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Abstract: A multiresponse multipredictor semiparametric regression (MMSR) model is a combination
of parametric and nonparametric regressions models with more than one predictor and response
variables where there is correlation between responses. Due to this correlation we need to construct a
symmetric weight matrix. This is one of the things that distinguishes it from the classical method,
which uses a parametric regression approach. In this study, we theoretically developed a method
of determining a confidence interval for parameters in a MMSR model based on a truncated spline,
and investigating asymptotic properties of estimator for parameters in a MMSR model, especially
consistency and asymptotic normality. The weighted least squares method was used to estimate the
MMSR model. Next, we applied a pivotal quantity method, a Cramer–Wold theorem, and a Slutsky
theorem to determine the confidence interval, investigate consistency, and asymptotic normality
properties of estimator for parameters in a MMSR model. The obtained results were that the estimated
regression function is linear to observation. We also obtained a 100(1− α)% confidence interval for
parameters in the MMSR model, and the estimator for parameters in MMSR model was consistent
and asymptotically normally distributed. In the future, these obtained results can be used as a
theoretical basis in designing a standard toddlers growth chart to assess nutritional status.

Keywords: asymptotic normality; confidence interval; consistency; MMSR model; nutritional status;
symmetric weight matrix; truncated spline

1. Introduction

A regression model which is used to analyze the functional relationship between
response variable and predictor variable in various fields is widely used for both prediction
and interpretation purposes. This functional relationship is represented by a regression
function. If we consider the form of the regression function, we recognize two types
of regression models, namely a parametric regression (PR) model and a nonparametric
regression (NR) model. The combination of the two types of regression models produces
a semiparametric regression (SR) model. Furthermore, if this model has more than one
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predictor and response variables where there is a correlation between responses, the model
is called a multiresponse multipredictor semiparametric regression (MMSR) model.

In general, the main problem in the regression modeling is estimation of the regression
function. To estimate the regression function, there are several estimators which are fre-
quently used in NR modeling; for example local linear, local polynomial, kernel, and spline.
For prediction purposes, the use of local linear, local polynomial, and kernel estimators is
highly recommended as discussed by [1–11]. Meanwhile, for prediction and interpretation
purposes, the use of spline estimators is better and more flexible as discussed by [12–14].
Because of the flexible nature of this spline estimator, many researchers have been inter-
ested in using and developing it in several cases. For examples, an M-type spline estimator
was discussed by [15]; truncated spline and B-spline estimators were discussed by [16,17],
respectively; penalized spline has been proposed by [18] to analyze current status data. Ad-
ditionally, spline smoothing has been proposed by [19] to estimate the regression function
drawing the association between cortisol and ACTH hormones, and spline regression was
proposed by [20] to estimate regression function applied to censored data. Next, [21,22]
used both smoothing kernel and spline estimators to estimate the regression function
and select the optimal smoothing parameter of uni-response nonparametric regression
(UNR) models, and multiresponse nonparametric regression (MNR) models, respectively.
A Kernel estimator was proposed by [23] to estimate UNR model through a simulation
study. Additionally, [24] discussed kernel and spline smoothing techniques to estimate
coefficient in a rates model. However, local linear, local polynomial and kernel estimators
are highly dependent on the neighborhood of the target point, called the bandwidth, so
that if used for model estimation of fluctuating data, a small bandwidth is required and
this will result in an estimation curve that is too rough. So the estimators only consider the
goodness of fit and do not consider smoothness. Thus, these estimators are not good to
use for estimating models of fluctuating data in the sub intervals, because the estimation
results will provide a large mean square error (MSE) value. This is different from the spline
estimator which considers goodness of fit and smoothness factors as has been discussed
by several researchers. Furthermore, [25] compared smoothing and truncated splines in a
model for estimating blood pressures model, and the results showed that the smoothing
spline is better at estimating the model than truncated spline, where it is shown by the
MSE value if we use a smoothing spline estimator that is smaller than the truncated spline
estimator. This means that for prediction purposes, the smoothing spline is better than
the truncated spline. Additionally, [26] have discussed estimating a regression function
in MNR model using smoothing spline and investigated asymptotic properties of the
regression function. Application of smoothing spline and Fourier series was discussed
by [27]. Although those researchers mentioned above have discussed several estimators to
estimate the regression functions of the regression models, but those researchers discussed
these estimators for UNR models and MNR models only. This means that those researchers
mentioned above discussed estimators in NR models only.

Next, there are researchers who have discussed estimators in SR models; for exam-
ples [28,29] discussed smoothing techniques for estimating SR models; Ref. [30] used a
spline estimator for determining the number of knots and their locations based on sta-
tistical criteria; Ref. [31] used an iterative weighted partial spline least squares estimator
to estimate longitudinal SR model; Ref. [32] used a local linear estimator for designing
the standard growth chart of children; Ref. [33] predicted GDP in Turkey using a SR
model approach; Ref. [34] discussed a SR model applied to censored data; Refs. [35–37]
discussed smoothing spline in SR models; Ref. [38] used bias-correction technique to
construct the empirical likelihood ratios for estimating semiparametric model. However,
those researchers discussed estimators in uni-response semiparametric regression (USR)
models only. However, there are several researchers who have discussed estimators in a
multiresponse semiparametric regression (MSR) model; for examples [39] studied estimat-
ing MSR using a smoothing spline estimator; Ref. [40] discussed determining confidence
interval for the parameter of a parametric component of binary response SR model us-
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ing truncated spline estimator; Ref. [41] discussed estimating the regression function
and confidence interval of a parameter MSR model using a smoothing spline estimator.
Furthermore, Ref. [42] discussed estimating the confidence interval for parameters of a
MMSR model using a truncated spline estimator. However, all of the previous researchers
mentioned above have not yet discussed determining consistency and asymptotic normality
properties of parameters in a MMSR model by using truncated spline estimator.

