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Abstract. Using biosurfactants as biocontrol agents have received much attention for pest control and disease vectors. The research was 

focused on identifying the species and genetic relationship of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in Baluran 

National Park, East Java, Indonesia. Screening of biosurfactants by tested hemolytic activity, surface tension and emulsification 

activities, detecting coding genes of biosurfactant biosynthesis, and testing the production of biosurfactants in various substrates were 

conducted. The molecular identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method of 

Bacillus sp. BK7.1 has a genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed positive 

hemolytic activity results, reduced surface tension and increased emulsification activities, and produced biosurfactant in glucose, 

glycerol, and molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding surfactin 

biosynthesis, the potential bacteria to produce bioinsecticide compounds. Thus, the indigenous entomopathogenic B. subtilis BK7.1 can 

be developed as environmentally friendly microbial bioinsecticides for pest control and disease vectors.  

 

Keywords: Biosurfactant production, crop protection, entomopathogenic Bacillus subtilis BK7.1, hemolytic activity, srfAA-srfAD 

gene.  

 

Running Title: Biosurfactant production of Bacillus subtilis BK7.1 

 

INTRODUCTION 

Controlling insect pests and insect vectors with chemical insecticides is broadly used (Korrat et al. 2012, Safni et al. 

2018). However, chemical insecticides have a negative impact on disease vector control and pest control because it causes 

insect resistance (Silva et al. 2018). Biocontrol methods are obtainable to resolve these problems. Entomopathogens from 

microorganisms act as natural enemies that can produce toxic metabolites towards insect pests and plants pathogen. 

Biocontrol methods can be used as an alternative to fighting diseases transmitted by vector mosquitoes, plant pathogens, 

and insect pests. This method does not cause pollution and is environmentally friendly (Thomas 2017). 

Biocontrol agents using Bacillus strains are methods that have been widely developed because they are proven to be 

environmentally friendly (Bergamasco et al. 2013, Syaharuddin et al. 2018). Group of bacteria, fungi and yeasts have 

produced biosurfactants (Santos et al. 2018). Biosurfactants can be synthesized by several groups of microbes and can act 
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as a substitute for non-biodegradable and non-environmentally friendly synthetic surfactants (Moro et al. 2018). The 

biosurfactant produced by Bacillus is one of the entomopathogenic mechanisms that have caused the death of insects. 

Biosurfactants are unique microbial metabolites that appear in biological action against plant pathogens and insect pests.  

Biosurfactants have many interesting features, such as high levels of biodegradability and optimal activity under 

extreme conditions (Banat et al. 2010, Kedher et al. 2017). Following previous study, B. subtilis, B. amyloliquefaciens, and 

B, velezensis produces biosurfactant and efficient to be biocontrol agent against different targets (Geetha et al. 2010, Ghribi 

et al. 2012, Revathi et al. 2013, Nafidiastri et al. 2021). Bacillus sp. is able to synthesize lipopeptide biosurfactants, such 

as surfactin, fengicin, and iturin (Mongkolthanaruk 2012). Surfactin consists of 7 amino acids bonded to a carboxyl group 

and a fatty acid hydroxyl group at carbon atoms number 12-16, synthesized by a complex mechanism, catalyzed by 

Nonribosomal Peptide Synthetase (NRPS) and encoded by the srfA operon. Surfactin can suppress plant diseases through 

strong biosurfactant activity (Cawoy et al. 2014) by inhibiting bacterial growth, lysing cell membranes or destroying them 

through physicochemical interactions (Deleu et al. 2013), suppressing fungi by promoting colonization of beneficial 

bacteria (Jia et al. 2015), and trigger systemic resistance (Cawoy et al. 2014). Biosurfactants have been applied in various 

industrial and petroleum fields (Nwaguma et al. 2016, Pele et al. 2019, Gomaa et al. 2019). Biosurfactants are lower in 

toxicity, more biodegradable and environmentally friendly, harmless, and work more specifically (De Almeida et al. 2016, 

Chaves et al. 2018, Gayathiri et al. 2022). Biosurfactants are stable and efficient under unfavorable salinity, pH and 

temperature often encountered in the petroleum industry (Silva et al. 2014). Biosurfactants can reduce surface and 

interfacial tension, as well as suitable emulsifiers and dispersing agents and are widely used in the industrial sector 

(Mulligan et al. 2014).  

Perspective studies to find entomopathogenic Bacillus are still being carried out to find the safest way to control disease 

vectors caused by mosquitoes. The results of screening tests for potential initial toxicity against A. aegypti larvae have 

reported that 68 entomopathogenic Bacillus sp. has been isolated from 30 natural soil samples with potential status 

variations from low to very high. In the affirmation test, there were three isolates coded BK7.1, BK7.2, and BK5.2, with 

the highest entomopathogenic potential status, larval mortality rates at 48 hours of exposure were 93, 87 and 70%, 

respectively (Salamun et al. 2020). Bacillus sp. BK5.2, a molecular identification, has been carried out, as B. thuringiensis 

BK5.2 which produces entomopathogenic cry toxin (Salamun et al. 2021), during the identification of Bacillus sp. BK7.1 

has been carried out through morphological and physiological characterization (Salamun et al. 2020). It is necessary to 

carry out molecular identification and mechanism of action of Bacillus sp. BK7.1 as an entomopathogenic bacteria. In this 

study, genetic characteristics were carried out to determine the species and the relationship of species in the phylogenetic 

tree, detection of biosurfactant coding genes, screening of biosurfactant activities such as hemolytic activity, surface 

tension, emulsification activity, and production on several substrates. 

 

MATERIALS AND METHODS 

Identification 16 S rRNA gene  

The DNA genome of Bacillus sp. BK7.1 was isolated according to the Thermo Scientific GeneJet Genomic DNA 

Purification Kit, visualized under ultraviolet by electrophoresis, purity and concentration with a Thermo Scientific 

Multiskan GO Microdroplet Spectrophotometer; purity was calculated by the ratio between the values of 260 nm and 280 

nm in the DNA samples (Meena et al. 2020). Amplifying genomic DNA of Bacillus sp. BK7.1 utilized 16S rRNA primers 

(27f and 1492r), examined by electrophoresis on 1% agarose gel followed by ethidium bromide (EtBr) dye and visualized 

under ultraviolet light, then purified and sequenced. Amplicon result was then aligned and contigs were developed from 

the sequences using the BioEdit Sequence Alignment Editor software for Windows. The 16S rRNA nucleotide sequence 

was aligned with 16S rRNA gene sequences from other microorganisms published in GenBank. Genetic similarity was 

determined to contig alignment and phylogenetic tree construction using the Program of Mega 7. The phylogenetic tree 

was designed by inputting FASTAs from BLAST species (Kumar et al. 2016). 

Screening biosurfactant activities  

Screening of biosurfactants was carried out by three methods, hemolytic activity, surface tension value, and emulsification 

activity. Hemolytic activity using blood agar media inoculated with Bacillus sp. BK7.1 by spots method and incubated for 

two days at room temperature and zone of inhibition observed around the colony. Surface tension was measured with Du 

Nouy Tensiometer, with 50% Tween 20 as a positive control and Nutrient Broth as a negative control. The decrease in the 

surface tension value of 10 mN/m indicated the potential to produce biosurfactants. The emulsification activity was 

measured by inserting a 2 mL supernatant fraction and kerosene in a test tube. This mixture was stirred on Vortex Mixer 



for 1 minute, incubated for 24 hours at room temperature, and measured after the emulsion height was stable. The 

percentage (%) of the emulsion layer height (cm) divided by the total solution height was calculated as the emulsion index 

value (E24). 

Detection srfAA and srfAD surfactin gene  

Amplification of the srfAA and srfAD surfactin genes of Bacillus sp. BK7.1 using primers selected according to the 

literature. Electrophoresis and visualization were performed under UV Transluminator. Forward primer F-5' 

TCGGGACAGGAAGACATCAT 3' and reverse primer R-5' CCACTCAAACGGATAATCCTGA 3' for srfAA gene 

(Chung et al. 2008). Forward primer F-5’ ATGAGCCAACTCTTCAAATCATTTG 3’ and reverse primer R-5’ 

TCACGATTGAATGATTGGATGCT  3’ for srfAD gene. The amplicons were aligned and developed from the sequences 

by the BioEdit Sequence Alignment Editor for Windows software. The nucleotide sequences are translated into a protein 

to be formed. The translation of the nucleotide sequence aligned with BLASTp from the other Bacillus, which has been 

published on GenBank. 

Biosurfactant production  

The biosurfactant production activity begins by providing synthetic mineral water (SMW), by dissolved one by one, 3 g 

(NH4)2SO4, 10 g NaCl, 0.2 g MgSO4.7H2O, 0.01 g CaCl2, 0.001 g MnSO4.H2O, 0.001 g H3BO3, 0.001 g ZnSO4.7H2O, 

0.001 g CuSO4.5H2O, 0.005 g CoCl2.6H2O, and 0.001 g NaMoO4.2H2O into 900 mL distilled water, respectively. The 

elements phosphate and iron are made separately. The phosphate elements dissolved 5 g of KH2PO4 and 2 g of K2HPO4 

into 50 mL of distilled water, while the iron element dissolved 0.0006 g of FeSO4.7H2O into 50 mL of distilled water, 

respectively. The phosphate and iron elements were sterilized using an autoclave for 15-20 minutes at 121°C with 1 atm. 

