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The brain is a unique organ that performs multiple processes simultaneously, such as sensory, motor, and
cognitive function. However, several neurological diseases (ataxia, dystonia, Huntington’s disease) or
trauma affect the limb movement and there is no cure. Although brain-computer interfaces (BCIs) have
been recently used to improve the quality of life for people with severe motor disabilities, anthropomor-
phic control of a prosthetic hand in upper limb rehabilitation still remains an unachieved goal. To this
purpose, a hierarchical integration of neural commands to fingers was applied for execution of human
hand grasping with better precision. For finger movement prediction and kinematics estimation, a neu-
romuscular approach was employed to establish a hierarchical synergy between electroencephalography
(EEG) and electromyography (EMG). EEG, EMG and metacarpophalangeal (MCP) joint kinematics were
acquired during five finger flexion movements of the human hand. EMG for five finger movements and
kinematics were estimated from EEG using linear regression. A Long Short-Term Memory network
(LSTM) and a random forest regressor were adjoined hierarchically for prediction of finger movements
and estimation of finger kinematics from the estimated EMG. The results showed an average accuracy
of 84.25 ± 0.61 % in predicting finger movements and an average minimum error of 0.318 ± 0.011 in terms
of root mean squared error (RMSE) in predicting finger kinematics from EEG across six subjects and five
fingers. These findings suggest the implementation of a hierarchical approach to develop anthropomor-
phic control for upper limb prostheses.

� 2023 Elsevier B.V. All rights reserved.
1. Introduction

57.7 million traumatic non-fatal limb amputation occur world-
wide [1] requiring partial or complete surgical removal of limb or
extremity such as an arm, leg, foot, hand, toe, or finger. Absence of
anatomical structures due to amputations negatively affects psy-
chology and body functions such as mobility. Prosthesis and reha-
bilitation are being commonly used to improve the quality of
people’s life in such cases using electroencephalography (EEG)
and electromyography (EMG) for their non-invasive signal acquisi-
tion and an abundance of synchronized neuronal information [2].
Prediction of upper limb movements using EEG and EMG has been
mostly applied to control limb prosthesis and rehabilitation [3].
Several recent studies have reported interactions of EEG with the
performance of upper limb prosthetics devices [4], upper limb
reaching tasks [5], and finger movements [6]. However, limited
studies have been reported for estimation of EMG from EEG to pre-
dict upper limb movements and kinematics. EMG estimation from
EEG to predict finger movements and finger kinematics will aid in
developing control of robotic limb prostheses and rehabilitation for
amputees as they generate minimal EMG [7]. Cho et al. [8] reported
a 63.89 % prediction accuracy for natural grasp movements based
on muscle activity patterns, estimated from EEG using a linear dis-
criminant analysis (LDA) model. The studies confirm the benefit of
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EEG to control finger kinematics for grasping through brain-
computer interfaces (BCIs). However, artificial intelligence (AI) is
required to train large amounts of labelled data to enhance the pre-
cision. Application of BCIs with AI has been recently investigated in
clinics to achieve real-time modulation and feedback [9]. Algo-
rithms modulates the decision based on the previous set of data.
Therapeutic intervention in stroke patients showed partial regain-
ing of function in the affected limb. A closed loop system between
cortical activity and movement, mimics the afferent feedback to
restore functional corticospinal and corticomuscular connections
[10]. Clinical application of BCI with AI are still very limited due
to disparity in prediction and interpretation of real-world activity,
which can be improved by using deep learning techniques.
Recently, BCI applications with AI assistance have advanced the
analysis and decoding of brain signals, as well as the ability to exe-
cute real-time hand movements [10,11]. However, the perfor-
mance of BCI with AI using EEG for prediction of finger
movements and estimation of finger kinematics remains elusive.
Integration of AI with BCI has revolutionized the field of machine
learning through the advancement of deep learning, thereby
decreasing the error rate, processing large amounts of data and
maximizing performance by performing self trials and errors
[12,13]. The AI-BCI architecture holds promise to improve the clin-
ical reliability of BCI performance in touch with EEG by enhancing
the AI key metric with the BCI architecture. Movement of a human
hand requires complex motor patterns by coordinating the
responses of multiple muscles. EEG and EMG have been used to
decode the intention to move the hand [14–16] using BCIs, with
EEG playing a vital role in the control of prosthetic limbs in ampu-
tees [17]. BCIs integrate robotic systems with brain signals, allow-
ing for intuitive control of neuro-prostheses such as robotic arms
and actively generating a movement or imagining motor actions
[18].