In practice, we are often faced with the problem of analyzing the functional relationship
between more than one response variable and more than one predictor variable where
some of the response variables have a linear functional relationship with the response
variable and some of the other predictor variables do not form a functional relationship that
points to a certain pattern, and there is a correlation between responses. To deal with this
problem, the MMSR model approach is used. Basically, the main goal of MMSR modeling
is to get a better model than USR modeling, considering that this model not only considers
the effect of predictors on responses, but also the relationship between responses. The
representation of the relationship between responses is usually expressed in the form of
a covariance matrix, which is used as a weighting in estimating the parameters of model.
Hence, the problem of estimating the regression function is more complicated for a MMSR
model, because the regression function in this model consists of a parametric component
and a nonparametric component. Additionally, in this model there is a correlation between
responses, so that in the estimation process the regression function requires a weight matrix
in the form of a symmetric matrix, especially a diagonal matrix.

Therefore, in this article we discuss a new method for determining the confidence
interval of parameters in the MMSR model and investigating asymptotic normality and
consistency properties of parameters in the MMSR model based on a truncated spline
estimator, which has a very good ability to handle data whose behavior changes (fluctuates)
at certain sub-intervals.

2. Materials and Methods

In this section, we describe materials and methods which are used to determine
asymptotic normality and consistency of parameters in the MMSR model based on trun-
cated spline.

2.1. Multiresponse Multipredictor Semiparametric Regression (MMSR) Model

A paired observations set
(

yki, xk1i, xk2i, . . . , xkqi, tk1i, tk2i, . . . , tkri

)
where k = 1, 2, . . . , p;

i = 1, 2, . . . , n; q+ r = n; y represents response variable; and x, and t represent predictor vari-
ables follows a MMSR model if the relationship between observations of the response variable,
namely yki, and observations of the predictor variables, namely

(
xk1i , xk2i , . . . , xkqi , tk1i , tk2i , . . . , tkri

)
,

satisfies a model as follows:

yki = fk

(
xk1i, xk2i, . . . , xkqi

)
+ gk(tk1i, tk2i . . . , tkri) + εki (1)

where yki is the ith observation value in the kth response, fk

(
xk1i, xk2i, . . . , xkqi

)
is a para-

metric component of the kth response, gk(tk1i, tk2i . . . , tkri) is a nonparametric component of
the kth response in which gk is assumed to be smooth in the sense that it fits in the Sobolev
space Wm

2 [ak, bk], and εki is zero-mean random error with variance σ2
ki.

The multiresponse multipredictor semiparametric regression (MMSR) model pre-
sented by Equation (1) can be written as follows:

yki = hk

(
xk1i, xk2i, . . . , xkqi, tk1i, tk2i, . . . , tkri

)
+ εki (2)

where hk

(
xk1i, xk2i, . . . , xkqi, tk1i, tk2i, . . . , tkri

)
= fk

(
xk1i, xk2i, . . . , xkqi

)
+ gk(tk1i, tk2i . . . , tkri) is an

unknown regression function of the MMSR model presented by Equation (1). This regres-
sion function consists of a parametric component and nonparametric component. Next,
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to estimate the regression function of the MMSR model presented by Equations (1) and (2)
based on truncated spline estimator, we need to develop the truncated spline proposed
by [12].

2.2. Truncated Spline

According to [12], the truncated section of a polynomial spline called as a piecewise
polynomial, is a continuous segmented polynomial. A truncated spline regression model
can adapt to the data characteristics, and it has the ability to overcome the data pattern
showing a sharp rise or fall with the help of both knot points, and the number of knot
points is such that its resulting curve is relatively smooth. Next, suppose we have a
multiresponse multipredictor nonparametric regression (MMNR) model which can be
expressed as follows:

yki = ∑r
l=1 gkl(tkli) + εki; i = 1, 2, . . . , n; k = 1, 2, . . . , p (3)

Then, the truncated function with B knots (i.e., b1, b2, . . . , bB are knot points) and
degree d is defined as follows [12]:

(
tkli − bklj

)d

+
=


(

tkli − bklj

)d
for tkli ≥ bklj

0 for tkli < bklj

(4)

where d represents degree of polynomial in which generally for d = 1, 2 and 3, the
Equation (4) gives the functions of linear polynomial, quadratic polynomial and cubic
polynomial, respectively. Hence, based on Equations (3) and (4), the general form of
truncated spline with degree of polynomial d and the number of knot points B for the
regression function of MMNR model presented by Equation (3) can be expressed as follows:

gkl(tkli) = αk0 +
d

∑
s=1

αklsts
kli +

B

∑
j=1

βklj

(
tkli − bklj

)d

+
(5)

Furthermore, we can develop this technique to the MMSR model for estimating the
regression function of MMSR model presented by Equation (1) or Equation (2) based on
truncated spline. Next, to determine the confidence interval for parameters in the MMSR
model, we need the pivotal quantity method as proposed by [43].