A 250 mL culture bottle was prepared to be filled with 86.4 mL of SMW and added 2% substrates (glucose, glycerol, 

molasses) solution, was homogenized and ensured that the pH was 7.0. The culture vial was sterilized by autoclave for 15-

20 minutes at 121°C 1 atm. After sterilization, the culture was cooled at room temperature, then 4.8 mL of phosphate and 

iron elements were added. Then each added 4% (4 mL) of bacterial culture with an absorbance value of 0.5 Optical Density 

in 650 nm. The culture solution was incubated at room temperature for 96 hours with an agitation of 130 rpm. Every 24 

hours, bacterial biomass, surface tension value, and emulsification activity against diesel and kerosene were measured until 

96 hours incubation. 

RESULTS AND DISCUSSION 

Results 

Identification of 16S rRNA gene 

Purity and concentration of DNA genome of Bacillus sp. BK 7.1 obtained a 1.782 and a 31 ng/µL and after being confirmed 

with agarose gel electrophoresis 1% in Fig. 1. Bacillus sp. BK7.1 has a size of 1449 bp of the 16S rRNA nucleotide 

sequence, which similarity to Bacillus subtilis subsp. inaquosorum strain BGSC 3A28, homology level of 98.68% (Table 

1).  

 

Fig. 1 The electrophoresis results of DNA genome (a) and 16S rRNA gene (b) of Bacillus sp. BK7.1 on 1% agarose gel. Descriptions: 

M 100 bp DNA marker, S sample, S1 sample of DNA genome, S2 sample of 16SrRNA gene  

Table 1 The species of Bacillus sp. BK7.1 based on approach 16S rRNA gene with Basic Local Alignment Search Tools (BLAST) 

program 

 



No. Species Accession No. E value %ID 
Query 

Cover (%) 

1 
Bacillus subtilis subsp. inaquosorum 

strain BGSC 3A28  
NR_104873.1 0.0 98.68 99 

2 Bacillus subtilis strain DSM 10  NR_027552.1 0.0 98.61 99 

3 Bacillus subtilis strain JCM 1465  NR_113265.1 0.0 98.61 99 

 

The phylogenetic analysis results where Bacillus sp. BK7.1 and some strain of known Bacillus are presented in Fig. 2. 

The closest relative of Bacillus sp. BK7.1 is a strain of Bacillus subtilis strain SBMP4, and this grouping only shows the 

closeness of the strains based on the similarity of the 16S rRNA sequence, and does not describe the ability to produce 

biosurfactants, especially surfactin.  

 
 
Fig. 2 Analysis of the phylogenetic tree of Bacillus sp. BK7.1 based on cladograms of other species and strains, and Escherichia coli as 

an outgroup species. 

Screening of biosurfactant activity  

The hemolytic activity of B. subtilis BK7.1 can be seen in Fig. 3. The surface tension value of the supernatant fraction of 

B. subtilis BK7.1 of 49.17 mN/m can be seen in Table 2. When compared with the surface tension value of the control in 

the form of distilled water and the control media of Nutrient Broth (NB), the value of the culture supernatant of B. subtilis 

BK7.1 experienced a decrease in surface tension value of 15.21 mN/m from the NB media control and 22.83 mN/m from 

the distilled water control. The emulsification index value of the supernatant B. subtilis BK7.1 of 18.02%, which is left for 

one hour while after 24 hours the emulsification index value becomes 25.53%, where it has decreased by 21.92% (Fig. 4). 

The emulsification index value indicates the stability of the emulsion and lines that produce values above 50%. 

 

 
 
Fig. 3 Screening biosurfactant using hemolytic activity in Bacillus subtilis BK7.1 on blood agar plate media.  Descriptions: a isolate, b 

clear zone around the colony, c blood agar plate, R Replicates. 

https://www.ncbi.nlm.nih.gov/nucleotide/NR_104873.1?report=genbank&log$=nucltop&blast_rank=1&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_113265.1?report=genbank&log$=nucltop&blast_rank=3&RID=ANP2AB3B013


 

Table 2. Value of surface tension (mN/m) of supernatant fraction of Bacillus subtilis BK7.1 on treatment variation 

 
Treatment Surface Tension 

Control of sterile water 72 

Control of Nutrient Broth (NB) medium, room temperature, pH = 7 64.38 

Control of Tween 20 at 50% solution 37.11 

Supernatant of Bacillus subtilis BK7.1 (24 hours), room temperature, pH = 8 49.17 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against sterile water 22.83 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against NB medium 15.21 

 
 

Fig. 4 The emulsification activity of supernatant Bacillus subtilis BK7.1 on the kerosene substrate.  Descriptions: a kerosene, b emulsion, 

c isolate, (a) 1 hour of exposure, (b) 24 hours of exposure.  

Detection srfAA and srfAD surfactin gene  

The encoding gene of surfactin discovered sizes scale 201 bp, expected as srfAA gene, and 723 bp expected as srfAD gene 

(Fig. 5). In Table 3 showed that the similarity results, which have a value of 91.04% because there are several differences 

in amino acids possessed by B. subtilis BK 7.1 and other strains of B. subtilis. This can be caused by the presence of gene 

diversity even in the same B. subtilis group. 

 

 
 
Fig. 5 The electrophoresis results of srfAD (a) and srfAA (b) surfactin gene amplification of Bacillus subtilis BK7.1.  Description: M 

100 bp DNA marker, SA sample of srfAA surfactin gene 201 bp, SD sample of srfAD surfactin gene 729 bp 

 

Table 3.  The results of Basic Local Alignment Search Tools (BLAST) analysis of srfAA and srfAD protein isolates of Bacillus subtilis 

BK 7.1 

 

No. Protein Species  Accession No. E value %ID 
Query 

Cover (%) 



1. 
surfactin non-ribosomal 

peptide synthetase srfAA 

Bacillus subtilis 

inaquosorum 
WP_060397903.1 9e-34 91.04 100 

2. 
surfactin biosynthesis 

thioesterase SrfAD  
Bacillus subtilis group WP_075750164.1 5e-178 99.17 99 

Biosurfactant production  

Biosurfactant productions of B. subtilis BK7.1 on glucose, glycerol, and molasses substrates can be detected through a 

bacterial growth curve, surface tension value, and emulsification activity (Fig. 6). The growth activity of B. subtilis BK7.1 

showed on various substrates in Fig. 6a. The isolates had grown well on SMW media with the addition of glucose, glycerol, 

and molasses as substrates. On glucose substrate with up to 72 h incubation, isolates still showed an exponential phase, 

and 96 h incubation entered the stationary phase, as well as on glycerol substrate. On molasses substrate, it still showed an 

exponential phase until 96 h incubation. 

The results showed that the emulsification activity of B. subtilis BK7.1 on the three substrates tended to increase up to 

96 hours of incubation (Fig. 6bc), which proved that the isolate produced surfactin. On glucose substrate, the highest 

emulsification activity occurred at 96 hours of incubation. Decreased in surface tension values are shown in Fig. 6d. 

 

 
Fig. 6 Biosurfactant productions of Bacillus subtilis BK7.1 on glucose, glycerol, and molasses substrates, incubation period 0-, 24-, 48-

, 72-, 96-hours. Descriptions: a cells density, b emulsification activity (1 hour), c emulsification activity (24 hours), d surface tension 

value 

Discussions 

The electrophoresis results from 16S rRNA gene amplification of Bacillus sp. BK7.1 showed a band over 1500 bp in size 

(Fig. 1). Based on molecular identification, Bacillus sp. BK7.1, which similarity to Bacillus subtilis subsp. inaquosorum 

strain BGSC 3A28, homology level of 98.68%. The gene of 16S rRNA can be used for the identification of microorganisms 

because it is one of the genes with specific characteristics (Pearson 2013). The 16S RNA gene sequencing is a fast and 



accurate method for bacterial identification. Bacteria represent the same genus if they have a similarity index above 95% 

and the same species above 97% (Johnson et al. 2019, Srinivasan et al. 2015). The similarity is less than 100% because 

there are variations in amino acid sequences that affect the genotypic character but do not affect the phenotypic character 

(Johnson et al. 2019).  

Research conducted that B. subtilis strain SBMP4 can control pathogenic fungi such as Aspergillus and Fusarium in 

early Arachis hypogea plants (Syed et al. 2020). Bacillus has adapted and grown in extreme environmental conditions, 

forms endospores are resistant to stress, and has secreted various secondary metabolites such as surfactin (Shafi et al. 2017). 

Another essential characteristic is the abundance of secondary metabolites and moderate dietary requirements with a fast 

growth rate (Yadav et al. 2016, Mishra and Arora 2018). Surfactin produced by B. subtilis is one of the most effective 

biosurfactants. Surfactin reduced the surface tension of water up to 27 mN/m, with a critical micelle concentration of 0.01 

g/L and high emulsification activity and has shown antimicrobial, antiviral, and antitumor activity (Gudina et al. 2013, 

Gudina et al. 2016). 