This study proposes a novel strategy for finger movement pre-
diction and kinematics estimation from EEG and EMG by utilizing
a hybrid BCI system. To predict finger movement and kinematics, a
hierarchical approach strategy comprising EEG and EMG fusion
attained through estimation of EMG from EEG with AI techniques
was used. Data from 18-channel EEG, 4-channel EMG and metacar-
pophalangeal (MCP) joint angles during right hand flexion of five
fingers was acquired and used for the experiment. Fusion of infor-
mation has been used in many studies to achieve better perfor-
mance for a desired task. Tang et al. [19] proposed a Y-shape
dynamic Transformer (YDTR) method based on fusion of infrared
and visible image information to attain superior performance and
better generalization ability. Tang et al. [20] further reported a
multiscale adaptive transformer model fusing multimodal medical
images to achieve better clinical diagnosis and surgical navigation.
Leon-Garza et al. [21] used a type-2 based fuzzy logic system
approach for fusion of 2D digital information into creating a 3D
BIM model to attain an augmentable and interpretable model.
The studies demonstrate the benefit of combining different infor-
mation for a task. As such, the proposed study also aims to achieve
better accuracy for predicting finger movement and kinematics
using hierarchical fusion of EMG and EEG. Application of hierarchi-
cal approach represents sub-networks of EEG-based signal recogni-
tion, EMG decoding from EEG, and BCI system integration with AI
impartment. Proposed work thus skillfully combines several con-
cepts, approaches, techniques and components such as EEG,
EMG, BCI, AI, finger movements and finger kinematics. The estima-
tion of EMG from EEG is advantageous for developing control of
hand prostheses and robotic exoskeletons in individuals with hand
impairment as they generate little to no EMG due to insufficient
muscle strength. Further, since the motor cortex region is the main
source of movement and grasping, decoding muscle signals (EMG)
from cortical signals (EEG) would also be beneficial.
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Simultaneous prediction of finger movements and kinematics
from the estimated EMG with AI techniques contributes to a more
intuitive and natural movement as well as grasp control in a pros-
thetic or exoskeleton hand for rehabilitation. Additionally, the use
of deep learning architectures and regression models allows for
high precision and accuracy in the neurorehabilitation process.
The methods dissect the mechanism of motor deficits caused by
pathological brain changes. Furthermore, it helps to customize
the therapies by supporting the clinicians with relevant data on
motor organization. The reported work has been further tested to
control individual finger movements of an indigenously developed
sensorized prosthetic hand. The study being implemented intends
to develop anthropomorphic control for upper limb prostheses,
that can be utilized in clinical settings.

The remainder of this paper is organized as follows: Section 2
describes materials and methods for subject preparation, hardware
implementation, software implementation, experimental setup
with data collection and experimental protocol. Section 3 presents
experimental results and discussion including signal pre-
processing as well as movement and kinematics prediction frame-
work. Section 4 summarizes conclusion of the study.
2. Materials and methods

2.1. Subjects

Six healthy volunteers (4 males and 2 females) with a mean age
of 26.5 ± 4 years took part in the experiment. The study was
approved by the institutional ethics committee of Tezpur Univer-
sity, India. Written consent according to the Helsinki declaration
[22] was obtained from each subject. All participants were right-
handed and had no known neurological or muscular disorders.
Experimental protocol was demonstrated to the participants
before the start of the experiment.

2.2. Hardware implementation

2.2.1. NS-EEG-D1 system
NS-EEG-D1 system from Neurostyle (Neurostyle PTE ltd, Hill

View, Singapore) was used for the acquisition of EEG. The system
provided up to 64 channels of EEG recordings, built-in impedance
testing, and synchronous acquisition with other physiological sig-
nals. It comprised of an EEG cap with electrodes affixed according
to the 10–20 international standard as well as cables for connect-
ing the system to power supply and laptop. Important technical
specifications of the system are listed in Table S9 (Supplementary
Material).

2.2.2. Shield-EKG-EMG
Four SHIELD-EKG-EMG boards from Olimex were stacked on

top of one another and interfaced with an Arduino UNO for acqui-
sition of 4-channel EMG. Inputs attached to shield, picks the analog
differential signal generated by the muscles while the shield con-
verts it into a single stream of output data. To discretize the signal,
ADC embedded in the microcontroller of Arduino UNO further con-
verts the analog signal to a digital signal. The shield has an inbuilt
instrumentation amplifier and a Besselworth filter with a cut-off
40 Hz. The total gain of the shield is 2848. A SHIELD-EKG-EMG
board is shown in Figure S5 (Supplementary Material).

2.2.3. Arduino Uno
Arduino Uno was used with the SHIELD-EKG-EMG boards for

the acquisition of 4-channel EMG and acquisition of kinematic data
from a data glove. The SHIELD-EKG-EMG boards were mounted on
one another with Arduino Uno as the base board. Connectors on
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the SHIELD-EKG-EMG, adhered to the Arduino Uno interfacing
specifications.

2.2.4. Ag-AgCl electrodes
Pre-gelled disposable Ag-AgCl electrodes of 1 cm in diameter

from 3 M were used for EMG acquisition by placing them over
the area of target muscles. An important feature of these electrodes
was that they were single use and hygienic. Connection between
electrodes to shield boards was made through four lead cables.

2.2.5. Data glove
A right-hand standard gardener’s glove customized with five

flex sensors, one per finger was utilised for the acquisition of kine-
matic data. It was interfaced with an Arduino Uno for data acqui-
sition. The data glove equipped with flex sensors is shown in
Figure S6.

2.2.6. Flex sensors
Five flex sensors of 2.2 in. from Spectra Symbol were attached to

the data glove to collect kinematic data of five fingers. The sensors
were calibrated to collect data for flexion of MCP joint angles of
each finger.

2.3. Software implementation

2.3.1. Arduino IDE
Arduino IDE is an integrated development environment (IDE),

required for writing and uploading code to Arduino board. The
code for acquisition of EMG and kinematic data was written in
Arduino IDE Windows version 1.6.11 and uploaded to an Arduino
Uno board.

2.3.2. NS-EEG software
NS-EEG software version 19 was used to record, store, and visu-

alise EEG data. The software assisted in selecting EEG montages
required for the experiment, automatic impedance checking, stor-
ing subjects’ databases, visualizing and analysing the data.