2.3. Pivotal Quantity

Suppose we have a random sample of size n, X1,X2, . . . ,Xn, of a population X with
probability density function f (x, δ) where δ is an unknown parameter. If T is a function of
X1,X2, . . . ,Xn and δ where its probability distribution is independent of the parameter δ,
then T is called a pivotal quantity [43].

Finally, based on the truncated spline estimator proposed by [12] and by applying
weighted least square (WLS) method, we can estimate the MMSR model presented by
Equation (1). Next, we apply development of pivotal quantity method proposed by [43]
to determine confidence interval for parameters in MMSR model. Additionally, we in-
vestigate consistent property of estimator for parameters in MMS model, and then we
apply Cramer–Wold theorem [44] and Slutsky theorem [45] to determine the asymptotic
normality of estimator for parameters in the MMSR model presented by Equation (1).

2.4. Simulation

In this simulation we generated three samples sized n = 30, 50 and 100. The response
vector y = (y1, y2, y3)

T, consisting of three response variables and the design vector
X = (x1, x2, x3) were produced from a uniform distribution. In addition, the MMSR
model to be generated includes two different smooth functions, g1(t1) and g2(t2) with
nonparametric covariates t1 and t2, respectively. The number of replications for each
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sample used in simulation experiments were considered as 1000. Finally, the random
error terms εi-s were independent and identically distributed from the multivariate normal
distribution εi ∼ MN

(
0, Σ2

ε

)
for three models.

3. Results and Discussions

The results and discussions presented in this section include estimating a MMSR
model, estimating confidence interval of the parameters in a MMSR model, investigating
the consistency of estimator for parameters in a MMSR model, determining asymptotic
normality of estimator for parameters in a MMSR model, and simulation study.

3.1. Estimating MMSR Model

By considering Equations (4) and (5), the estimation of a MMSR model presented
by Equation (1) or Equation (2) based on truncated spline estimator is approximated by
a linear function that is in the form of truncated spline with degree of polynomial d = 1
(i.e., a linear polynomial) and knot point b and the number of knots B such that the MMSR
model presented by Equation (1) can be expressed as follows:

yki = αk0 +
q

∑
l=1
αklxkli +

r

∑
j=1

[
βkjtkji +

B

∑
m=1

βk(j+m)

(
tkji − bkjm

)1

+

]
+ εki (6)

where k = 1, 2, . . . , p and i = 1, 2, . . . , n.
Therefore, the model presented by Equation (6) can be written in matrix notation

as follows:

y =
(

X t
)( α

β

)
+ ε (7)

Next, let H =
(

X t
)

and δ =

(
α

β

)
then MMSR model presented by Equation (7)

can be written as follows:
y = Hδ+ ε (8)

where =


y1
y2
...

yp

; H =


H1 0 · · · 0
0 H2 · · · 0
...
0

...
0

. . .
· · ·

...
Hp

; δ =



αk0
αk1

...
αkq
βk1
βk2

...
βkr


; ε =


ε1
ε2
...
εp

.

Further, suppose ε is independently and identically distributed with zero mean and
covariance W (namely). Note that there is correlation between responses. This implies
that there is correlation between random errors of each response variable, too. Therefore,
for estimating parameters of the MMSR model we use the weighted least squares (WLS)
method, which needs a symmetrical weight matrix W−1 that is the inverse of the covariance
matrix W. We can obtain construction of the covariance matrix W as follows:

Cov(ε) = E
(
εεT

)
=


E
(
ε1ε

T
1
)

E
(
ε1ε

T
2
)

· · · E
(
ε1ε

T
p

)
E
(
ε2ε

T
1
)

E
(
ε2ε

T
2
)

· · · E
(
ε2ε

T
p

)
...

E
(
εpε

T
1
) ...

E
(
εpε

T
2
) . . .

· · ·

...
E
(
εpε

T
p

)
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=


W11 W12 · · · W1p
W21 W22 · · · W2p

...
Wp1

...
Wp2

. . .
· · ·

...
Wpp

 = W (namely). (9)

where Wkl =

{
diag

(
σ2

k1, σ2
k2, . . . , σ2

kn
)

for k = l
diag

(
σ(kl)1, σ(kl)2, . . . , σ(kl)n

)
for k 6= l

; k = 1, 2, . . . , p.

Note that matrix W, given in (9), is a symmetrical matrix. Next, based on assumptions
of the MMSR model given in (1) that εki is zero-mean random error with variance σ2

ki, then

it implies that σkl = ρklσkσl and ρkl =

{
ρk for k = l
0 for k 6= l

; k = 1, 2, . . . , p.