Controlling insects can use biosurfactants introduced as an alternative to synthetic chemicals. Many reports that 

biosurfactant activity produced by the Bacillus strain can kill adult mosquitoes (Geetha et al. 2012). The hemolytic activity 

of B. subtilis BK7.1 can be seen in Fig. 3. The clear zone on the hemolytic activity test by biosurfactants has caused lysis 

of the red blood cell membrane, and the cells secrete hemoglobin. The hemolytic activity occurs through two different 

mechanisms, at a high concentration occur, cell membrane lysis, and at low concentrations increase, membrane 

permeability to solutes it will causes osmotic lysis (Zaragosa et al. 2010). The inhibition zone formed in the observation of 

hemolytic activity indicates a biosurfactant production process; the larger the lysis diameter of blood agar, the higher the 

biosurfactant concentration (Singh 2012). 

Bacteria can produce biosurfactants if they can reduce surface tension values by ≥ 10 mN/m (Francy et al. 1991). The 

surface and interfacial tension decrease is caused by the presence of hydrophobic and hydrophilic groups in the 

biosurfactants, where these compounds can accumulate between the liquid phases (Kapadia and Yagnik 2013). The 

entomopathogenic activity of biosurfactants against A. aegypti is caused by surfactin produced by B. subtilis. Surfactin 

triggers the surface tension of the water, causing a lack of oxygen underwater. The concentration of O2 causes the larval 

spiracles of A. aegypti to open so that it can cause the insect death. In addition, surfactin can be very active against pH, 

temperature around 25-42°C, and UV stability, making it enjoyable to develop as a larvicidal agent (Geetha et al. 2010). 

The emulsification index value of B. subtilis BK7.1 is a low category. Lipopeptides such as surfactin consist of 

cycloheptapeptides with amino acids attached to fatty acids of a different chain. This chemical structure causes surfactin 

to be amphiphilic and able to mix in both polar and non-polar solvents, while this amphiphilic structure allows surfactin to 

form emulsions. The characteristics of surfactin are involved in cell attachment and cause membrane disruption 

(Raaijmakers et al. 2010). The ability of surfactin to bind Ca2+ causes a conformational change in the peptide cycle and 

allows it to be incorporated into the phospholipid bilayer (Kedher et al. 2015, Kedher et al. 2017). 

 The emulsification activity of B. subtilis BK7.1 in 1-hour observation tends to decrease compared to 24 hours 

observation. This difference has shown that the emulsion is unstable because the isolate produces biosurfactants which act 

as active surface molecules only in decreasing surface tension. Based on molecular weight, biosurfactants have been 

classified into low and high molecular weight biosurfactants. Low molecular weight biosurfactants, including glycolipids, 

phospholipids, and lipopeptides, are efficient in reducing surface tension. Meanwhile, high molecular weight 

biosurfactants, such as proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers, are more 

effective in stabilizing oil-in-water emulsions as emulsifiers (Calvo et al. 2009). This result is supported by the fact that 

the biosurfactant produced by B. subtilis 21332 has shown high emulsification activity values on glucose substrates up to 

55.2% (Zhu et al. 2016). In contrast to the reported that value of the emulsification activity of B. subtilis 573 to 27.1%, 

with the addition of 1% bacterial culture concentration (Pereira et al. 2013), while in this study, the addition of 4%. 

Differences in the addition of culture affect the activity of biosurfactants produced by bacteria. The higher the concentration 

of bacterial culture added to the media, the density of bacteria in the substrate also increases and affects the speed of using 

the available substrate to produce biosurfactants. 

Bacillus species have srfAA gene, which encodes phosphopantetheinyl transferase and contributes to the nonribosomal 

biosynthesis of surfactin (Jacques 2011, Plaza et al. 2015). The nonribosomal peptide synthetase complex is coded by 

srfAA and srfAD gene known as surfactin synthetase. The srfAA and srfAD genes have contributed to the control of 

surfactin biosynthesis gene expression. The 4-phosphopantetheinyl transferase is an activating enzyme for the srfA 

multienzyme complex. The srfAA, srfAB, srfAC, and srfAD genes are involved in the assembly of heptamodular non-

ribosomal peptide (NPRS) synthesis in which the modular enzyme contains a typical N-terminal in the CLP-BGCs domain 



and acylates the first amino acid, glutamine with various 3-OH fatty acids derived from of primary metabolism (Théatre et 

al. 2021). The surfactin gene transforms surfactin synthetase into an active form. The production of biosurfactants 

especially surfactin, that have Bacillus influenced by srfAA and srfAD gene (Jacques 2011, Plaza et al. 2015). The Table 

3 showed that the similarity results have a value of 91.04%, because there are several differences in amino acids possessed 

by B. subtilis BK 7.1 and other strains of B. subtilis. The presence of gene diversity can cause this even in the same B. 

subtilis group. 

 The results of this study have also reported that there are differences in the production of biosurfactants. Marine bacteria 

on mineral salt media containing different carbon sources, higher emulsification activity of glycerol and starch substrates 

than glucose and sucrose substrates, with a value range of (E24) 45-85% (Das et al. 2008). Different reports showed that 

the emulsification activity of B. subtilis 573 to 48.4% (Pereira et al. 2013), also the emulsification activity of B. subtilis up 

to 38.3% (Zhu et al. 2016). The production of biosurfactant by B. circulans in glycerol and anthracene-supplemented 

glycerol substrate has been able to emulsify various hydrocarbons, such as diesel oil, hexadecane, kerosene, benzene, and 

gasoline in the range of 30-80% (Das et al. 2008). 

Biosurfactant production of B. subtilis BK7.1 observed through surface tension values is shown in Fig. 6d. Glucose and 

sucrose substrates have been reported as the best carbon sources for the biosurfactant production process by the Bacillus 

group (Abdel-Mawgoud et al. 2008). B. subtilis BK7.1 reduced the surface tension up to 51.47 mN/m at 48 h incubation. 

B. subtilis B30, in 2% glucose substrate has the lowest surface tension value (25.56 mN/m) (Al-Wahaibi et al. 2014). The 

difference in surface tension reduction is caused by different species and strains of bacteria, as well as the level of their 

ability to utilize various substrates. Variations in nucleotide sequences between bacteria species affect the formation of 

biosurfactant biosynthetic genes. 

On the glycerol substrate, B. subtilis BK7.1 has reduced the surface tension to 53.67 mN/m at 48 h, 42.01 at 96 h, and 

54.36 at 72 h incubation, respectively. B. subtilis N3-4P has grown better on glycerol substrate than glucose, hexadecane, 

and diesel. This B. subtilis N3-4P decreased the surface tension to 27.8 mN/m on glycerol substrate (Zhu et al. 2016). The 

same has been reported that the difference in the value of the decrease in surface tension by B. subtilis 309, B. subtilis 311, 

and B. subtilis 573 on glycerol and glucose substrates, with the value of the decrease in surface tension on glycerol 

substrates 29.7, 30.1, and 29.9 mN/m, but on glucose substrates 29.2, 29.0, and 29.5 mN/m, respectively (Pereira et al. 

2013). 

The value of the surface tension of B. subtilis BK7.1, on molasses substrate, was 45.91 mN/m. B. subtilis SNW3 on 

molasses substrate was able to reduce the surface tension up to 41 mN/m (Umar et al. 2021), B. subtilis ATCC 6633 up to 

30.48 mN/m (Kashkouli et al. 2011), and B. subtilis RSL-2 up to 24.09 mN/m (Verma et al. 2020). This difference has 

been due to the influence of various concentrations of molasses substrate, B. subtilis BK7.1 used 2% molasses, B. subtilis 

ATCC 6633 used 3% molasses (Kashkouli et al. 2011), and B. subtilis RSL-2 used 5% molasses (Verma et al. 2020). In 

addition, the efficiency of biosurfactant production by B. subtilis 3KP with molasses substrate is influenced by the 

instability of the biosurfactant product. Differences in composition and nutrient content in molasses, suspected related to 

the processing of sugar from the molasses (Ni’matuzahroh et al. 2017). The difference in sugar content of molasses as the 

main carbon source for the growth of B. subtilis 3KP bacteria has affected the productivity of biosurfactant production 

(Ni’matuzahroh et al. 2017). 

Indigenous entomopathogenic B. subtilis BK7.1 isolated from Baluran National Park, East Java, Indonesia, 98.68% 

similarity to B. subtilis subsp. inaquosorum strain BGSC 3A28. The results of screening for biosurfactant activity showed 

positive hemolytic activity, decreased surface tension, and increased emulsification activity. The srfAA and srfAD genes 

were detected encoding surfactin, which has the capacity for biosurfactant production on various glucose, glycerol, and 

molasses substrates. B. subtilis BK7.1 produced biosurfactant, the potential to develop for environmentally friendly 

biocontrol agent for biopesticides in agriculture and disease vector control in public health. 
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Abstract. Using biosurfactants as biocontrol agents have received much attention for pest control and disease vectors. The research 

aimed to identify focused on identifying the species and genetic relationship, hemolytic activity, detection of coding genes, and trial 

production of biosurfactants on various substrates of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in Baluran National 

Park, East Java, Indonesia. Screening of biosurfactants by tested testing hemolytic activity, surface tension and emulsification activities, 

detecting coding genes of biosurfactant biosynthesis, and testing the production of biosurfactants in various substrates were conducted. 

The results of the molecular identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method of 

Bacillus sp. BK7.1 has a genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed positive 

hemolytic activity results, reduced surface tension, and increased emulsification activities, and produced biosurfactant in glucose, 

glycerol, and molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding surfactin 

biosynthesis, the potential bacteria to produce bioinsecticide compounds. Based on these studies Thus, the indigenous entomopathogenic 

B. subtilis BK7.1 can be developed as environmentally friendly microbial bioinsecticides for pest control and disease vectors.  

