115, Indonesia
- d Fisheries and Marine Biotechnology, Faculty of Fisheries and Marine, University of Airlangga, Surabaya, Indonesia
- ^cDepartment of Chemistry, Faculty of Science and Technology, University of Airlangga, Surabaya 60115, Indonesia
- f Aston Institute of Photonics Technologies, Aston University, Aston Triangle B4 7ET Birmingham, UK

We experimentally demonstrate an optical fiber bundle based sensor for measuring formaldehyde concentration in fish. We show that when contaminated fish samples are shined with red laser light with about 630 nm wavelength, the intensity of the backscattered radiation increases linearly with respect to the formaldehyde concentration. Our sensor has a simple architecture, it exhibits good sensitivity, linearity and stability and it has been tested for formaldehyde concentrations ranging from 3% to 21%. Our sensor allows non-destructive, on-site measurements and will have applications towards the development of all-optical cheap and portable sensors for detection of pollutants and toxic chemicals in the food industry and in the agriculture sector, being potentially suitable for measurements in the field.

1. Introduction

Detection of pollutants and of substances which are noxious for human health, both naturally present and surreptitiously added in the food production and supply chain, will be a major trend in optical sensing engineering in the present century. The demand for more sensitive, precise and selective sensors is motivated both by the scientific and technological challenge and by the increasingly higher standards in health and safety set by governmental policies for their citizens welfare. Especially in developing countries where quality and safety controls are currently looser, the risks of people contamination, with potentially deadly consequences, is higher and hence more efficient and practical techniques are required.

One of the current social problems related to food safety in developing countries (such as Malaysia, Indonesia, Thailand, Bangladesh to name just a few) is indeed the addition of formalin to the most various kinds of food including meat, fish and milk. Formalin is a solution of formaldehyde in water. Formaldehyde is a chemical substance tremendously noxious for human health being the cause of a variety of illnesses including different forms of cancer and leukemia [1,2]. It preserves the apparent look of food samples making them look healthy and fresh even when they are not any more so. For this reason, rogue traders use formalin to illegally sell rotten food, causing a two-fold damage to people: the eating of rotten food itself and the ingestion of the highly noxious formaldehyde.

While sensing of formaldehyde in the gaseous state, released from some construction materials for instance, has been studied quite extensively both using electronics and photonics based sensing platforms [3-5], the research on sensing of formaldehyde in food is much less developed. In such research area, while chemical methods based on chromatography [6,7] and mass spectroscopy [8] are accurate, they require sample treatment and long time measurements which should be performed in dedicated labs; photonics, potentially opens room for cheaper and portable sensing platforms with applications for measurements in the field.

Besides works on opto-chemical sensing [9-11], some recent experiments have demonstrated the possibility of detecting formaldehyde and measuring its concentration in liquids exploiting the emission of fluorescence [12-14] or based on Raman spectroscopy, especially surface enhanced Raman scattering enabled by metallic nanoparticles [15–18]. In an alternative approach, attenuated total internal reflection in bent plastic optical fibers has been used to measure concentration of formaldehyde in milk [19].

We present here experimental results obtained with a fiber bundle sensor, about the optical non-destructive, on-site measurement of formaldehyde concentration in fish using a very simple detection scheme based on collecting the intensity of laser light reflected from the food sample, fish in our particular study, contaminated by formaldehyde.

E-mail addresses: yasin@fst.unair.ac.id (M. Yasin), a.perego1@aston.ac.uk (A.M. Perego).

https://doi.org/10.1016/j.yofte.2019.101984

Received 21 June 2019; Received in revised form 11 July 2019; Accepted 19 July 2019 1068-5200/ © 2019 Elsevier Inc. All rights reserved.

Corresponding authors.

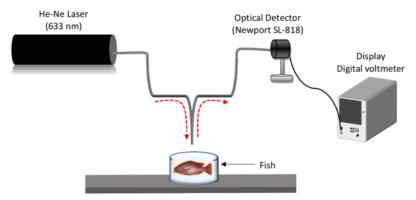


Fig. 1. Experimental setup.

2. Experimental setup

We used a Helium-Neon laser emitting in the visible at 633 nm to illuminate a fish sample through a 2 ports fiber bundle probe; the intensity of the light reflected from the fish was collected through the second port of the fiber bundle probe and measured by a Newport SL-818 optical detector connected to a digital voltmeter. The fiber bundle probe was attached to a support with micrometric movement, which allowed to finely control the distance between the probe and the sample. A schematic of the experimental setup is shown in Fig. 1.