Hence, for k = 1, 2, . . . , p we have:

Wkl =

{
diag

(
σ2

k1, σ2
k2, . . . , σ2

kn
)

for k = l
0 for k 6= l

Therefore, the matrix given in (9) can be written as follows:

W
(

σ2
)
=


W1
(
σ2

1
)

0 · · · 0
0 W2

(
σ2

2
)

· · · 0
...
0

...
0

. . .
· · ·

...
Wp

(
σ2

p

)
 = diag

(
W1

(
σ2

1

)
, W2

(
σ2

2

)
, . . . , Wp

(
σ2

p

))

where 0 is the null matrix, that is, a matrix in which all its element are null, and matrix
Wk
(
σ2

k
)

is given as follows:

Wk

(
σ2

k

)
=


σ2

k1 σk(1,2) · · · σk(1,n)
σk(2,1) σ2

k2 · · · σk(2,n)
...

σk(n,1)

...
σk(n,2)

. . .
· · ·

...
σ2

kn

.

Estimation of parameters in the MMSR model presented by Equation (1) can be
obtained by taking solution of the WLS optimization problem as follows:

min
δ

Q(δ) = min
δ

(y−Hδ)TW−1(y−Hδ) (10)

Hence, by taking the partial derivative of Q(δ) with respect to δ as follows:

∂Q(δ)

∂δ
=

∂

∂δ

{
(y−Hδ)TW−1(y−Hδ)

}
= 0

we get:
^
δ =

(
HTW−1H

)−1
HTW−1y (11)

Next, based on the MMSR model presented in Equation (2) and the estimated parame-
ters given by Equation (11), we have the estimated regression function of a MMSR model,
namely ĥ, as follows:

^
h = H

^
δ (12)

Thus, by considering Equations (8), (11) and (12), we get an estimation of the MMSR
model given by Equation (1) based on a truncated spline estimator as follows:

^
y = H

^
δ = H

(
HTW−1H

)−1
HTW−1y = My (13)
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where
M = H

(
HTW−1H

)−1
HTW−1. (14)

3.2. Estimating Confidence Interval of Parameters in MMSR Model

We assume that εki in the MMSR model presented by Equation (1) is normally dis-
tributed independently and identically with zero mean and variance σ2

ki. It is commonly
written as εki ∼ i.i.dN

(
0, σ2

ki
)

where σ2
ki is unknown. Next, suppose we design the

100(1− α)% confidence interval for δv where v = 1, 2, . . . , p∗; p∗ = p + pq + rp + pB
and B is the number of knots. Therefore, we have a pivotal quantity as follows:

Tv

(
yk, xk1, . . . , xkq, tk1, . . . , tkr

)
=

^
δv − δv√

MSE
(

HTW−1H
)−1

vv

(15)

where MSE =
yT
[
I−H(HTW−1H)

−1
HTW−1

]
y

np−p∗ = yT [I−M] y
np−p∗ = yT Ω y

np−p∗ ; Ω = I −M; and

M = H
(

HTW−1H
)−1

HTW−1. The Equation (15) is pivotal quantity for parameter δv

where δv is the vth element of the parameter vector δ, and
(

HTW−1H
)−1

vv
is the diagonal

element of
(

HTW−1H
)−1

. The pivotal quantity given by Equation (15) has a distribution
of t-student with a degree of freedom of (np− p∗).

Hereinafter, to determine the 100(1− α)% confidence interval for δv, we must take a
solution of the following probability Equation:

P
[

Lv ≤ Tv

(
yk, xk1, . . . , xkq, tk1, . . . , tkr

)
≤ Uv

]
= 1− α (16)

where Lv is the lower limit value of the confidence interval and Uv is the upper limit value
of the confidence interval, and (1− α) is the confidence level.

Next, by substituting Equation (15) into Equation (16) we get:

P

Lv ≤
^
δv − δv√

MSE
(

HTW−1H
)−1

vv

≤ Uv

 = 1− α (17)

Here, the Equation (17) can be written as follows:

P
(

^
δv −U ≤ δv ≤

^
δv − L

)
= 1− α (18)

where L = Lv

√
yTΩ y
np−p∗D; U = Uv

√
yTΩ y
np−p∗D; Ω = I−M; M = H

(
HTW−1H

)−1
HTW−1;

D =
(

HTW−1H
)−1

vv
; and subscript “vv” of

(
HTW−1H

)−1

vv
in Equation (17) represents

diagonal element of
(

HTW−1H
)−1

.
A confidence interval is called good if it has the shortest interval length. Because

of this, we should determine values of Lv ∈ R and Uv ∈ R such that the length of the
confidence interval in Equation (18) is the shortest.

Therefore, if length(Lv, Uv) represents the length of the confidence interval in Equation
(18), then we have:

length(Lv, Uv) =

(
^
δv − Lv

√
yTΩ y

np− p∗
D

)
−
(

^
δv −Uv

√
yTΩ y

np− p∗
D

)
= (Uv − Lv)

√
yTΩ y

np− p∗
D.
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Hence, we must determine the solution of the following optimization problem to take
the shortest length of confidence interval for δv:

Min
Lv ,Uv∈R

{length(Lv, Uv)} = Min
Lv ,Uv∈R

{
(Uv − Lv)

√
yTΩ y

np− p∗
D

}
(19)

and the following condition must be satisfied by Equation (19):∫ Uv

Lv
ψ(ω)dω = 1− α or ϕ(Uv)− ϕ(Lv)− (1− α) = 0 (20)

where function ψ(·) is a probability distribution of tnp−p∗ and function ϕ(·) is a cumulative
probability distribution of tnp−p∗ .