 

Keywords: Biosurfactant production, crop protection, entomopathogenic Bacillus subtilis BK7.1, hemolytic activity, srfAA-srfAD 

gene.  

 

Running Title: Biosurfactant production of Bacillus subtilis BK7.1 

 

INTRODUCTION 

Controlling insect pests and insect vectors with chemical insecticides is broadly used (Korrat et al. 2012, Safni et al. 

2018). However, chemical insecticides have a negative impact on disease vector control and pest control because it causes 

insect resistance (Silva et al. 2018, Şengül et al. 2022). Biocontrol methods are obtainable to resolve these problems. 

Entomopathogens from microorganisms act as natural enemies that can produce toxic metabolites towards insect pests and 

plants pathogen. Biocontrol methods can be used as an alternative to fighting diseases transmitted by vector mosquitoes, 

plant pathogens, and insect pests. This method does not cause pollution and is environmentally friendly (Thomas 2017). 

Biocontrol agents using Bacillus strains are methods that have been widely developed because they are proven to be 

environmentally friendly (Bergamasco et al. 2013, Syaharuddin et al. 2018). Group of bacteria, fungi and yeasts have 
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produced biosurfactants (Santos et al. 2018). Biosurfactants can be synthesized by several groups of microbes and can act 

as a substitute for non-biodegradable and non-environmentally friendly synthetic surfactants (Moro et al. 2018). The 

biosurfactant produced by Bacillus is one of the entomopathogenic mechanisms that have caused the death of insects. 

Biosurfactants are unique microbial metabolites that appear in biological action against plant pathogens and insect pests.  

Biosurfactants have many interesting features, such as high levels of biodegradability and optimal activity under 

extreme conditions (Banat et al. 2010, Khedher et al. 2017). Following previous study, B. subtilis, B. amyloliquefaciens, 

and B, velezensis produces biosurfactant and efficient to be biocontrol agent against different targets (Geetha et al. 2010, 

Ghribi et al. 2012, Revathi et al. 2013, Nafidiastri et al. 2021). Bacillus sp. is able to synthesize lipopeptide biosurfactants, 

such as surfactin, fengicin, and iturin (Mongkolthanaruk 2012, Théatre et al. 2021). Surfactin consists of 7 amino acids 

bonded to a carboxyl group and a fatty acid hydroxyl group at carbon atoms number 12-16, synthesized by a complex 

mechanism, catalyzed by Nonribosomal Peptide Synthetase (NRPS) and encoded by the srfA operon. Surfactin can 

suppress plant diseases through strong biosurfactant activity (Cawoy et al. 2014) by inhibiting bacterial growth, lysing cell 

membranes or destroying them through physicochemical interactions (Deleu et al. 2013), suppressing fungi by promoting 

colonization of beneficial bacteria (Jia et al. 2015), and trigger systemic resistance (Cawoy et al. 2014). Biosurfactants 

have been applied in various industrial and petroleum fields (Nwaguma et al. 2016, Pele et al. 2019, Gomaa et al. 2019). 

Biosurfactants are lower in toxicity, more biodegradable and environmentally friendly, harmless, and work more 

specifically (De Almeida et al. 2016, Chaves et al. 2018, Gayathiri et al. 2022). Biosurfactants are stable and efficient under 

unfavorable salinity, pH and temperature often encountered in the petroleum industry (Silva et al. 2014). Biosurfactants 

can reduce surface and interfacial tension, as well as suitable emulsifiers and dispersing agents and are widely used in the 

industrial sector (Mulligan et al. 2014).  

Perspective studies to find entomopathogenic Bacillus are still being carried out to find the safest way to control disease 

vectors caused by mosquitoes. The results of screening tests for potential initial toxicity against A. aegypti larvae have 

reported that 68 entomopathogenic Bacillus sp. has been isolated from 30 natural soil samples with potential status 

variations from low to very high. In the affirmation test, there were three isolates coded BK7.1, BK7.2, and BK5.2, with 

the highest entomopathogenic potential status, larval mortality rates at 48 hours of exposure were 93, 87 and 70%, 

respectively (Salamun et al. 2020). Bacillus sp. BK5.2, a molecular identification, has been carried out, as B. thuringiensis 

BK5.2 which produces entomopathogenic cry toxin (Salamun et al. 2021), during the identification of Bacillus sp. BK7.1 

has been carried out through morphological and physiological characterization (Salamun et al. 2020). It is necessary to 

carry out molecular identification and mechanism of action of Bacillus sp. BK7.1 as an entomopathogenic bacteria. In this 

study, genetic characteristics were carried out to determine the species and the relationship of species in the phylogenetic 

tree, detection of biosurfactant coding genes, screening of biosurfactant activities such as hemolytic activity, surface 

tension, emulsification activity, and production on several substrates. 

 

MATERIALS AND METHODS 

Identification 16 S rRNA gene  

The DNA genome of Bacillus sp. BK7.1 was isolated according to the Thermo Scientific GeneJet Genomic DNA 

Purification Kit, visualized under ultraviolet by electrophoresis, purity and concentration with a Thermo Scientific 

Multiskan GO Microdroplet Spectrophotometer; purity was calculated by the ratio between the values of 260 nm and 280 

nm in the DNA samples (Meena et al. 2020). Amplifying genomic DNA of Bacillus sp. BK7.1 utilized 16S rRNA primers 

(27f and 1492r), examined by electrophoresis on 1% agarose gel followed by ethidium bromide (EtBr) dye and visualized 

under ultraviolet light, then purified and sequenced. Amplicon result was then aligned and contigs were developed from 

the sequences using the BioEdit Sequence Alignment Editor software for Windows. The 16S rRNA nucleotide sequence 

was aligned with 16S rRNA gene sequences from other microorganisms published in GenBank. Genetic similarity was 

determined to contig alignment and phylogenetic tree construction using the Program of Mega 7. The phylogenetic tree 

was designed by inputting FASTAs from BLAST species (Kumar et al. 2016). 

Screening biosurfactant activities  

Screening of biosurfactants was carried out by three methods, hemolytic activity, surface tension value, and emulsification 

activity. Hemolytic activity using blood agar media inoculated with Bacillus sp. BK7.1 by spots method and incubated for 

two days at room temperature and zone of inhibition observed around the colony. Surface tension was measured with Du 

Nouy Tensiometer, with 50% Tween 20 as a positive control and Nutrient Broth as a negative control. The decrease in the 

surface tension value of 10 mN/m indicated the potential to produce biosurfactants. The emulsification activity was 
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measured by inserting a 2 mL supernatant fraction and kerosene in a test tube. This mixture was stirred on Vortex Mixer 

for 1 minute, incubated for 24 hours at room temperature, and measured after the emulsion height was stable. The 

percentage (%) of the emulsion layer height (cm) divided by the total solution height was calculated as the emulsion index 

value (E24). 

Detection srfAA and srfAD surfactin gene  

Amplification of the srfAA and srfAD surfactin genes of Bacillus sp. BK7.1 using primers selected according to the 

literature. Electrophoresis and visualization were performed under UV Transluminator. Forward primer F-5' 

TCGGGACAGGAAGACATCAT 3' and reverse primer R-5' CCACTCAAACGGATAATCCTGA 3' for srfAA gene 

(Chung et al. 2008, Mora et al. 2020). Forward primer F-5’ ATGAGCCAACTCTTCAAATCATTTG 3’ and reverse primer 

R-5’ TCACGATTGAATGATTGGATGCT  3’ for srfAD gene. The amplicons were aligned and developed from the 

sequences by the BioEdit Sequence Alignment Editor for Windows software. The nucleotide sequences are translated into 

a protein to be formed. The translation of the nucleotide sequence aligned with BLASTp from the other Bacillus, which 

has been published on GenBank. 

Biosurfactant production  

The biosurfactant production activity begins by providing synthetic mineral water (SMW), by dissolved one by one, 3 g 

(NH4)2SO4, 10 g NaCl, 0.2 g MgSO4.7H2O, 0.01 g CaCl2, 0.001 g MnSO4.H2O, 0.001 g H3BO3, 0.001 g ZnSO4.7H2O, 

0.001 g CuSO4.5H2O, 0.005 g CoCl2.6H2O, and 0.001 g NaMoO4.2H2O into 900 mL distilled water, respectively. The 

elements phosphate and iron are made separately. The phosphate elements dissolved 5 g of KH2PO4 and 2 g of K2HPO4 

into 50 mL of distilled water, while the iron element dissolved 0.0006 g of FeSO4.7H2O into 50 mL of distilled water, 

respectively. The phosphate and iron elements were sterilized using an autoclave for 15-20 minutes at 121°C with 1 atm. 

A 250 mL culture bottle was prepared to be filled with 86.4 mL of SMW and added 2% substrates (glucose, glycerol, 

molasses) solution, was homogenized and ensured that the pH was 7.0. The culture vial was sterilized by autoclave for 15-

20 minutes at 121°C 1 atm. After sterilization, the culture was cooled at room temperature, then 4.8 mL of phosphate and 

iron elements were added. Then each added 4% (4 mL) of bacterial culture with an absorbance value of 0.5 Optical Density 

in 650 nm. The culture solution was incubated at room temperature for 96 hours with an agitation of 130 rpm. Every 24 

hours, bacterial biomass, surface tension value, and emulsification activity against diesel and kerosene were measured until 

96 hours incubation. 