3. Results

We have tested our sensor on two different kinds of fish popular in Indonesia: the snapper and the gouramis fish.

For each kind of fish we have immersed one entire fish in formalin for 1 h and then measured the output voltage of the detector by varying the distance of the fiber bundle probe from the fish, from 0 to 1 mm in steps of 50 μm . We have repeated the procedure for 8 different concentrations of formaldehyde in water ranging from 0% to 21% in steps of 3% (for each specie 8 different fish samples have been used, one for each formaldehyde concentration). We observed that the detector output voltage increased proportionally to the formaldehyde concentration due to an enhanced backscattering caused by formaldehyde.

As one could expect, the voltage response decreases instead with

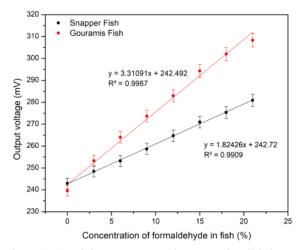


Fig. 3. Linearity of the sensor: output voltage versus formaldehyde concentration at zero probe-sample displacement for both snapper and gouramis fish (see legend). Dots represent averages over 10 different realizations of the experiment, while error bars represent the corresponding standard deviations. Results of linear fits are reported close the respective data sets.

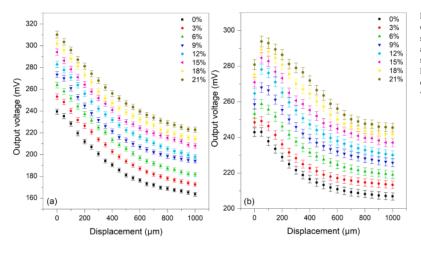


Fig. 2. The sensor output voltage is plotted versus the displacement between fiber bundle probe and fish sample for the snapper fish in (a) and for the gouramis fish in (b). Note that 0 displacement corresponds to the probe being in touch with the sample. Dots represent average over 10 realizations of the experiment, while error bars represent standard deviations.

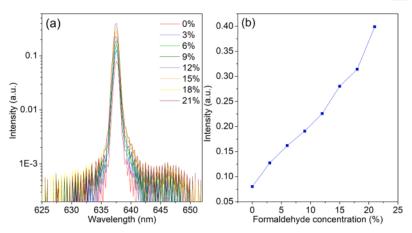


Fig. 4. The reflected light spectrum for various formaldehyde concentrations (see legend) exhibits an increase of the peak for higher concentrations (a). In (b) the intensity at the peak of the spectrum for various concentrations is plotted, the continuous line represents a guide for the eyes. The y-axes are in arbitrary units.

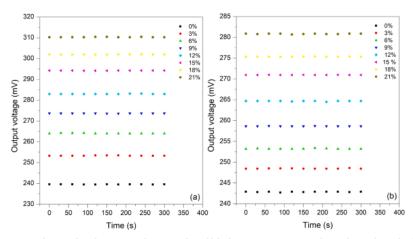


Fig. 5. Sensor stability: the output voltage is plotted versus time for various formaldehyde concentrations, in (a) the results are shown for the snapper while in (b) for the gouramis fish. The results are taken at zero probe-sample displacement.

increasing the distance between the fiber bundle probe and the sample, at fixed formaldehyde concentration, since more photons get lost through scattering on the fish surface (on the scales) when the probe is distant from the fish itself. This suggests that controlling the probesample distance is crucial for consistently comparing measurements of different concentrations. The detector output voltage has been shown for both snapper (Fig. 2(a)) and gouramis fish (Fig. 2(b)) by varying formaldehyde concentrations and probe-sample displacement.

The sensor response is linear with respect to the formaldehyde concentration for both fish samples tested, although the response for different fishes follows different slopes, this is possibly due to different constitution of the two fishes skins. The results are summarized in Fig. 3 where the detector voltage is plotted versus concentration for both fishes at zero displacement of the probe with respect to the sample.

We believe that the increase of reflected optical power for increasing formaldehyde concentration is due to a reduced absorption of red light by the water present in the formalin solution. Indeed increasing formaldehyde concentration in the formalin solution is associated to a decrease of water concentration in the solution itself with a consequent reduction of the absorption.