2.3.3. Spyder (Anaconda)
Spyder (Scientific Python Development Environment), a free

and open-source python-based scientific development environ-
ment (IDE), was used for coding and implementing the machine
learning and deep learning models presented in this work. Spyder’s
built-in integrated libraries, such as NumPy, Pandas, SciPy, and
Matplotlib, were used in preparing and pre-processing the dataset
using Python 3.7. Also, Scikit Learn and Tensorflow 2.0 with Keras
2.4.1 libraries were used to develop the proposed models for the
hierarchical approach.

2.4. Experimental setup and data collection

Experimental setup was comprised of an EMG acquisition sys-
tem, an EEG acquisition system, and a data glove as shown in
Fig. 1A. SHIELD-EKG-EMG boards were used for the acquisition of
4-channel EMG from each subject. Disposable pre-gelled Ag-AgCl
surface electrodes were placed in a bipolar setting, keeping an
inter-electrode distance of 20 mm over the area of target muscles
of the subjects. Skin covering the area of target muscles was
cleaned with isopropyl alcohol before placing the electrodes. Lead
cables were connected to the electrodes and SHIELD-EKG-EMG
board for EMG acquisition. The target muscles with their corre-
sponding finger movements and flexed joints are listed in
Table S1. All channels had a common reference at the right elbow.
The EMG data was acquired at a sampling rate of 512 Hz from the
shield using Arduino Uno with a 10-bit analog-to-digital (A/D) con-
verter. The shield has an inbuilt amplifier and bandpass filter to
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remove noise. EMG acquired were visualized in real-time to ensure
quality of the signals during acquisition.

Kinematics of finger movements was acquired simultaneously
with EMG, from right hand of the subjects using the data glove
equipped with five flex sensors. The data glove was calibrated to
collect data on the MCP joint angles for each finger of the right
hand. These data was recorded at a sampling rate of 100 Hz. Later
in the data pre-processing step, cubic interpolation was performed
to fix the sampling rate at 512 Hz, so as to keep it synchronized
with that of the EMG and EEG data.

EEG data was recorded simultaneously with EMG and finger
kinematics using Neurostyle’s NS-EEG-D1 system from 22
monopolar channels fixed to an EEG electrode cap according to
the international 10–20 standards [23]. The selected channels
included Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, T6, Fz, Cz, Pz, Oz, A1,A2, referenced to a common ground
(GND). The data was sampled at 512 Hz. Figure S1 shows the
EEG montage that was used during acquisition of the EEG data.
Prior to EEG recordings being taken, certain basic preparations
were carried out: cleaning the hair, adjustments of the EEG cap
position, and impedance checking (was kept below 10 K ohm)
were carried out in order to ensure good electrical contact with
the scalp of the participants.

2.5. Experimental protocol

Participants were asked to sit on a comfortable chair, wearing
the data glove on their right hand and their elbow resting on a flat
surface table placed in front of them as shown in Fig. 1A. The acqui-
sition session for each subject was of 16 min duration, consisting of
a total of eight trials for each finger. The trials started with a
’RELAX’ followed by ’WAIT’, ’FINGER MOVEMENT’, ’STOP’ and
’END’ visual cue, displayed on a laptop screen, indicating the sub-
ject to relax, wait, then perform finger movements, stop and end
the session. Subjects were asked to focus on the screen while per-
forming the displayed tasks. Fig. 1C depicts the timeline of the
experimental protocol categorized into 5 stages as follows:

(0) S0 (Relax Stage): Screen displayed ’RELAX’ cue and subject
performed no movement for 25 s.

(1) S1 (Wait Stage): Screen displayed ’WAIT’ cue and subject
waited for 2 s to get ready before performing the movement.

(2) S2 (Movement Stage): Screen displayed ’FINGER MOVE-
MENT’ along with a visual cue of a finger movement, and subject
performed the movement for 12 s. The ’FINGER MOVEMENT’ visual
cue consisted of one of the following five movements: thumb flex-
ion, index flexion, middle flexion, ring flexion and little flexion. All
movements were performed in the above sequence during a trial in
accordance with the visual cue being displayed.

(3) S3 (Stop Stage): Screen displayed ’STOP’ cue indicating com-
pletion of the movement and subject stopped for 7 s. The subject
performed S1 to S3 5 times during a trial, where at each time the
subject performed a different finger movement according to the
mentioned sequence.

(4) S4 (Rest stage): Screen displayed ’REST’ cue indicating sub-
ject to rest for 10 s. This was done to reduce muscle fatigue in
the subject before beginning the next trial. After S4, the subject
performed S1 to S3 for the next trial. Overall, the subject performed
S1 to S4 for a total of 8 times.

(5) S5 (End Stage): Screen displayed ’END’ cue indicating the
end of session, and subject performed no movement for 25 s.

2.6. Dataset

The dataset included 240 (6 subjects � 5 movements � 8 trials)
4-channel EMG, 240 (6 subjects � 5 movements � 8 trials) 22 -
channel EEG movement trials, and 240 (6 subjects � 5 move-



Fig. 1. (A) Experimental setup for EEG, EMG and finger kinematics data acquisition (B) Target muscle (flexor pollicis longus, flexor digitorum profundus, flexor digitorum
superficialis) for placement of EMG electrodes (C) Timeline of experimental protocol (D) Pre-processing of EMG. (a) raw 4-channel EMG (b) enlarged view of a flexion trial and
baseline correction (c) Filtering (d) Rectification (e) Onset detection (f) Segmentation of a flexion trial (E) Pre-processing of EEG. (a) raw 18-channel EEG (b) enlarged view of a
flexion trial (c) baseline correction (d) filtering and Onset detection (e) and segmented EEG of a flexion trial (F) Pre-processing of finger kinematics (a) Raw MCP joint finger
kinematics (b) Enlarged view of four trials (c) Filtering.
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ments � 8 trials) finger kinematic data. Based on the data for sub-
jects, the dataset was partitioned into 70 % for training and 30 % for
testing, i.e., out of six subjects, data from four subjects were used
for training and data from two subjects were used for testing.