RESULTS AND DISCUSSION 

Results 

Identification of 16S rRNA gene 

Purity and concentration of DNA genome of Bacillus sp. BK 7.1 obtained a 1.782 and a 31 ng/µL and after being confirmed 

with agarose gel electrophoresis 1% in Fig. 1. Bacillus sp. BK7.1 has a size of 1449 bp of the 16S rRNA nucleotide 

sequence, which similarity to Bacillus subtilis subsp. inaquosorum strain BGSC 3A28, homology level of 98.68% (Table 

1).  

 

Fig. 1 The electrophoresis results of DNA genome (a) and 16S rRNA gene (b) of Bacillus sp. BK7.1 on 1% agarose gel. Descriptions: 

M 100 bp DNA marker, S sample, S1 sample of DNA genome, S2 sample of 16SrRNA gene  

Table 1 The species of Bacillus sp. BK7.1 based on approach 16S rRNA gene with Basic Local Alignment Search Tools (BLAST) 

program 
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No. Species Accession No. E value %ID 
Query 

Cover (%) 

1 
Bacillus subtilis subsp. inaquosorum 

strain BGSC 3A28  
NR_104873.1 0.0 98.68 99 

2 Bacillus subtilis strain DSM 10  NR_027552.1 0.0 98.61 99 

3 Bacillus subtilis strain JCM 1465  NR_113265.1 0.0 98.61 99 

 

The phylogenetic analysis results where Bacillus sp. BK7.1 and some strain of known Bacillus are presented in Fig. 2. 

The closest relative of Bacillus sp. BK7.1 is a strain of Bacillus subtilis strain SBMP4, and this grouping only shows the 

closeness of the strains based on the similarity of the 16S rRNA sequence, and does not describe the ability to produce 

biosurfactants, especially surfactin.  

 
 
Fig. 2 Analysis of the phylogenetic tree of Bacillus sp. BK7.1 based on cladograms of other species and strains, and Escherichia coli as 

an outgroup species. 

Screening of biosurfactant activity  

The hemolytic activity of B. subtilis BK7.1 can be seen in Fig. 3. The surface tension value of the supernatant fraction of 

B. subtilis BK7.1 of 49.17 mN/m can be seen in Table 2. When compared with the surface tension value of the control in 

the form of distilled water and the control media of Nutrient Broth (NB), the value of the culture supernatant of B. subtilis 

BK7.1 experienced a decrease in surface tension value of 15.21 mN/m from the NB media control and 22.83 mN/m from 

the distilled water control. The emulsification index value of the supernatant B. subtilis BK7.1 of 18.02%, which is left for 

one hour while after 24 hours the emulsification index value becomes 25.53%, where it has decreased by 21.92% (Fig. 4). 

The emulsification index value indicates the stability of the emulsion and lines that produce values above 50%. 
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Fig. 3 Screening biosurfactant using hemolytic activity in Bacillus subtilis BK7.1 on blood agar plate media.  Descriptions: a isolate, b 

clear zone around the colony, c blood agar plate, R Replicates. 

 

Table 2. Value of surface tension (mN/m) of supernatant fraction of Bacillus subtilis BK7.1 on treatment variation 

 
Treatment Surface Tension 

Control of sterile water 72 

Control of Nutrient Broth (NB) medium, room temperature, pH = 7 64.38 

Control of Tween 20 at 50% solution 37.11 

Supernatant of Bacillus subtilis BK7.1 (24 hours), room temperature, pH = 8 49.17 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against sterile water 22.83 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against NB medium 15.21 

 
 

Fig. 4 The emulsification activity of supernatant Bacillus subtilis BK7.1 on the kerosene substrate.  Descriptions: a kerosene, b emulsion, 

c isolate, (a) 1 hour of exposure, (b) 24 hours of exposure.  

Detection srfAA and srfAD surfactin gene  

The encoding gene of surfactin discovered sizes scale 201 bp, expected as srfAA gene, and 723 bp expected as srfAD gene 

(Fig. 5). In Table 3 showed that the similarity results, which have a value of 91.04% because there are several differences 

in amino acids possessed by B. subtilis BK 7.1 and other strains of B. subtilis. This can be caused by the presence of gene 

diversity even in the same B. subtilis group. 

 

 
 
Fig. 5 The electrophoresis results of srfAD (a) and srfAA (b) surfactin gene amplification of Bacillus subtilis BK7.1.  Description: M 

100 bp DNA marker, SA sample of srfAA surfactin gene 201 bp, SD sample of srfAD surfactin gene 729 bp 

 

Table 3.  The results of Basic Local Alignment Search Tools (BLAST) analysis of srfAA and srfAD protein isolates of Bacillus subtilis 

BK 7.1 

 

No. Protein Species  Accession No. E value %ID 
Query 

Cover (%) 



1. 
surfactin non-ribosomal 

peptide synthetase srfAA 

Bacillus subtilis 

inaquosorum 
WP_060397903.1 9e-34 91.04 100 

2. 
surfactin biosynthesis 

thioesterase SrfAD  
Bacillus subtilis group WP_075750164.1 5e-178 99.17 99 

Biosurfactant production  

Biosurfactant productions of B. subtilis BK7.1 on glucose, glycerol, and molasses substrates can be detected through a 

bacterial growth curve, surface tension value, and emulsification activity (Fig. 6). The growth activity of B. subtilis BK7.1 

showed on various substrates in Fig. 6a. The isolates had grown well on SMW media with the addition of glucose, glycerol, 

and molasses as substrates. On glucose substrate with up to 72 h incubation, isolates still showed an exponential phase, 

and 96 h incubation entered the stationary phase, as well as on glycerol substrate. On molasses substrate, it still showed an 

exponential phase until 96 h incubation. 

The results showed that the emulsification activity of B. subtilis BK7.1 on the three substrates tended to increase up to 

96 hours of incubation (Fig. 6bc), which proved that the isolate produced surfactin. On glucose substrate, the highest 

emulsification activity occurred at 96 hours of incubation. Decreased in surface tension values are shown in Fig. 6d. 

 

 
Fig. 6 Biosurfactant productions of Bacillus subtilis BK7.1 on glucose, glycerol, and molasses substrates, incubation period 0-, 24-, 48-

, 72-, 96-hours. Descriptions: a cells density, b emulsification activity (1 hour), c emulsification activity (24 hours), d surface tension 

value 

Discussions 

The electrophoresis results from 16S rRNA gene amplification of Bacillus sp. BK7.1 showed a band over 1500 bp in size 

(Fig. 1). Based on molecular identification, Bacillus sp. BK7.1, which similarity to Bacillus subtilis subsp. inaquosorum 

strain BGSC 3A28, homology level of 98.68%. The gene of 16S rRNA can be used for the identification of microorganisms 

because it is one of the genes with specific characteristics (Pearson 2013). The 16S RNA gene sequencing is a fast and 
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accurate method for bacterial identification. Bacteria represent the same genus if they have a similarity index above 95% 

and the same species above 97% (Johnson et al. 2019, Srinivasan et al. 2015). The similarity is less than 100% because 

there are variations in amino acid sequences that affect the genotypic character but do not affect the phenotypic character 

(Johnson et al. 2019).  

Research conducted that B. subtilis strain SBMP4 can control pathogenic fungi such as Aspergillus and Fusarium in 

early Arachis hypogea plants (Syed et al. 2020). Bacillus has adapted and grown in extreme environmental conditions, 

forms endospores are resistant to stress, and has secreted various secondary metabolites such as surfactin (Shafi et al. 2017). 

Another essential characteristic is the abundance of secondary metabolites and moderate dietary requirements with a fast 

growth rate (Yadav et al. 2016, Mishra and Arora 2018). Surfactin produced by B. subtilis is one of the most effective 

biosurfactants. Surfactin reduced the surface tension of water up to 27 mN/m, with a critical micelle concentration of 0.01 

g/L and high emulsification activity and has shown antimicrobial, antiviral, and antitumor activity (Gudina et al. 2013, 

Gudina et al. 2016). 

Controlling insects can use biosurfactants introduced as an alternative to synthetic chemicals. Many reports that 

biosurfactant activity produced by the Bacillus strain can kill adult mosquitoes (Geetha et al. 2012). The hemolytic activity 

of B. subtilis BK7.1 can be seen in Fig. 3. The clear zone on the hemolytic activity test by biosurfactants has caused lysis 

of the red blood cell membrane, and the cells secrete hemoglobin. The hemolytic activity occurs through two different 

mechanisms, at a high concentration occur, cell membrane lysis, and at low concentrations increase, membrane 

permeability to solutes it will causes osmotic lysis (Zaragosa et al. 2010). The inhibition zone formed in the observation of 

hemolytic activity indicates a biosurfactant production process; the larger the lysis diameter of blood agar, the higher the 

biosurfactant concentration (Singh 2012). 

Bacteria can produce biosurfactants if they can reduce surface tension values by ≥ 10 mN/m (Francy et al. 1991, de 

Oliveira et al. 2021). The surface and interfacial tension decrease is caused by the presence of hydrophobic and hydrophilic 

groups in the biosurfactants, where these compounds can accumulate between the liquid phases (Kapadia and Yagnik 

2013). The entomopathogenic activity of biosurfactants against A. aegypti is caused by surfactin produced by B. subtilis. 