Next, by using a Lagrange multiplier method we have:

R(Lv, Uv, γ) = (Uv − Lv)

√
yTΩ y

np− p∗
D + γ(ϕ(Uv)− ϕ(Lv)− (1− α)) (21)

where γ is a Lagrange constant.
Hence, we get:

∂R(Lv, Uv, γ)

∂Lv
= −

√
yTΩ y

np− p ∗D− γϕ′(Lv) = 0 (22)

∂R(Lv, Uv, γ)

∂Uv
=

√
yTΩ y

np− p ∗D + γϕ′(Uv) = 0 (23)

∂R(Lv, Uv, γ)

∂γ
= ϕ(Uv)− ϕ(Lv)− (1− α) = 0 (24)

Based on Equations (22) and (23), we obtain:

ϕ′(Lv) = ϕ′(Uv) (25)

The Equation (25) implies Lv = Uv or Lv = −Uv. Since, in this case Lv = Uv is not
satisfied, then the shortest confidence interval for parameters vector δv must be taken from
the values of Lv and Uv that satisfy the following Equation:∫ Lv

−∞
ψ(ω)dω =

∫ ∞

Uv
ψ(ω)dω =

α

2
(26)

By using the confidence level (1− α), the values of Lv and Uv that satisfy Equation (26)
can be found in table of tnp−p∗ distribution.

Hence, the shortest confidence interval for parameters of a MMSR model based on the
truncated spline estimator satisfies the following probability:

P

[
^
δv −Uv

√
yTΩ y

np− p ∗D ≤ δv ≤
^
δv + Uv

√
yTΩ y

np− p ∗D

]
= 1− α

where the Uv value can be obtained from Equation (26) that is
∫ ∞

Uv
ψ(ω)dω = α

2 .
Therefore, we have:

P

[
^
δv − t( α

2 ;np−p∗)

√
yTΩ y

np− p∗
D ≤ δv ≤

^
δv + t( α

2 ;np−p∗)

√
yTΩ y

np− p∗
D

]
= 1− α
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Thus, by using t-student distribution, the 100(1− α)% confidence interval for parame-
ters vector δv of the MMSR model presented by Equation (1) based on the truncated spline
estimator is:

^
δv − t( α

2 ;np−p ∗)

√
yTΩ y

np− p∗
D ≤ δv ≤

^
δv + t( α

2 ;np−p ∗)

√
yTΩ y

np− p∗
D (27)

where v = 1, 2, . . . , p∗; p∗ = p + pq + rp + pB and B is the number of knots; Ω = I−M;

M = H
(

HTW−1H
)−1

HTW−1; D =
(

HTW−1H
)−1

vv
; subscript “vv” of

(
HTW−1H

)−1

vv

represents the diagonal elements of matrix
(

HTW−1H
)−1

; H is a matrix of the predictor as
given in Equation (8); and W is a symmetrical covariance matrix as given in Equation (9).

3.3. Investigating Consistency of Estimator for Parameters in MMSR Model

Before investigating consistency of the estimator for parameters in the MMSR model

namely
^
δ, we need the following assumptions.

Assumption 1. xki =
2i−1

2n , i = 1, 2, . . . , n and tki =
2i−1

2n , i = 1, 2, . . . , n; k = 1, 2, . . . , p.

Assumption 2. θk =
(

xk1, xk2, . . . , xkq, tk1, tk2, . . . , tkr

)
, k = 1, 2, . . . , p are independently and

identically distributed with zero mean, the covariance matrixZ, and the third absolute moment
is finite.

Assumption 3. Lim
n→∞

n
∑

i=1
wkj = ϑ < ∞, k = 1, 2, . . . , p.

For investigating consistent property of the estimator for the parameters of the MMSR

model namely
^
δ, we need the following Lemma 1 and Theorem 1.

Lemma 1. If δ̂ as presented in Equation (11) is a truncated spline estimator for the parameters of
the multiresponse multipredictor semiparametric regression (MMSR) model, then

^
δ− δ =

(
HTW−1H

n

)−1(
HTW−1ε

n

)
(28)

Proof of Lemma 1. Based on Equations (8), and (11)–(14), we have:

^
δ− δ =

((
HTW−1H

)−1
HTW−1y

)
− δ

=
(

HTW−1H
)−1

HTW−1(Hδ+ ε)− δ

=
(

HTW−1H
)−1

HTW−1Hδ+
(

HTW−1H
)−1

HTW−1ε− δ

=
(

HTW−1H
)−1

HTW−1Hδ+
(

HTW−1H
)−1

HTW−1ε−
(

HTW−1H
)−1(

HTW−1H
)
δ

=
(

HTW−1H
)−1

HTW−1ε

=
(

HTW−1H
n

)−1(HTW−1ε
n

)
.