2.7. Statistical analysis

A paired student’s t-test was performed to compare the predic-
tion and estimation performance of the implemented models. The
t-tests were applied to results of the models used in estimating
EMG from EEG and predicting finger movements and kinematics
using estimated EMG. The level of significance was set at 5 %
(alpha = 0.05).
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3. Experimental results and discussion

3.1. EEG and EMG pre-processing

In this study, fingermovements and kinematics were decoded in
an online BCI scenario from EEG using AI algorithms. The dataset,
comprised of EEG, EMG, and finger kinematics recordings was pre-
processed in steps that included baseline correction, filtering, recti-
fication, onset detection, and segmentation. A baseline correction
algorithmwas applied to rawEMG(Fig. 1D-a) to removeoff-set from
zero amplitude during no movement. The algorithm subtracted
mean of the Rest stage samples corresponding to each channel from
the Movement stage samples. To remove movement artefacts and



T. Das, L. Gohain, Nayan M Kakoty et al. Neurocomputing 527 (2023) 184–195
power line interference, the baseline corrected EMG (Fig. 1D-b) was
filtered using a 6th order band pass Butterworth filter in the fre-
quency range of 10–250 Hz, followed by a 50 Hz notch filter (Fig. 1-
D-c) [24]. Following that, the filtered EMG was rectified, and a
smooth envelope of the EMG was achieved using a low pass filter
with a 4 Hz cut-off (Fig. 1D-d). The resulting EMG was then pro-
cessed using a threshold detection algorithm for onset detection
(Fig. 1D-e). Once the EMG amplitude exceeded a defined threshold
level for more than fifty consecutive samples, the first sample was
automaticallymarked as themovement onset point. After detection
of the onset, the resulting EMG was segmented for further analysis
using a non-overlappingwindowsize of 250ms (Fig. 1D-f). Similarly
to EMG, EEG was pre-processed in steps that included baseline cor-
rection, filtering, onset detection, and segmentation. Raw EEG was
baseline corrected (Fig. 1E-b, c) by subtracting mean of the Relax
stage samples across 22 EEG channels from the Movement stage
raw EEG samples. For final analysis, 18 channels of EEG for was
selected for the proposed study (Fig. 1E-a). To remove movement
artefacts and power line interference, the corrected EEGwas filtered
using a 2nd order band pass Butterworth filter within a frequency
range of 0.1–40 Hz and a 50 Hz notch [25]. This was followed by
detection of onset of movement in EEG (Fig. 1E-d). Using a non-
overlapping window of 250 ms, the resulting EEG was finally seg-
mented for further analysis (Fig. 1E-e). Next, the finger kinematics
data was pre-processed with a low pass filter (cut-off frequency =
10 Hz) (Fig. 1F-a,e) and segmented to a window size of 250 ms for
each movement (Figure S3).

3.2. Finger movement and finger kinematics prediction framework

Predicting each finger movement in coordination using EEG sig-
nal necessitates complex processing algorithms that must be
applied in stages [6,26]. Since, each stage employs a different algo-
rithm for sequential training, it makes the overall adaptive system
complex. To this end, deep learning methods aid in the simultane-
ous processing of multiple signals to achieve high performance
with satisfactory accuracy in real-time. It offers a single learning
algorithm for training several signals in parallel to increase decod-
ing performance [27]. The proposed study, uses a deep neural net-
work comprising of a LSTM network for predicting finger
movements and an ensemble learning method comprising of a ran-
dom forest regressor was used for estimating the finger kinematics.

Fig. 2A depicts the framework used to predict finger movements
and kinematics through EMG estimation EMG from EEG. This
framework was accomplished in three stages. The first stage
involved predicting the type of finger movement using acquired
EMG after it had been pre-processed. As described in section 2.6,
the dataset was used accordingly for training and testing. Using
the acquired EMG, a LSTM network model was trained for predic-
tion of five finger movements of the right hand: thumb flexion,
index flexion, middle flexion, ring flexion and little flexion. The
model’s performance was validated using 5-fold cross validation.
For a comparative analysis of the prediction model, a Convolutional
Neural Network-Long Short-TermMemory (CNN-LSTM) network, a
Convolutional LSTM (Conv-LSTM) network, and a random forest
model were also evaluated. The second stage involved predicting
the type of finger movement using estimated EMG. Following
pre-processing, the EEG was used to train a linear regression model
to estimate the 4-channel EMG from the corresponding 18-channel
EEG. A 5-fold cross validation was also used to validate the linear
regression model. This was followed by the prediction of finger
movements with estimated EMG using the trained prediction
model obtained in the first stage. The third stage involved predict-
ing the finger kinematics from acquired EMG and estimated EMG.
Following pre-processing, the finger kinematics were used to train
a random forest regression model to predict the joint angle kine-
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matics of five fingers: thumb MCP, index MCP, middle MCP, ring
MCP and little MCP from the corresponding acquired EMG. 5-fold
cross validation was used to validate the model. A linear regres-
sion, k-nearest neighbours (KNN), ridge, and LSTM models were
also evaluated for a comparative analysis. The prediction of finger
kinematics with estimated EMG was then followed using the
trained prediction model obtained earlier in this stage.