Surfactin triggers the surface tension of the water, causing a lack of oxygen underwater. The concentration of O2 causes 

the larval spiracles of A. aegypti to open so that it can cause the insect death. In addition, surfactin can be very active 

against pH, temperature around 25-42°C, and UV stability, making it enjoyable to develop as a larvicidal agent (Geetha et 

al. 2010, Guimarães et al. 2019). 

The emulsification index value of B. subtilis BK7.1 is a low category. Lipopeptides such as surfactin consist of 

cycloheptapeptides with amino acids attached to fatty acids of a different chain. This chemical structure causes surfactin 

to be amphiphilic and able to mix in both polar and non-polar solvents, while this amphiphilic structure allows surfactin to 

form emulsions. The characteristics of surfactin are involved in cell attachment and cause membrane disruption 

(Raaijmakers et al. 2010, Chen et al. 2022). The ability of surfactin to bind Ca2+ causes a conformational change in the 

peptide cycle and allows it to be incorporated into the phospholipid bilayer (Khedher et al. 2015, Khedher et al. 2017). 

 The emulsification activity of B. subtilis BK7.1 in 1-hour observation tends to decrease compared to 24 hours 

observation. This difference has shown that the emulsion is unstable because the isolate produces biosurfactants which act 

as active surface molecules only in decreasing surface tension. Based on molecular weight, biosurfactants have been 

classified into low and high molecular weight biosurfactants. Low molecular weight biosurfactants, including glycolipids, 

phospholipids, and lipopeptides, are efficient in reducing surface tension. Meanwhile, high molecular weight 

biosurfactants, such as proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers, are more 

effective in stabilizing oil-in-water emulsions as emulsifiers (Calvo et al. 2009, Uzoigwe et al. 2015). This result is 

supported by the fact that the biosurfactant produced by B. subtilis 21332 has shown high emulsification activity values on 

glucose substrates up to 55.2% (Zhu et al. 2016). In contrast to the reported that value of the emulsification activity of B. 

subtilis 573 to 27.1%, with the addition of 1% bacterial culture concentration (Pereira et al. 2013), while in this study, the 

addition of 4%. Differences in the addition of culture affect the activity of biosurfactants produced by bacteria. The higher 

the concentration of bacterial culture added to the media, the density of bacteria in the substrate also increases and affects 

the speed of using the available substrate to produce biosurfactants. 

Bacillus species have srfAA gene, which encodes phosphopantetheinyl transferase and contributes to the nonribosomal 

biosynthesis of surfactin (Jacques 2011, Plaza et al. 2015). The nonribosomal peptide synthetase complex is coded by 

srfAA and srfAD gene known as surfactin synthetase. The srfAA and srfAD genes have contributed to the control of 

surfactin biosynthesis gene expression. The 4-phosphopantetheinyl transferase is an activating enzyme for the srfA 

multienzyme complex. The srfAA, srfAB, srfAC, and srfAD genes are involved in the assembly of heptamodular non-
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ribosomal peptide (NPRS) synthesis in which the modular enzyme contains a typical N-terminal in the CLP-BGCs domain 

and acylates the first amino acid, glutamine with various 3-OH fatty acids derived from of primary metabolism (Théatre et 

al. 2021). The surfactin gene transforms surfactin synthetase into an active form. The production of biosurfactants 

especially surfactin, that have Bacillus influenced by srfAA and srfAD gene (Jacques 2011, Plaza et al. 2015). The Table 

3 showed that the similarity results have a value of 91.04%, because there are several differences in amino acids possessed 

by B. subtilis BK 7.1 and other strains of B. subtilis. The presence of gene diversity can cause this even in the same B. 

subtilis group. 

 The results of this study have also reported that there are differences in the production of biosurfactants. The higher 

emulsification activity from B. subtilis 573 to 48.4% (Pereira et al. 2013), B. subtilis 21332 up to 55.2% (Zhu et al. 2016), 

and B. subtilis N3-4P up to 38.3% (Zhu et al. 2016) on mineral salt media containing using different carbon sources than 

glycerol. The production of biosurfactant by B. circulans in glycerol and anthracene-supplemented glycerol substrate has 

been able to emulsify various hydrocarbons, such as diesel oil, hexadecane, kerosene, benzene, and gasoline in the range 

of 30-80% (Das et al. 2008). The production of biosurfactant by Bacillus nealsonii S2M in glycerol substrate has been able 

to emulsify various hydrocarbons in 55% (Phulpoto et al. 2020). 

Biosurfactant production of B. subtilis BK7.1 observed through surface tension values is shown in Fig. 6d. Glucose and 

sucrose substrates have been reported as the best carbon sources for the biosurfactant production process by the Bacillus 

group (Abdel-Mawgoud et al. 2008). B. subtilis BK7.1 reduced the surface tension up to 51.47 mN/m at 48 h incubation. 

B. subtilis B30, in 2% glucose substrate has the lowest surface tension value (25.56 mN/m) (Al-Wahaibi et al. 2014). The 

difference in surface tension reduction is caused by different species and strains of bacteria, as well as the level of their 

ability to utilize various substrates. Variations in nucleotide sequences between bacteria species affect the formation of 

biosurfactant biosynthetic genes. 

On the glycerol substrate, B. subtilis BK7.1 has reduced the surface tension to 53.67 mN/m at 48 h, 42.01 at 96 h, and 

54.36 at 72 h incubation, respectively. B. subtilis N3-4P has grown better on glycerol substrate than glucose, hexadecane, 

and diesel. This B. subtilis N3-4P decreased the surface tension to 27.8 mN/m on glycerol substrate (Zhu et al. 2016). The 

same has been reported that the difference in the value of the decrease in surface tension by B. subtilis 309, B. subtilis 311, 

and B. subtilis 573 on glycerol and glucose substrates, with the value of the decrease in surface tension on glycerol 

substrates 29.7, 30.1, and 29.9 mN/m, but on glucose substrates 29.2, 29.0, and 29.5 mN/m, respectively (Pereira et al. 

2013). 

The value of the surface tension of B. subtilis BK7.1, on molasses substrate, was 45.91 mN/m. B. subtilis SNW3 on 

molasses substrate was able to reduce the surface tension up to 41 mN/m (Umar et al. 2021), B. subtilis ATCC 6633 up to 

30.48 mN/m (Kashkouli et al. 2011), and B. subtilis RSL-2 up to 24.09 mN/m (Verma et al. 2020). This difference has 

been due to the influence of various concentrations of molasses substrate, B. subtilis BK7.1 used 2% molasses, B. subtilis 

ATCC 6633 used 3% molasses (Kashkouli et al. 2011), and B. subtilis RSL-2 used 5% molasses (Verma et al. 2020). In 

addition, the efficiency of biosurfactant production by B. subtilis 3KP with molasses substrate is influenced by the 

instability of the biosurfactant product. Differences in composition and nutrient content in molasses, suspected related to 

the processing of sugar from the molasses (Ni’matuzahroh et al. 2017). The difference in sugar content of molasses as the 

main carbon source for the growth of B. subtilis 3KP bacteria has affected the productivity of biosurfactant production 

(Ni’matuzahroh et al. 2017). 

Indigenous entomopathogenic B. subtilis BK7.1 isolated from Baluran National Park, East Java, Indonesia, 98.68% 

similarity to B. subtilis subsp. inaquosorum strain BGSC 3A28. The results of screening for biosurfactant activity showed 

positive hemolytic activity, decreased surface tension, and increased emulsification activity. The srfAA and srfAD genes 

were detected encoding surfactin, which has the capacity for biosurfactant production on various glucose, glycerol, and 

molasses substrates. B. subtilis BK7.1 produced biosurfactant, the potential to develop for environmentally friendly 

biocontrol agent for biopesticides in agriculture and disease vector control in public health. 
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Abstract. BUsing biosurfactants as biocontrol agents have received much attention for pest control and disease vectors. The research 

aimed to identify the species and genetic relationship, hemolytic activity, detect detection of coding genes, and trial production of 

biosurfactants on various substrates of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in Baluran National Park, East 

Java, Indonesia. Biosurfactant screening was carried out by testing hemolytic activity, surface tension, and emulsification activities, 

detecting coding genes of biosurfactant biosynthesis, and testing biosurfactant production in various substrates.Screening of 

biosurfactants by testing hemolytic activity, surface tension and emulsification activities, detecting coding genes of biosurfactant 

biosynthesis, and testing the production of biosurfactants in various substrates were conducted. The results of the molecular 

identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method of for Bacillus sp. BK7.1 has a 

genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed positive hemolytic activity 

results, reduced surface tension, and increased emulsification activities, and the production ofproduced biosurfactant in glucose, 

glycerol, and molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding surfactin 

biosynthesis, giving it the potential bacteria to produce bioinsecticide compounds. Based on these studies, the indigenous 

entomopathogenic B. subtilis BK7.1 can be developed as environmentally friendly microbial bioinsecticides for pest control and 

disease vectors.  

 

Keywords: Biosurfactant production, crop protection, entomopathogenic Bacillus subtilis BK7.1, hemolytic activity, srfAA-srfAD 

gene.  

 

Running Title: Biosurfactant production of Bacillus subtilis BK7.1 

 

INTRODUCTION 

Controlling insect pests and insect vectors with chemical insecticides is widely broadly used (Safni et al. 2018). 

However, chemical insecticides have a negative impact on disease vector control and pest control because they causeit 

causes insect resistance (Şengül et al. 2022). Biocontrol methods are available obtainable to resolve these problems. 