Thus, we obtain:

^
δ− δ =

(
HTW−1H

n

)−1(
HTW−1ε

n

)

�
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Theorem 1. If Assumptions 1–3 hold, then

(a).
HTW−1H

n
P→ Zϑ as n→ ∞. (29)

(b).
HTW−1ε

n
P→ 0 as n→ ∞ . (30)

Proof of Theorem 1. Given matrices M =
{

mkij

}
, MTWMW−1 =

{
ckij

}
, and

W = diag{wk1, wk2, . . . , wkn}; k = 1, 2, . . . , p; i, j = 1, 2, . . . , n. Because Assumptions 1–3
hold, then:

(a) Based on the Strong Law of Large Numbers [45], we have:

HTH
n

P→ Z

it implies HTW−1H
n

P→ Zϑ as n→ ∞ .

(b) Note that HTW−1ε
n

P→ 0 as n→ ∞ hold if Var
(

HTW−1ε
n

)
i
→ 0 as n→ ∞ . On the

other hand, we have:

E
(

HTW−1εεTW−1H
)

i
= σ2

ki tr
(

ziiW−1
)
= o(n) as n→ ∞.

It means that:

Var

(
HTW−1ε

n

)
i

→ 0 as n→ ∞.

Therefore, we obtain:
HTW−1ε

n
P→ 0 as n→ ∞.

�

Furthermore, the following Theorem provides a consistency property of
^
δ that is a

truncated spline estimator for parameters of MMSR model presented in Equation (1).

Theorem 2. If
^
δ is a truncated spline estimator for parameters of MMSR model presented in

Equation (1), then

Lim
n→∞

P
(∣∣∣∣^δ− δ∣∣∣∣ < ξ) = 1, ξ > 0. (31)

In other word, an estimatorδ̂that satisfies the condition given in Equation (31) is said to be a
consistent estimator.

Proof of Theorem 2. Suppose
^
δ is estimator as given in Equation (11). Based on Lemma 1

and Theorem 1, we get:

∣∣∣∣^δ− δ∣∣∣∣ =
∣∣∣∣∣∣
(

HTW−1H
n

)−1(
HTW−1ε

n

)∣∣∣∣∣∣ P→ 0 as n→ ∞. (32)

According to [45], for every ξ > 0 we can express Equation (32) as follows:
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Lim
n→∞

P
(∣∣∣∣^δ− δ∣∣∣∣ ≥ ξ) = 0.

Next, by using probability property, we get:

Lim
n→∞

P
(∣∣∣∣^δ− δ∣∣∣∣ < ξ) = Lim

n→∞

{
1− P

(∣∣∣∣^δ− δ∣∣∣∣ ≥ ξ)} = 1.

Thus, Lim
n→∞

P
(∣∣∣∣^δ− δ∣∣∣∣ < ξ) = 1, ξ > 0. It means that

^
δ is a consistent estimator. �

3.4. Determining Asymptotic Normality of Estimator for Parameters in MMSR Model

In this section, we determine asymptotic normality of δ that is a truncated spline
estimator for parameters of the MMSR model presented in Equation (1). Before investi-
gating asymptotic normality of δ, firstly we need to consider the following Lemma 2 and
Theorem 3.

Lemma 2. If M is the matrix as given in Equation (14) and h is the vector of the regression function
of MMSR model, then

Lim
n→∞

n−3/2 ∑
i

∣∣∣[(I−MT
)

W−1h
]

i

∣∣∣3 = 0

Proof of Lemma 2. We have:

n−3/2 ∑
i

∣∣∣[(I−MT)W−1h
]

i

∣∣∣3 = n−3/2 ∑
i

∣∣∣[(I−MT)W−1h
]

i

∣∣∣∣∣∣[(I−MT)W−1h
]

i

∣∣∣2
≤ n−3/2max

j

∣∣∣[(I−MT)W−1h
]

i

∣∣∣∑
j

∣∣∣[(I−MT)W−1h
]

i

∣∣∣2
On the other hand, we have:

n−3/2 ∑
i

∣∣∣[(I−MT)W−1h
]

i

∣∣∣3 ≤ n−3/2

√
∑
i

[(
I−MT)W−1h

]2

i
∑
i

∣∣∣[(I−MT)W−1h
]

i

∣∣∣2
= n−3/2

(
hTW−1(I−MT)(I−MT)W−1h

)3/2

Hence, we obtain:

n−3/2 ∑
i

∣∣∣[(I−MT
)

W−1h
]

i

∣∣∣3 = o(1) or Lim
N→∞

n−3/2 ∑
i

∣∣∣[(I−MT
)

W−1h
]

i

∣∣∣3 = 0.