3.3. Prediction models

3.3.1. Prediction model for finger movements prediction
Deep learning (DL) neural networks manages to deliver high

accuracy without the need to input hand-extracted features into
the network for training. A LSTM network is one such DL network
that performs automatic feature extraction from time-series data
and captures the temporal information, delivering a high accuracy
[28,29]. In presented study, a LSTM network was implemented for
the prediction of finger movements from EMG. The LSTM network
learned better by remembering the sequential information of the
input EMG samples in short time steps. The LSTM unit is comprised
of a forget gate layer, input gate layer, output gate layer and state
gate layer. The forward pass equations of a LSTM unit with a forget
gate layer are described from Equation (1) to Equation (6).

it ¼ r Wi � ht�1; xt½ � þ bið Þ ð1Þ

f t ¼ r Wf � ht�1; xt½ � þ bf

� � ð2Þ

ot ¼ r Wo � ht�1; xt½ � þ boð Þ ð3Þ

c
� ¼ tanh Wc � ht�1; xt½ � þ btð Þ ð4Þ

ct ¼ f t � ct�1 þ it � c
�
t ð5Þ

ht ¼ ot � tanhðctÞ ð6Þ
where t, i, o, f and c denote the time steps, input gate, output gate,
forget gate, and cell state respectively. Wi, Wf ;Wo,Wc denotes the
input gate, forget gate, output gate, and cell state weights respec-
tively and b denotes the unit’s bias. These equations suggested that
the activation value of a LSTM unit required knowledge of the pre-
vious value in time. The input gate it and forget gate f t , controlled
how much of the previous hidden state ht�1 and current input xt
was contributed to the cell state ct . The sigmoid function r scaled
the activation of the forget, input, and output gates, and to finally
get the prediction result from the model the hidden state was fil-
tered with the hyperbolic tangent function tanh.

The LSTM model developed for this study was a four-layered
architecture (Fig. 2B). The input layer had 150 nodes, followed by
two hidden layers: a recurrent layer with 200 LSTM cells and a
fully - connected dense layer of 250 units. At the last, was a dense
output layer with 5 units for five movements. The activation func-
tion used in the hidden and output layer was a rectifier (reLU) and
softmax function respectively. Softmax function in the output layer
gave a probability distribution for the prediction output. To avoid
model over-fitting, a dropout regularization of 20 percent was
applied to the input and hidden layers and was trained with the
early stopping method. A manual search was used to determine
the network’s parameters based on the input parameter value that
provided highest accuracy. The network had 425,556 parameters
that were optimized using the ADAM version of stochastic gradient
descent (SGD), with a learning rate of 0.001, a sparse categorical
loss function, and a batch size equal to sequence length of the input
EMG samples (800-time steps). The sparse categorical loss was
chosen in the LSTM model to address the multi-class prediction
problem with integer target values so that the model labels the



Fig. 2. (A) Framework for prediction of finger movements and finger kinematics through estimation of EMG from EEG (B) Configuration of implemented LSTM model (C)
Configuration of implemented random forest regression model (D) LSTM model’s accuracy plot on training and testing set across 150 epochs depicting the prediction
accuracy during training and testing (E) LSTM model’s loss curve on training and testing set across 150 epochs (F) Confusion matrix obtained during (a) fold 1 (b) fold 2 (c)
fold 3 (d) fold 4 (e) fold 5 using acquired EMG.
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predicted type of finger movement as integer values rather than
one-hot encoded labels. Also, it had the benefit of requiring less
memory and computation time. For n number of prediction classes,
Equation (7) described the sparse categorical loss function (SCF).

SCF ¼ �
Xn

i¼1
ti log pið Þ ð7Þ

where ti is the target label and pi is the softmax probability for the
ith class.

3.3.2. Prediction model for finger kinematics prediction
Random forest is an ensemble learning algorithm that uses

decision trees to solve classification and regression problems. A
random forest regression model predicts the target data more
accurately by averaging the output of multiple decision trees in
the ensemble. In comparison to other regression models for pre-
dicting hand kinematics, a random forest regression model is sim-
189
pler to train and resistant to outliers and noise. Its processing time
during training is faster than that of a neural network because it
can be parallelized. It can also process time series data with auto-
matic feature extraction [30]. In this study, a random forest regres-
sion model was used to predict finger kinematics from EMG data
(Fig. 2C). The model’s input was pre-processed EMG, and output
was the predicted MCP joint angles. The parameters of random for-
est model consisted of 15 number of trees in the forest and value 5
as the maximum depth of the trees. These parameters were deter-
mined by a manual search based on the value of the input param-
eter that gave the lowest error.
3.4. Estimation model

The proposed study employs a novel method for fusing EEG and
EMG. A regression technique based on linear regression is used to
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estimate 4-channel EMG from 18-channel EEG, corresponding to
five types of finger movements. The regression model was applied
to establish a linear pathway between EEG and EMG in order to
estimate EMG from EEG since the regression algorithm is based
on the assumption that the independent variable is related to the
dependent variable [31]. In this estimation model, the independent
variable was EEG, which was input, and dependent variable was
EMG to be estimated. The linear regression model implemented
is described by Equation (8).

