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L E T T E R  T O  T H E  E D I T O R

Resistance or pitfall in heparin monitoring: An ongoing issue in 
COVID-19 anticoagulation
Dear Editor,

We read with great interest the recent article by Novelli and col-
leagues describing the presence of heparin resistance in COVID-19 
patients in the intensive care unit (ICU).1 Current evidence demon-
strates that COVID-19 patients are at high risk for thrombosis, even 
those receiving standard or intensified thromboprophylaxis doses 
with low molecular weight heparin (LMWH) or unfractionated hep-
arin (UFH).2 Novelli et al.1 mentioned that about 75.7% of patients 
(28/37 patients) receiving UFH/LMWH might be considered as 
heparin resistant, and 51.3% experienced thromboembolic events, 
suggesting prophylactic heparin insufficiently downregulates 
coagulation.

In the intensive care unit (ICU), heparin resistance is expected, 
particularly in critically ill patients with more severe systemic inflam-
mation. A previous study by White et al. also demonstrated failure 
to achieve therapeutic anticoagulation levels as measured by APTT 
or anti-Xa assays in COVID-19 ICU patients. They showed that resis-
tance to therapeutic UFH occurred in 8 out of 10 patients and that 
peak anti-Xa peaks were suboptimal in 5 out of 7 patients receiving 
therapeutic LMWH.3 Novelli et al.1 and White et al.3 have offered 
some possible insights into why the high failure rate of thrombopro-
phylaxis is seen in COVID-19 when standard thromboprophylactic 
doses are used.4

Heparin resistance is generally defined as high doses of UFH 
greater than 35 000 IU/day required to achieve anticoagulation.5,6 
A weight-based definition of resistance (IU/kg/hr) may be more ap-
propriate; however, the consensus is lacking. A study by Weeks et al. 
defined resistance as requiring ≥21  IU/kg/hr of heparin.7 Because 
similar criteria were also lacking for LMWH, Novelli et al. have ar-
bitrarily defined LMWH resistance as not achieving the expected 
anti-Xa range.1 Heparin resistance is a concern when a hefty dose of 
heparin is required to elicit a subtherapeutic or inadequate response. 
In this condition, the question of true resistance versus pseudo-
resistance becomes relevant to be discussed. Identifying heparin 
resistance can be challenging to physicians, primarily because of its 
common use in acute or intensive care settings.

In COVID-19, acquired AT deficiency is rare but can occur in some 
patients, even those not critically ill.8 Novelli et al. showed that all 
patients had mean AT levels 83±17% (reference range: 80%–120%), 
and no AT supplements were administered.1 High levels of heparin-
binding proteins associated with acute-phase reactions tend to be 
typical in COVID-19 patients.8 COVID-19 patients also have high 
FVIII and FIB, artificially lowering the APTT level, so some pseudo-
resistance might be expected.3,9 In vitro studies using blood from 

COVID-19 patients showed that the addition of heparin resulted in 
lower than expected anti-Xa activity.3 This supports the presence of 
low heparin concentration due to acute-phase proteins. Increased 
UFH clearance associated with the inflammatory state again con-
firms the resistance.

Two different strategies are commonly used to monitor the 
therapeutic effects of UFH: APTT and anti-Xa assay. APTT is usu-
ally performed for UFH monitoring because it is a widely available 
and inexpensive parameter. Despite that, the laboratory method 
used in evaluating the APTT greatly influences the therapeutic range 
because of the significant reagent-to-reagent variability.10 Several 
guidelines recommend that each institution define its own APTT 
therapeutic range (corresponding to 0.3–0.7  IU/ml anti-Xa) used in 
the laboratory rather than a usual fixed APTT therapeutic range 1.5–
2.5 times control.10 APTT can also be affected by increased FVIII or 
FIB levels, causing pseudo heparin resistance. Conversely, monitoring 
heparin using anti-Xa takes advantage of a narrower reagent variabil-
ity and was not affected by FVIII or FIB.10,11 The overall superiority 
of anti-Xa over APTT in monitoring heparin therapy is controversial; 
however, the current evidence signifies better anti-Xa reliability for 
clinical monitoring of critically ill patients.11 Lawlor et al. showed 
APTT potentially underestimate heparin activity in COVID-19 pa-
tients receiving UFH compared with anti-Xa, and APTT alone may be 
an unreliable measure of heparin activity.12 In addition, anti-Xa assay 
is a reliable determinant of blood LMWH concentrations, especially 
in particular populations, such as severe obesity or renal failure pa-
tients, where dose-finding studies have not been carried out.10

Consistent with previous results, Novelli et al. demonstrated 
anti-Xa was a more potentially reliable method in heparin monitor-
ing than APTT in acute COVID-19 patients. Anti-Xa was insensitive 
to increase levels of FIB, FVIII, and Lupus anticoagulant (LAC) that 
are common during inflammatory state of COVID-19.1 Nevertheless, 
Lisman et al. have previously shown that in liver disease, patients, who 
frequently have AT deficiency, anti-Xa, and APTT, are not suited for 
estimating heparin concentrations. While the anti-Xa vastly underes-
timates heparin levels, the thrombin generation test shows that hep-
arins effectively downregulate coagulation.8 Based on these limited 
COVID-19 data, we agree with Novelli et al. to suggest monitoring the 
heparin activity based on anti-Xa with a target value of 0.3–0.7 IU/ml 
in all COVID-19 patients, instead of based on APTT levels; and spe-
cifically add thrombin generation test in patients with liver disorder.

If the APTT is low and heparin resistance is suspected, a cofactor 
AT-heparin test is recommended to confirm AT deficiency.5 Most lab-
oratories set the lower limit of normal for AT activity at approximately 
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80%–120%. The supplementation of antithrombin to the anti-Xa assay 
may avoid potential interferences, and it has been demonstrated that 
assays supplemented in this way have improved heparin recovery, es-
pecially when the levels of AT have dropped below 40%.13

High-dose UFH may be received by critical COVID-19 patients, 
such as for extracorporeal membrane oxygenation (ECMO) or he-
modialysis, where activated clotting time (ACT) can be a monitoring 
option. In these settings, the APTT and anti-Xa may not be helpful 
because the doses of heparin administered often result in a plasma 
heparin concentration >1  IU/ml, exceeding APTT and anti-Xa ana-
lytical range limits,14 which can be stretched by expanding the cali-
bration.15 Rhoades et al. stated that anti-Xa proved to be associated 
with greater likelihood of achieving therapeutic values, fewer UFH 
titrations, and a trend toward lower UFH doses.16 Several contrast-
ing studies showed that ACT value was poorly correlated with an-
ti-Xa and did not correlate with UFH dose in patients undergoing 
ECMO.17 We still recommend using ACT as a rapid bedside test for 
monitoring high dose UFH since the ACT shows a dose-response to 
heparin concentrations in the range of 1–5 IU/ml.14

In conclusion, identifying clinical heparin resistance in COVID-19 
may become a challenge for physicians, especially in the ICU setting. 
When clinical resistance is suspected, physicians must ensure suffi-
cient heparin activity in the patient, ideally by checking anti-Xa and 
activated prothrombin time ratio (APR). APR is a modification of the 
APTT result: the patient's APTT divided by the mean of the normal 
range. APR has unique advantages in that it reflects the hypercoag-
ulable state and the particular importance of the contact activation 
inhibition, which is not reflected in the anti-Xa assay.18 A clinical deci-
sion must be made whether there is a risk of excessive bleeding and 
whether a dose increase is recommended. Proper modalities in heparin 
monitoring can define the desired therapeutic anticoagulation level.
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