Entomopathogens are natural enemies that can produce toxic metabolites against insect pests and plant 

pathogens.Entomopathogens from microorganisms act as natural enemies that can produce toxic metabolites towards 
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insect pests and plants pathogen. Biocontrol methods can be used as an alternative to fighting diseases transmitted by 

vector mosquitoes, plant pathogens, and insect pests. This method does not cause pollution and is environmentally 

friendly (Thomas 2017). 

Biocontrol agents using Bacillus strains are methods that have been widely developed because they are proven to be 

environmentally friendly (ttps://doi.org/10.3390/microorganisms8020232; https://www.nature.com/articles/s41598-

021-93285-7, Bergamasco et al. 2013, Syaharuddin et al. 2018). A Ggroup of bacteria, fungi, and yeasts have produced 

biosurfactants (Santos et al. 2018). Several groups of microbes can synthesize biosurfactants, which can be used to 

replace non-biodegradable and environmentally unfriendly synthetic surfactants Biosurfactants can be synthesized by 

several groups of microbes and can act as a substitute for non-biodegradable and non-environmentally friendly synthetic 

surfactants (Moro et al. 2018). The biosurfactant produced by Bacillus is one of the entomopathogenic mechanisms that 

have caused the death of insects. Biosurfactants are unique microbial metabolites that appear in biological action against 

plant pathogens and insect pests.  

Biosurfactants have many interesting features, such as high levels of biodegradability and optimal activity under 

extreme conditions (Khedher et al. 2017). Following previous studiesy, B. subtilis, B. amyloliquefaciens, and B, 

velezensis produces biosurfactant and are efficient to be biocontrol agents against different targets (Revathi et al. 2013, 

Nafidiastri et al. 2021). Bacillus sp. is able to synthesize lipopeptide biosurfactants, such as surfactin, fengicin, and iturin 

(Théatre et al. 2021). Surfactin consists of 7 amino acids bonded to a carboxyl group and a fatty acid hydroxyl group at 

carbon atoms number 12-16, synthesized by a complex mechanism, catalyzed by Nonribosomal Peptide Synthetase 

(NRPS) and encoded by the srfA operon. Surfactin can suppress plant diseases through strong biosurfactant activity 

(Cawoy et al. 2014) by inhibiting bacterial growth, lysing cell membranes or destroying them through physicochemical 

interactions (Deleu et al. 2013), suppressing fungi by promoting colonization of beneficial bacteria (Jia et al. 2015), and 

triggering systemic resistance (Cawoy et al. 2014). Biosurfactants have been applied in various industrial and petroleum 

fields (Nwaguma et al. 2016, Pele et al. 2019, Gomaa et al. 2019). Biosurfactants are lower in toxicity, more 

biodegradable and environmentally friendly, harmless, and work more specifically (De Almeida et al. 2016, Chaves et al. 

2018, Gayathiri et al. 2022). Biosurfactants are stable and efficient under unfavorable salinity, pH and temperature 

conditions often encountered in the petroleum industry (Silva et al. 2014). Biosurfactants can reduce surface and 

interfacial tension, as well as suitable emulsifiers and dispersing agents and are widely used in the industrial sector 

(Mulligan et al. 2014).  

Perspective studies to find entomopathogenic Bacillus are still being carried out to find the safest way to control 

disease vectors caused by mosquitoes. The results of screening tests for potential initial toxicity against A. aegypti larvae 

have reported that 68 entomopathogenic Bacillus sp. has have been isolated from 30 natural soil samples with potential 

status variations from low to very high. In the affirmation test, there were three isolates coded BK7.1, BK7.2, and BK5.2, 

with the highest entomopathogenic potential status, larval mortality rates at 48 hours of exposure were 93, 87 and 70%, 

respectively (Salamun et al. 2020). Bacillus sp. BK5.2, a molecular identification, has been carried out, as B. 

thuringiensis BK5.2 which produces an entomopathogenic cry toxin (Salamun et al. 2021). The, during the  identification 

of Bacillus sp. BK7.1 has been carried out through morphological and physiological characterization (Salamun et al. 

2020). It is necessary to carry out molecular identification and mechanism of action of Bacillus sp. BK7.1 as an 

entomopathogenic bacteria. Genetic characteristics were used in this study to determine the species and their 

relationships in the phylogenetic tree, as well as the detection of biosurfactant coding genes and the screening of 

biosurfactant activities such as hemolytic activity, surface tension, emulsification activity, and production on various 

substrates.In this study, genetic characteristics were carried out to determine the species and the relationship of species in 

the phylogenetic tree, detection of biosurfactant coding genes, screening of biosurfactant activities such as hemolytic 

activity, surface tension, emulsification activity, and production on several substrates. 

 

MATERIALS AND METHODS 

Identification 16 S rRNA gene  

The DNA genome of Bacillus sp. BK7.1 was isolated according to the Thermo Scientific GeneJet Genomic DNA 

Purification Kit, visualized under ultraviolet by electrophoresis, purity and concentration with a Thermo Scientific 

Multiskan GO Microdroplet Spectrophotometer; purity was calculated by the ratio between the values of 260 nm and 280 

nm in the DNA samples (Meena et al. 2020). Amplifying genomic DNA of Bacillus sp. BK7.1 utilized 16S rRNA 

primers (27f and 1492r), examined by electrophoresis on 1% agarose gel followed by ethidium bromide (EtBr) dye and 
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visualized under ultraviolet light, then purified and sequenced. Amplicon result was then aligned and contigs were 

developed from the sequences using the BioEdit Sequence Alignment Editor software for Windows. The 16S rRNA 

nucleotide sequence was aligned with 16S rRNA gene sequences from other microorganisms published in GenBank. 

Genetic similarity was determined to contig alignment and phylogenetic tree construction using the Program of Mega 7. 

The phylogenetic tree was designed by inputting FASTAs from BLAST species (Kumar et al. 2016). 

Screening biosurfactant activities  

Screening of biosurfactants was carried out by three methods, hemolytic activity, surface tension value, and 

emulsification activity. Hemolytic activity using blood agar media inoculated with Bacillus sp. BK7.1 by spots method 

and incubated for two days at room temperature and zone of inhibition observed around the colony. Surface tension was 

measured with Du Nouy Tensiometer, with 50% Tween 20 as a positive control and Nutrient Broth as a negative control. 

The decrease in the surface tension value of 10 mN/m indicated the potential to produce biosurfactants. The 

emulsification activity was measured by inserting a 2 mL supernatant fraction and kerosene in a test tube. This mixture 

was stirred on Vortex Mixer for 1 minute, incubated for 24 hours at room temperature, and measured after the emulsion 

height was stable. The percentage (%) of the emulsion layer height (cm) divided by the total solution height was 

calculated as the emulsion index value (E24). 

Detection srfAA and srfAD surfactin gene  

Amplification of the srfAA and srfAD surfactin genes of Bacillus sp. BK7.1 using primers selected according to the 

literature. Electrophoresis and visualization were performed under UV Transluminator. Forward primer F-5' 

TCGGGACAGGAAGACATCAT 3' and reverse primer R-5' CCACTCAAACGGATAATCCTGA 3' for srfAA gene 

(Mora et al. 2020). Forward primer F-5’ ATGAGCCAACTCTTCAAATCATTTG 3’ and reverse primer R-5’ 

TCACGATTGAATGATTGGATGCT  3’ for srfAD gene. The amplicons were aligned and developed from the 

sequences by the BioEdit Sequence Alignment Editor for Windows software. The nucleotide sequences are translated 

into a protein to be formed. The translation of the nucleotide sequence aligned with BLASTp from the other Bacillus, 

which has been published on GenBank. 

Biosurfactant production  

The biosurfactant production activity begins by providing synthetic mineral water (SMW), by dissolved one by one, 3 g 

(NH4)2SO4, 10 g NaCl, 0.2 g MgSO4.7H2O, 0.01 g CaCl2, 0.001 g MnSO4.H2O, 0.001 g H3BO3, 0.001 g 

ZnSO4.7H2O, 0.001 g CuSO4.5H2O, 0.005 g CoCl2.6H2O, and 0.001 g NaMoO4.2H2O into 900 mL distilled water, 

respectively. The elements phosphate and iron are made separately. The phosphate elements dissolved 5 g of KH2PO4 

and 2 g of K2HPO4 into 50 mL of distilled water, while the iron element dissolved 0.0006 g of FeSO4.7H2O into 50 mL 

of distilled water, respectively. The phosphate and iron elements were sterilized using an autoclave for 15-20 minutes at 

121°C with 1 atm. 

A 250 mL culture bottle was prepared to be filled with 86.4 mL of SMW and added 2% substrates (glucose, glycerol, 

molasses) solution, was homogenized and ensured that the pH was 7.0. The culture vial was sterilized by autoclave for 

15-20 minutes at 121°C 1 atm. After sterilization, the culture was cooled at room temperature, then 4.8 mL of phosphate 

and iron elements were added. Then each added 4% (4 mL) of bacterial culture with an absorbance value of 0.5 Optical 

Density in 650 nm. The culture solution was incubated at room temperature for 96 hours with an agitation of 130 rpm. 

Every 24 hours, bacterial biomass, surface tension value, and emulsification activity against diesel and kerosene were 

measured until 96 hours incubation. 