Yi ¼ bi0 þ bi1 � Xi1 þ � ð8Þ
where i = 1,2,3,4,. . ..n (n = number of samples), Xi1 is ith 18-channel
input EEG sample and Yi was ith 4-channel EMG to be estimated by
the model. Estimation coefficients of the model were given by val-
ues of bi0 i.e., regression EEG intercept, bi1 i.e., regression coefficient
and � was the error in the model.

3.5. Prediction of finger movements and kinematics from EEG through
estimation of EMG

Results obtained for prediction of finger movements and kine-
matics from EEG via estimation of EMG involving various stages,
as well as the performance of the models in terms of their evalua-
tion metrics and comparison analysis with other models, are pre-
sented in this section. The hardware used for performing all the
experiments in the study was on a Intel i7-5500U CPU 64-bit
2.40 GHz processor with 8.00 GB RAM memory.

3.5.1. Prediction of finger movements using acquired EMG
The finger movement prediction model was trained for 150

epochs applying early stopping method using acquired EMG. Fig. 2-
D-E shows the learning curves for average prediction accuracy and
loss of the LSTM model during training and testing across 150
epochs indicating that as the loss decreased with number of
epochs, the accuracy increased, resulting in an optimal result at
the end of 150 epochs. 5-fold cross validation evaluated the mod-
el’s performance and gave the best prediction model. The model’s
accuracy was reported in average accuracy over 5-fold cross vali-
dation results and across six subjects. The prediction accuracy
obtained for each fold across five movements was evaluated using
Equation (9).

Ai ¼
X5

1
i

TPiþ TNi
TPiþ TNiþ FPiþ FNi

ð9Þ

where i is the number of movements across which average accuracy
was evaluated. TP, TN, FP and FN are true positive, true negative,
false positive and false negative predictions respectively [32].

Confusion matrices were obtained representing the number of
correctly predicted movements i.e., the true positives and number
of incorrectly predicted movements i.e., the true negatives during
testing for each fold. The diagonal of the confusion matrices high-
lighted the correctly predicted movements (Figure S4; Supplemen-
tary Material). Average prediction accuracy of the LSTM model for
each movement across all test subjects showed a maximum of (97.
50 ± 5.00) % for thumb and middle finger while for index and ring
finger it was above 93.75 %. Lowest average prediction accuracy of
88.75 % was obtained by little finger (Fig. 3A). This was indicative
of the model being able to predict thumb and middle flexion pre-
dominantly followed by prediction of index and ring finger flex-
ions, while finding most difficulty in predicting little finger
flexion. A reason for this could be due to the accurately performed
thumb and middle finger movements by the subjects during the
experiment. The average prediction accuracy achieved across five
movements and all test subjects was (94.75 ± 0.93)% with each fold
obtaining a prediction accuracy above 93.75 % (Fig. 3B), indicating
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a good performance of the prediction model in predicting the
movements using the acquired EMG.

In a comparative analysis, when the LSTMmodel was compared
with other models such as CNN-LSTM, ConvLSTM, and random for-
est, the LSTM model’s average prediction accuracy demonstrated
an average 0.21 % higher accuracy than CNN-LSTM and ConvLSTM
models and a 12.45 % higher accuracy than random forest model
(Fig. 3C). However, the processing time (i. e., time taken by the
model during training) was higher in LSTM model as compared
to CNN-LSTM and ConvLSTM (Fig. 3D). This was because CNN-
LSTM and ConvLSTM models attained a faster state of convergence
during their model training in fewer epochs than LSTM model. In
the presented experiment, CNN-LSTM and ConvLSTM took 65 and
70 epochs respectively. Whereas it consumed more epochs for
the LSTM network to attain that convergence state, which was
150 in our experiment. Although the training time per epoch for
CNN-LSTM (i.e., 13.00 s) and ConvLSTM (i.e.,12.00 s) were
longer compared to LSTM (i.e., 11.60 s) due to the complexity of
their convolution layers, the aggregated training time over a num-
ber of epochs for CNN-LSTM and ConvLSTMwere less i.e., 900 s and
906 s compared to 2500 s for LSTM. This is also substantiated by
the fact that the special structure of CNN and Convolution can
reduce the complexity as well as the overall training time of the
model [33] and can remember much longer sequences compared
to LSTM [34]. The LSTM model was chosen for prediction of finger
movements due to its higher accuracy, although it had a longer
computation time.

3.5.2. Prediction of finger kinematics using acquired EMG
Performance of the prediction model implemented for predic-

tion of finger kinematics using acquired EMG, was evaluated by
two metrics: root mean squared error (RMSE), and coefficient of
determination (R2). RMSE measured the square root of the differ-
ence between predicted and target values using Equation (10).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðyi � xiÞ2
N

vuut ð10Þ

where yi is the target value of sample i, xi is the ith predicted value
and N is the total number of samples taken for evaluation. R2 gave
the difference between predicted and target values in terms of their
amplitude and correlation. It was calculated using Equation (11).