For consistency, we performed further measurements in order to confirm that the increased concentration of formaldehyde in the formalin solution is indeed responsible for stronger reflection in general and hence to validate the general working principle of our sensor.

We put formalin solution in a transparent glass cuvette and shined the cuvette with a red laser emitting around 637 nm. We measured the spectrum of the reflected radiation for various formaldehyde concentrations by using a Thorlabs CCS200 - Compact Spectrometer with $< 2\,\mathrm{nm}$ spectral accuracy. By keeping the laser emission power fixed, we indeed observed that more light was reflected for higher formaldehyde concentration. The results of the spectral measurements for various formaldehyde concentrations are plotted in Fig. 4. These findings supports the results shown in Fig. 2.

Our sensor also proves to be very stable. The sensor stability for various formaldehyde concentrations is illustrated in Fig. 5 where we show how the sensor output voltage is stationary in time at fixed concentration.

Table 1 Summary of the sensor features.

Sensor feature	Snapper fish	Gouramis fish
Sensitivity (mV/%concentration)	1.82	3.31
Linearity (%)	99.89	99.87
Tested range (%)	3-21	3-21
Resolution (%)	0.036	0.031

The sensor features including sensitivity, linearity dynamic range and resolution (defined as the standard deviation of the output voltage variation in time, as depicted in Fig. 5, divided by the sensitivity) are summarized in the following Table 1.

We have furthermore verified that moving the target fish in the x-y plane, at fixed distance from the fiber bundle probe, does not affect the sensor response.

4. Conclusions

In conclusion, we have proposed a novel fiber bundle based sensor to measure the concentration of formaldehyde in fish measuring the reflection of laser light. We observed that the intensity of reflected light increases proportionally to the formaldehyde concentration. The sensor is very stable and responds linearly to the formaldehyde concentration present on the fish surface. Our sensing technique is simple, low cost, it could be applied to detect, in a non invasive and non destructive way, formaldehyde concentration in different food samples, including milk and meat for instance, and it has furthermore the potential to be developed in the future towards a portable device suitable for applications in the field. Future works will include the study of the sensor performances depending on the laser wavelength and also its development towards selectivity in order to identify formaldehyde even in presence of other additional chemicals.

Acknowledgments

The authors acknowledge Prof. S. K. Turitsyn, Dr. A. Gbadebo and Dr. V. Dvoyrin for discussion and support. This work was supported in part by the British Council through Newton-Fund project No. 62292, in part by the Indonesian Government (Fundamental Research Grant, 2019) and by Tahir Professorship Program of the University of Airlangga.

References

- Report of the European Chemicals Agency: https://echa.europa.eu/documents/ 10162/13641/annex_xv_report_formaldehyde_en.pdf/58be2f0a-7ca7-264d-a594 da5051a1c74b.
- [2] Report of the United States Environmental Protection Agency: https://www.epa.