�

Theorem 3. If M is matrix as given in Equation (14) andh is vector of regression function of
MMSR model, then for n→ ∞

HT
[(

I−MT)W−1h + W−1ε
]

√
n

d→ D∗ ∼ N
(

0, σ2
kiZϑ

)
.
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Proof of Theorem 3. To prove this theorem, we apply the Cramer–Wold theorem [44,45].
Given a vector a such that:

aTHT
[(

I−MT)W−1h + W−1ε
]

√
n

= ∑
i

Ki

where Ki =
(Ha)i[(W−1ε)i+i]√

n is the zero mean independent random variable. Therefore, Ki

has a mean of 0 and variance as follows:

∑
i

Var(Ki) = aTσ2
kiZ(

1
n

n

∑
i=1

wki) a +
(

aTZa
) 1

n ∑
i

([(
I−MT

)
W−1h

]
i

)2

Next, by taking into account the Assumptions 1–3, then ∑
i

Var(Ki) converges to

aTσ2
kiZϑa. Next, we have:

∑
i

E|Ki|3 = n−3/2 ∑
i

E
(
|(Ha)i|

3
∣∣∣(W−1ε

)
i
+
[(

I−MT)W−1h
]

i

∣∣∣3)
= n−3/2E|(Ha)1|

3 ∑
i

E
(∣∣∣(W−1ε

)
i
+
[(

I−MT)W−1h
]

i

∣∣∣3)
On the other hand, we obtain:

∑
i

E|Ki|3 ≤ E|(Ha)1|
3

(
n−1/2max

i

(
E
∣∣∣(W−1ε

)
i

∣∣∣3)+ n−3/2 ∑
i

∣∣∣[(I−MT
)

W−1h
]

i

∣∣∣3)

Due to Lemma 2 and finite third absolute moment of
(

W−1ε
)

i
then ∑

i
E|Ki|3 converges

to zero.
Thus, ∑

i
Ki converges to a Normal distribution that is N

(
0, aTσ2

kiZϑa
)
. �

Furthermore, the following Theorem provides asymptotic normality of
^
δ that is a

truncated spline estimator for parameters of the MMSR model presented in Equation (1). �

Theorem 4. If
^
δ is a truncated spline estimator of the parameters in the MMSR model presented

in Equation (1), then for n→ ∞ ,

√
n
(

^
δ− δ

)
d→ D ∼ N

(
0,σ2

kiZ
−1ϑ−1

)

Proof of Theorem 4. By considering Equation (28), we can express
√

n
(

^
δ− δ

)
as follows:

√
n
(

^
δ− δ

)
=
(

HTW−1H
n

)−1(HTW−1ε√
n

)
=

(
HT(I−MT)W−1H

n

)−1{
HT[(I−MT)W−1h+W−1ε]√

n − HTMTW−1ε√
n

}
Hence, based on this we obtain:(

HT(I−MT)W−1H
n

)−1
P→ Z−1ϑ−1

as n→ ∞ and HTMTW−1ε√
n

P→ 0 as n→ ∞ .
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Furthermore, based on Theorem 3, we have:

HT
[(

I−MT)W−1h + W−1ε
]

√
n

d→ D∗ ∼ N
(

0 , σ2
kiZϑ

)
as n→ ∞.

Next, by applying Slutsky theorem [45], we obtain:

√
n
(

^
δ− δ

)
d→ D ∼ N

(
0 ,σ2

kiZ
−1ϑ−1

)
as n→ ∞.

�

3.5. Simulation Study

In this section we give a simulation study for a MMSR model constructed by three
response variables and three predictor variables.

(i) Simulation Design: The simulation study scenarios are decided as follows:

• We generate three samples sized n = 30, 50 and 100.
• The response vector y = (y1, y2, y3)

T , consisting of three response variables, is
created from the MMSR model given in (ii).

• The design vector X = (x1, x2, x3) is produced from a uniform distribution.
• For each model, a total of nine regression coefficients specified asα1 = (−1, 2, 4)T,

α2 = (−2, 3, 5)T, α3 = (−0.5, 1, 3)T are considered here.
• In addition, the MMSR model to be generated includes two different smooth

functions, g1(t1) and g2(t2) with nonparametric covariates t1 and t2, respectively.
• The number of replications for each sample used in simulation experiments is

considered as 1000.

(ii) Data Generation: The MMSR model can be written as follows, according to given
information in the simulation design; y1

y2
y3

 = (x1 x2 x3)

 α1
α2
α3

+
q=2

∑
j=1

gj
(
tji
)
+ εi, 1 ≤ i ≤ n

where X = (x1, x2, x3) is a (n× 9)-dimensional design matrix and each xi is generated
from a uniform distribution, that is, xi ∼ U[0n×3, 1n×3]. The vector of regression
coefficients α = (α1, α2, α3) is defined in (i) above.
‚ g1(t1) and g2(t2) are computed by using t1 = {(i− 0.5)/n}n

i=1 and t2 ∼ U[−2, 2]
as follows:

g1(t1) = 1− 48t1 + 218t2
1 − 315t3

1 + 145t4
1

g2(t2) = sin(2t2) + 2e−16t2
2

‚ Finally, the random error terms εi’s are independent and identically distributed
from the multivariate normal distribution εi ∼ MN

(
0, Σ2

ε

)
for three models.

The results and comments regarding the simulation study are given in the following
tables and figures below.

Table 1 contains the estimated regression coefficients for the parametric component
of the MMSR model and their 95% confidence intervals. From this, it can be said that
as the sample size increases, the confidence intervals narrow. Note that this inference is
supported by the boxplots in Figure 1. In addition, it can be said that the proposed model
has succeeded in obtaining satisfactory estimates for the parametric component.
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Table 1. Estimated regression coefficients from parametric component of the MMSR model.