R2 ¼ 1�
PN

i¼1ðyi � xiÞ2PN
i¼1ðyi � x

�
iÞ
2 ð11Þ

where yi is the target value of sample i, xi is the predicted value of

sample i, and x
�
i is the mean of yi. R2 of a good prediction is between

0 and 1 and for a perfect prediction it is close to 1.
A random forest regression model was trained for the prediction

of finger kinematics. An average RMSE (Fig. 3E) of (0.258 ± 0.017)
degree and an average R2 (Fig. 3F) of 0.842 ±0.015was achieved over
5-fold cross validation across five fingers’ MCP joint angles and all
subjects. This result indicated a low error in predicting the finger
kinematics using acquired EMG, and a good model prediction using
acquired EMG across five fingers’ joint angles and all subjects. The
thumb and ring finger MCP joint angle showed an average RMSE
error of (0.24 ± 0.015) and (0.27 ± 0.016) respectively followed by
the middle finger joint angle which showed an average RMSE error
of 0.28 ± 0.014 (Fig. 3G). The index and little finger MCP joint angle
showed a comparatively higher error than the rest of the finger joint
angles. It may be understood that while the model predicted the
thumb, middle and ring MCP joint angles very well, it poorly pre-
dicted the little finger MCP joint angle. The reason for this could be
that while performing flexion of little finger, other fingers got flexed
along, thereby making the model difficult to correctly distinguish it



Fig. 3. (A) Average prediction accuracy of LSTMmodel for each finger movement across six subjects and five folds using acquired EMG (B) Prediction accuracy of LSTMmodel
across five movements and at each fold using acquired EMG (C) Comparison of LSTM, CNN-LSTM and ConvLSTM models in terms of average prediction accuracy using
acquired EMG (D) Comparison of LSTM, CNN-LSTM and ConvLSTMmodels in terms of average processing time across five movements and six subjects using acquired EMG (E)
Prediction performance of random forest regression model in terms of RMSE across finger kinematics of five fingers and six subjects at each fold using acquired EMG (F)
Prediction performance of random forest regression model in terms of R2 across finger kinematics of five fingers at each fold using acquired EMG (G) Prediction performance
of random forest regression model in terms of average RMSE for each finger MCP joint angle across six subjects and 5-folds (H) Prediction performance of random forest
regression model in terms of average R2 for each finger MCP joint angle across six subjects and 5-folds (I) Comparison results of random forest regression with linear
regression, and K-NN regression model on the basis of their average RMSE.
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from the joint angles of other fingers. Comparison between the per-
formance of random forest regression model with KNN regression,
linear regression and a LSTM regression models depicted in Fig. 3I,
showed random forest outperforming the aforementioned models
based on RMSE and R2metrics (Table S2; SupplementaryMaterials).
Random forest model gave an average of around 0.22 degree lesser
error than the other models and showed a high correlation of 0.84
demonstrating a strong linear relationship between the acquired
EMG and finger kinematics.

3.5.3. Estimation of EMG from EEG
4-channel EMG for finger movements: thumb, index, middle,

ring and little finger flexion were estimated from corresponding
18-channel EEG using linear regression. The average 5-fold cross
validation result evaluated in terms of RMSE and R2 using the linear
regression model across five movements and all subjects (Table S3)
was 0.55 ± 0.014 and 0.74 ± 0.007 respectively. This showed good
estimation of the EMG from EEG with a low error. 18 channels of
EEG from a total 22 EEG channels was selected for EMG estimation
based on the linear regression model’s performance during estima-
tion and prediction of themovements by LSTMmodel with the esti-
mated EMG. The process provided optimal number of channels to be
used for obtaining estimation and prediction performance result
(Table S4). In a comparative analysis, the linear regression model
producedanaverageof around0.0086degree lesser error andhigher
correlation (0.742) than that of random forest, KNN and ridge esti-
mation models in terms of average RMSE, average R2, and average
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processing time. This indicated a good estimation of EMG from
EEG and depicted that EEG has a somewhat linear relationship with
the estimated EMG (Table S5).

3.5.4. Prediction of finger movements using estimated EMG
Estimated EMG obtained using linear regression model was

tested with the trained LSTM model for prediction of desired finger
movement. The average prediction accuracy of LSTM model for
each finger movement across all subjects and five folds using esti-
mated EMG showed highest prediction accuracy in ring finger (92.
50 ± 2.5)%, followed by middle, thumb, and index finger (Fig. 4A).
The index finger displayed the lowest prediction accuracy (65 %)
using estimated EMG. Like in prediction using acquired EMG, these
results showed the model’s ability to easily predict thumb, ring
middle and index finger flexions but difficulty in predicting little
finger flexion. The confusion matrices results during 5-fold cross
validation (Fig. 2F) showed more than a 83 % accuracy at each fold
and the average accuracy was (84.25 ± 0.61)% across five move-
ments and all subjects (Fig. 4B). These are further indicative of a
good model performance using estimated EMG at power with the
performance achieved using acquired EMG. Thus, suggesting that
the proposed hierarchical approach can satisfactorily predict finger
movements using estimated EMG. Moreover, comparison with
CNN-LSTM, ConvLSTM, and random forest classifier models using
estimated EMG, the LSTM model showed around 0.5 % higher aver-
age prediction accuracy than those models (Fig. 4C). Statistical
analysis evaluated with a paired t-test revealed LSTM model per-