- gov/sites/production/files/2016-09/documents/formaldehyde.pdf.
- [3] T. Salthammer, S. Mentese, R. Marutzky, Formaldehyde in the indoor environment, Chem. Rev. 110 (2010) 2536–2572.
- [4] Po-Ren Chung, Chun-Ta Tzeng, Ming-Tsun Ke, Chia-Yen Lee, Formaldehyde gas sensors: a review, Sensors 13 (2013) 4468–4484.
- [5] A. Alloucha, M. Guglielminoa, P. Bernhardta, C.A. Serrab, S. Le Calvéa, Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection, Sens. Actuat. B 181 (2013) 551–558.
- [6] T. Yeh, T. Lin, C. Chen, H. Wen, Analysis of free and bound formaldehyde in squid and squid products by gas chromatography and mass spectrometry, J. Food Drug Anal. 21 (2013) 190–197.
- [7] P. Wahed, Md.A. Razzaq, S. Dharmapuri, M. Corrales, Determination of formaldehyde in food and feed by an in-house validated HPLC method, Food Chem. 202 (2016) 476–483.
- [8] A. De Souza et al., Use of mass spectrometry for the determination of formaldehyde in samples potentially toxic to humans: a brief review, in Mass Spectrometry, M. Aliofkhazraei Editor, IntechOpen, Jun. 2017, ch. 9, pp. 978, Available: https:// www.intechopen.com/books/mass-spectrometry.
- [9] U.S. Aksath, L.S. Selvakumar, M.S. Thakur, Detection of formaldehyde in food samples by enhanced chemiluminescence, Anal. Methods 4 (2012) 699–704.
 [10] O. Bunkoeda, F. Davisc, P. Kanatharanaa, P. Thavarungkula, S.P.J. Higsonc, Sol-gel
- [10] O. Bunkoeda, F. Davisc, P. Kanatharanaa, P. Thavarungkula, S.P.J. Higsonc, Sol-ge based sensor for selective formaldehyde determination, Anal. Chim. Acta 659 (2010) 251–257.
- [11] A.A. Gani, M. Yuwono, B. Kuswandi, Development of optical chemical sensor based on pararosaniline in sol-gel matrix for detection of formaldehyde in food samples, Am. J. Anal. Chem. 4 (2013) 661–667.
- [12] K. Wong, J. Deng, X. Wei, S. Shao, D. Xiang, M. Wong, Visual detection of for-maldehyde by highly selective fluorophore labeling via gold(III) complex-mediated three-component coupling reaction, Org. Biomol. Chem. 13 (2015) 7408–7411.
- [13] A. Bi, S. Yang, M. Liu, X. Wang, W. Liaob, Fluorescent probes and materials for detecting formaldehyde: from laboratory to indoor for environmental and health monitoring, RSC Adv. 7 (2017) 36421–36432.
- [14] W. Zhoua, H. Dongb, H. Yana, C. Shia, M. Yua, L. Weia, Z. Lia, HCHO-reactive molecule with dual-emission-enhancement property for quantitatively detecting HCHO in near 100% water solution, Sens. Actuat. B 209 (2015) 664–669.
- [15] W. Qu, L. Lu, L. Lin, A. Xu, A silver nanoparticle based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde, Nanoscale 4 (2012) 7358–7361.
- [16] P. Ma, F. Liang, D. Wang, Q. Yang, Y. Ding, Y. Yu, D. Gao, D. Song, X. Wang, Ultrasensitive determination of formaldehyde in environmental waters and food samples after derivatization and using silver nanoparticle assisted SERS, Microchim. Acta 182 (2015) 863–869.
- [17] V. Fauzia, N.C. Imawan, N.M.S. Narayani, A.E. Putri, A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection, Sens. Actuat. B 257 (2018) 1128–1133.
- [18] Z. Zhang, C. Zhao, Y. Ma, G. Li, Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy, Analyst 139 (2014) 3614–3621.
- [19] G. Saracoglu, S.E. Hayber, Bent fiber sensor for preservative detection in milk, Sensors 16 (2016) 2094.

Fiber bundle sensor for detection of formaldehyde concentration in fish

ORIGINALITY REPORT STUDENT PAPERS **PUBLICATIONS** SIMILARITY INDEX **INTERNET SOURCES PRIMARY SOURCES** research.aston.ac.uk Internet Source coek.info Internet Source M. Yasin, N. Irawati, S.W. Harun, Khasanah, F. Ahmad. "NaNO3 sensing based on microfiber coated with multi-walled carbon nanotubes", Optik, 2019 **Publication** repository.lppm.unila.ac.id Internet Source Meida, Suyud Warno Utomo, Mufti Petala 0% 5 Patria. "Analysis of natural formaldehyde formation on several types of marine fish circulating in Jakarta", E3S Web of Conferences, 2020 Publication Ganesan Krishnan, Muhammad Safwan Abd 6

Aziz, Mundzir Abdullah, Sulaiman Wadi Harun.

"Concentration measurement of opaque dye solution using a non-contact fiber displacement sensor", Optical Fiber Technology, 2021

Publication

eprints.utem.edu.my

1 %

Shailendra Kr. Singh, Uttam Kr. Samanta, Anirban Dhar, Mrinmay Pal, Mukul Chandra Paul. "Preparation of Bi - Doped ZnO Thin Film over Optical Fiber and Their Application as Detection of Ethylenediamine in an Aqueous Medium based on the Evanescent Field Technique", physica status solidi (a), 2020

Publication

9

erepo.uef.fi

<1

Exclude quotes Off
Exclude bibliography On

Exclude matches

Off

Fiber bundle sensor for detection of formaldehyde concentration in fish

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
, •	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	