95% Confidence Interval

n=30 n=50 n=100

Coefficients Vector Lower ^
αj Upper Lower ^

αj Upper Lower ^
αj Upper

α1 = (−1, 2, 4)T
−1.308 −0.917 −0.527 −1.164 −0.929 −0.693 −1.033 −0.923 −0.813
1.714 2.114 2.513 1.895 2.120 2.346 1.977 2.089 2.20
3.644 4.044 4.444 3.811 4.041 4.271 3.979 4.087 4.196

α2 = (−2, 3, 5)T
−2.308 −1.917 −1.527 −2.164 −1.929 −1.693 −2.033 −1.923 −1.813
2.714 3.114 3.513 2.895 3.120 3.346 2.977 3.089 3.200
4.644 5.044 5.444 4.811 5.041 5.271 4.979 5.087 5.196

α3 = (−0.5, 1, 3)T
−0.808 −0.417 −0.027 −0.664 −0.429 −0.193 −0.533 −0.423 −0.313
0.714 1.114 1.513 0.895 1.120 1.346 0.977 1.089 1.200
2.644 3.044 3.444 2.811 3.041 3.271 2.979 3.087 3.196
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Figure 1. Boxplots of estimated regression coefficients for all sample sizes. Note that a1.1, a1.2, and
a1.3 seen on the x–axis of the boxplot show the regression coefficients obtained from the regression of
y1. Similarly, a2.1, a2.2, and a2.3 show the coefficients from the y2 regression, while a3.1, a3.2, and
a3.3 show the coefficients from the y3 regression. (a). Boxplot of estimated regression coefficients for
n = 30; (b). Boxplot of estimated regression coefficients for n = 50; (c). Boxplot of estimated regression
coefficients for n = 100.

Figure 1 is drawn to see the convergence of the estimated regression coefficients to the
true coefficients. It can be seen from the boxplots that, the range of the boxplot gets smaller
as the sample sizes get larger. We would like to point out that this is an expected situation.
Regarding the non-parametric component of the MMSR model, Table 2 and Figure 2 are
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obtained. Additionally, a Mann–Whitney U test is performed to determine the statistical
significance of the difference between fitted curve and the real functions for both g1(t1)
and g2(t2), and the results are given in Table 2 below.

Table 2. Results of Mann–Whitney U test for the nonparametric components.

n=30 n=50 n=100

Med(diff) p-Value Med(diff) p-Value Med(diff) p-Value

^
y1

g1 −
^
g1

0.567 0.911 * 0.566 0.806 * 0.603 0.690 *

g2 −
^
g2

0.842 0.830 * 0.675 0.817 * 0.675 0.789 *

^
y2

g1 −
^
g1

1.005 0.030 0.644 0.086 * 0.694 0.033

g2 −
^
g2

0.804 0.030 0.701 0.046 0.671 0.020

^
y3

g1 −
^
g1

0.568 0.912 * 0.566 0.807 * 0.603 0.689 *

g2 −
^
g2

0.638 0.830 * 0.675 0.817 * 0.675 0.790 *

*: H0 :
(

g1 −
^
g1

)
= 0, H1 :

(
g1 −

^
g1

)
6= 0; H0 :

(
g2 −

^
g2

)
= 0, H1 :

(
g2 −

^
g2

)
6= 0.

Figure 2. Real functions and their fitted curves from the three MMSR models. (a,b) n = 30; (c,d) n = 50;
(e,f) n = 100.
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When the results given in Table 2 are examined carefully, it is seen that most of the
p-Values are greater than 0.05 (these are shown in bold). As can be seen from this, it is
clear that in most cases, the null hypothesis claiming that there is no difference between the
medians of the fitted curves and the real functions cannot be rejected. In addition, these
results are confirmed by the graphs given in Figure 2. Moreover, the influence of sample
size is clearly visible from the panels in Figure 2.

After the parametric and nonparametric components, Figure 3 is obtained to examine
the overall residuals from the total MMSR model. It should also be noted that Figure 3
includes the scatter plots for residuals versus fitted values of the MMSR model for all
sample sizes. Note that although there is some improvement in the performance of the
model when n = 100, it is clear that the residuals are not randomly distributed around
zero. The existence of a heteroscedasticity problem is debatable. However, it has also
been observed that when the sample size is large, the residuals do not exceed the standard
deviation limits.
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Figure 3. Residual versus vector {i.e.,
^
y =
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^
y1,

^
y2,

^
y3

)
} of the fitted response values. (a) n = 30;

(b) n = 50; (c) n = 100.

4. Conclusions

The estimated MMSR model we obtained is a combination of estimations between the
parametric and nonparametric components, and it is linear to observation. Additionally, we
found that the 100(1− α)% confidence interval for parameters in a MMSR model depend
on t-student distribution namely t( α

2 ;np−p∗) and the estimator of parameters in a MMSR
model is consistent and asymptotically normally distributed. Based on simulation results,
the influence of sample size is clearly visible and it also has been observed that when the
sample size is large, the residuals do not exceed the standard deviation limits.
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