Fig. 4. (A) Average prediction accuracy of LSTM model for each finger movement across six subjects and five folds using estimated EMG (B) Prediction accuracy of LSTM
model across five movements and six subjects at each fold using estimated EMG (C) Comparison of average prediction accuracy between LSTM, CNN-LSTM and ConvLSTM
model across five movements and six subjects using estimated EMG (D) Prediction performance of random forest regression model in terms of average RMSE across finger
kinematics of five fingers and six subjects at each fold using acquired EMG (E) Prediction performance of random forest regression model in terms of R2 across finger
kinematics of five fingers at each fold using estimated EMG (F) Prediction performance of random forest regression model in terms of average RMSE for each finger MCP joint
angle across six subjects and 5-folds using estimated EMG (G) Prediction performance of random forest regression model in terms of average R2 for each finger MCP joint
angle across six subjects and 5-folds using estimated EMG (H) Comparison between random forest regression, linear regression, KNN regression and LSTM model in terms of
average RMSE (I) Comparison between random forest regression, linear regression, KNN regression and LSTM model in terms of average R2.
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forming better than the aforementioned prediction models having
a p-value < 0.05 (Table S8). These observations together with the
comparison shown between the models in terms of accuracy and
processing time in Fig. 3C and Fig. 3D led to selection of the LSTM
model for the proposed study in prediction of finger movements.
3.5.5. Prediction of finger kinematics using estimated EMG
Using the trained random forest regression model, the finger

kinematics were predicted from estimated EMG. An average RMSE
of (0.318 ± 0.011) (Fig. 4D) and average R2 of (0.772 ± 0.011)
(Fig. 4E) over 5-fold cross-validation across five fingers and all sub-
jects was achieved for the random forest regression model using
estimated EMG. This demonstrated a good performance of the
regression model having a low error and satisfactory estimation
of finger joint angles using the estimated EMG. The thumb and
middle MCP joint angle’s average error in terms of RMSE was (0.
30 ± 0.016) and (0.38 ± 0.014) (Fig. 4F) while the average R2 was
0.75 and 0.72 respectively (Fig. 4G). The highest error was reported
in little finger joint angle (RMSE = 0.50 ± 0.015) and index finger
joint angle (RMSE = 0.46 ± 0.014) prediction. An average of around
0.1 degree higher error and around 0.13 lower average R2 value in
predicting thumb, middle, and ring finger joint angles using esti-
mated EMG was revealed than in their prediction using acquired
EMG. This suggested that the model performed well for thumb,
middle, ring and to a some extent for index finger but performed
poorly for the little finger joint angle. The prediction of finger
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kinematics using acquired EMG gave a better result than predic-
tion using estimated EMG since in the former case the prediction
was achieved using pre-processed EMG which was obtained from
the direct source of its generation thereby yielding a much lesser
error than using estimated EMG. On comparing the random forest
regression model with linear regression, KNN regression, and a
LSTM model in terms of RMSE and R2 (Fig. 4H-I), the random for-
est regression model showed an average of around 0.26 degree
lesser error and a 2.77 higher R2 value than the other models.
The paired student t-test results (Table S8) too showed that the
random forest (p <.05) had a statistically significant difference
in performance than those models. Between LSTM and random
forest model, the random forest model performed better as
depicted in Fig. 4H-I (Table S2, Table S8) and thus selected for
our proposed study. The paired t-test statistical analysis between
LSTM and random forest further justified use of the specific mod-
els in predicting finger movements and estimating finger kine-
matics respectively.
3.6. Emulation of estimated finger movements and kinematics in a
prosthetic hand

Results of estimated finger movements and kinematics were
emulated into a prosthetic hand finger movement control. A five
fingered prosthetic hand prototype was customized with angle
sensors at MCP joints. Estimation of finger kinematics was



Fig. 5. 16-Grasp types following Cutkosky’s grasp taxonomy and five finger movements by the prosthetic hand using the reported EEG-EMG based finger movement and
kinematics estimation.
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employed as superior control for commanding a proportional
derivative controller to emulate the estimated results into the
hand. Following the hierarchical approach for fusion of EEG and
EMG for predicting finger movements and kinematics, the model
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has been tested for detection of simultaneous finger movements
and kinematics. Thereby, the prosthetic hand could perform 16-
grasp types of Cutkosky’s grasp taxonomy and individual finger
movements as presented in Fig. 5.
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4. Conclusion

Presented work successfully demonstrated prediction of finger
movements, finger kinematics through EMG estimation from EEG
using machine learning techniques integrated with BCI-AI net-
working. The final result presented prediction of finger kinematics
from the EEG with estimation of EMG from EEG as an intermediate
step as presented in section 3.5.3 to 3.5.5. In addition, the finger
movements were also predicted from EEG with intermediate steps
of estimating EMG. These results have been used for emulating the
identified finger movement and kinematics into a prosthetic hand
prototype as presented in section 3.6. The research has emphasized
the significance of EEG and EMG fusion, utilizing the process of
estimating EMG from EEG in development of hybrid BCI-AI sys-
tems, which has not been reported in literature to the best of the
authors’ knowledge. AI integration with BCI systems has empow-
ered the designed hierarchical approach in attaining the high accu-
racy prediction of finger movements and finger kinematics.
Synchronisation of EEG and EMG provide an efficient prediction
of finger movements due to high coherence index co-linearity.
Although BCI systems have earned their recognition, the state-of-
art BCI integration with AI networking has a broad spectrum to
explore for ideal interpretation of brain’s normal output pathways
of peripheral nerves and muscles. The work presented is highly
recommended for implementation in the development of robotic
limb prosthesis and rehabilitation for amputees to ease the recog-
nition and prediction of limb movements at clinical settings. Fur-
thermore, it has been established that the proposed hierarchical
method can estimate finger kinematics and finger movements
based on the fusion of EEG and EMG for control of real-time proto-
type and can be extended to 3D applications. Another prospect of
the presented work is to extend for multi-objective optimization
using 3D point clouds and 3D mesh to provide for cost-effective,
flexible and scalable solutions.
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