RESULTS AND DISCUSSION 

Results 

Identification of 16S rRNA gene 

Purity and concentration of DNA genome of Bacillus sp. BK 7.1 obtained a 1.782 and a 31 ng/µL and after being 

confirmed with agarose gel electrophoresis 1% in Fig. 1. Bacillus sp. BK7.1 has a size of 1449 bp of the 16S rRNA 

nucleotide sequence, which similarity to Bacillus subtilis subsp. inaquosorum strain BGSC 3A28, homology level of 

98.68% (Table 1).  



 

Fig. 1 The electrophoresis results of DNA genome (a) and 16S rRNA gene (b) of Bacillus sp. BK7.1 on 1% agarose gel. Descriptions: 

M 100 bp DNA marker, S sample, S1 sample of DNA genome, S2 sample of 16SrRNA gene  

Table 1 The species of Bacillus sp. BK7.1 based on approach 16S rRNA gene with Basic Local Alignment Search Tools (BLAST) 

program 

 

No. Species Accession No. E value %ID 
Query 

Cover (%) 

1 
Bacillus subtilis subsp. inaquosorum 

strain BGSC 3A28  
NR_104873.1 0.0 98.68 99 

2 Bacillus subtilis strain DSM 10  NR_027552.1 0.0 98.61 99 

3 Bacillus subtilis strain JCM 1465  NR_113265.1 0.0 98.61 99 

 

The phylogenetic analysis results where Bacillus sp. BK7.1 and some strain of known Bacillus are presented in Fig. 

2. The closest relative of Bacillus sp. BK7.1 is a strain of Bacillus subtilis strain SBMP4, and this grouping only shows 

the closeness of the strains based on the similarity of the 16S rRNA sequence, and does not describe the ability to 

produce biosurfactants, especially surfactin.  

 
 
Fig. 2 Analysis of the phylogenetic tree of Bacillus sp. BK7.1 based on cladograms of other species and strains, and Escherichia coli 

as an outgroup species. 

Screening of biosurfactant activity  

The hemolytic activity of B. subtilis BK7.1 can be seen in Fig. 3. The surface tension value of the supernatant fraction of 

B. subtilis BK7.1 of 49.17 mN/m can be seen in Table 2. When compared with the surface tension value of the control in 

the form of distilled water and the control media of Nutrient Broth (NB), the value of the culture supernatant of B. 

subtilis BK7.1 experienced a decrease in surface tension value of 15.21 mN/m from the NB media control and 22.83 

https://www.ncbi.nlm.nih.gov/nucleotide/NR_104873.1?report=genbank&log$=nucltop&blast_rank=1&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_113265.1?report=genbank&log$=nucltop&blast_rank=3&RID=ANP2AB3B013


mN/m from the distilled water control. The emulsification index value of the supernatant B. subtilis BK7.1 of 18.02%, 

which is left for one hour while after 24 hours the emulsification index value becomes 25.53%, where it has decreased by 

21.92% (Fig. 4). The emulsification index value indicates the stability of the emulsion and lines that produce values 

above 50%. 

 

 
 
Fig. 3 Screening biosurfactant using hemolytic activity in Bacillus subtilis BK7.1 on blood agar plate media.  Descriptions: a isolate, b 

clear zone around the colony, c blood agar plate, R Replicates. 

 

Table 2. Value of surface tension (mN/m) of supernatant fraction of Bacillus subtilis BK7.1 on treatment variation 

 
Treatment Surface Tension 

Control of sterile water 72 

Control of Nutrient Broth (NB) medium, room temperature, pH = 7 64.38 

Control of Tween 20 at 50% solution 37.11 

Supernatant of Bacillus subtilis BK7.1 (24 hours), room temperature, pH = 8 49.17 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against sterile water 22.83 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against NB medium 15.21 

 
 

Fig. 4 The emulsification activity of supernatant Bacillus subtilis BK7.1 on the kerosene substrate.  Descriptions: a kerosene, b 

emulsion, c isolate, (a) 1 hour of exposure, (b) 24 hours of exposure.  

Detection srfAA and srfAD surfactin gene  

The encoding gene of surfactin discovered sizes scale 201 bp, expected as srfAA gene, and 723 bp expected as srfAD 

gene (Fig. 5). In Table 3 showed that the similarity results, which have a value of 91.04% because there are several 

differences in amino acids possessed by B. subtilis BK 7.1 and other strains of B. subtilis. This can be caused by the 

presence of gene diversity even in the same B. subtilis group. 

 



 
 
Fig. 5 The electrophoresis results of srfAD (a) and srfAA (b) surfactin gene amplification of Bacillus subtilis BK7.1.  Description: M 

100 bp DNA marker, SA sample of srfAA surfactin gene 201 bp, SD sample of srfAD surfactin gene 729 bp 

 

Table 3.  The results of Basic Local Alignment Search Tools (BLAST) analysis of srfAA and srfAD protein isolates of Bacillus 

subtilis BK 7.1 

 

No. Protein Species  Accession No. E value %ID 
Query 

Cover (%) 

1. 
surfactin non-ribosomal 

peptide synthetase srfAA 

Bacillus subtilis 

inaquosorum 
WP_060397903.1 9e-34 91.04 100 

2. 
surfactin biosynthesis 

thioesterase SrfAD  

Bacillus subtilis 

group 
WP_075750164.1 5e-178 99.17 99 

Biosurfactant production  

Biosurfactant productions of B. subtilis BK7.1 on glucose, glycerol, and molasses substrates can be detected through a 

bacterial growth curve, surface tension value, and emulsification activity (Fig. 6). The growth activity of B. subtilis 

BK7.1 showed on various substrates in Fig. 6a. The isolates had grown well on SMW media with the addition of glucose, 

glycerol, and molasses as substrates. On glucose substrate with up to 72 h incubation, isolates still showed an exponential 

phase, and 96 h incubation entered the stationary phase, as well as on glycerol substrate. On molasses substrate, it still 

showed an exponential phase until 96 h incubation. 

The results showed that the emulsification activity of B. subtilis BK7.1 on the three substrates tended to increase up to 

96 hours of incubation (Fig. 6bc), which proved that the isolate produced surfactin. On glucose substrate, the highest 

emulsification activity occurred at 96 hours of incubation. Decreased in surface tension values are shown in Fig. 6d. 

 



 
Fig. 6 Biosurfactant productions of Bacillus subtilis BK7.1 on glucose, glycerol, and molasses substrates, incubation period 0-, 24-, 

48-, 72-, 96-hours. Descriptions: a cells density, b emulsification activity (1 hour), c emulsification activity (24 hours), d surface 

tension value 

Discussions 

The electrophoresis results from 16S rRNA gene amplification of Bacillus sp. BK7.1 showed a band over 1500 bp in size 

(Fig. 1). Bacillus sp. BK7.1 has a 98.68% similarity to Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 

based on molecular identification.Based on molecular identification, Bacillus sp. BK7.1, which similarity to Bacillus 

subtilis subsp. inaquosorum strain BGSC 3A28, homology level of 98.68%. The gene of 16S rRNA can be used for the 

identification of microorganisms because it is one of the genes with specific characteristics (Pearson 2013). The 16S 

RNA gene sequencing is a fast and accurate method for bacterial identification. Bacteria represent the same genus if they 

have a similarity index above 95% and the same species above 97% (Johnson et al. 2019, Srinivasan et al. 2015). The 

similarity is less than 100% because there are variations in amino acid sequences that affect the genotypic character but 

do not affect the phenotypic character (Johnson et al. 2019).  

Research has shownconducted that B. subtilis strain SBMP4 can control pathogenic fungi such as Aspergillus and 

Fusarium in early Arachis hypogea plants (Syed et al. 2020). Bacillus has adapted to and grown in extreme 

environmental conditions, forms endospores that are resistant to stress, and secreteshas secreted various secondary 

metabolites such as surfactin (Shafi et al. 2017). Another essential characteristic is the abundance of secondary 

metabolites and moderate dietary requirements with a fast growth rate (Yadav et al. 2016, Mishra and Arora 2018). 

Surfactin produced by B. subtilis is one of the most effective biosurfactants. Surfactin reduced the surface tension of 

water up to 27 mN/m, with a critical micelle concentration of 0.01 g/L and high emulsification activity and has shown 

antimicrobial, antiviral, and antitumor activity (Gudina et al. 2013, Gudina et al. 2016). 

Controlling insects can use biosurfactants introduced as an alternative to synthetic chemicals. Many reports that 

biosurfactant activity produced by the Bacillus strain can kill adult mosquitoes. The hemolytic activity of B. subtilis 

BK7.1 can be seen in Fig. 3. The clear zone on the hemolytic activity test by biosurfactants has caused lysis of the red 

blood cell membrane, and the cells secrete hemoglobin. The hemolytic activity occurs through two different mechanisms, 
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at a high concentration occur, cell membrane lysis, and at low concentrations increase, membrane permeability to solutes 

it will causes osmotic lysis (Zaragosa et al. 2010). The inhibition zone formed in the observation of hemolytic activity 

indicates a biosurfactant production process; the larger the lysis diameter of blood agar, the higher the biosurfactant 

concentration (Singh 2012). 

Bacteria can produce biosurfactants if they can reduce surface tension values by ≥ 10 mN/m (de Oliveira et al. 2021). 

The surface and interfacial tension decrease is caused by the presence of hydrophobic and hydrophilic groups in the 

biosurfactants, where these compounds can accumulate between the liquid phases (Kapadia and Yagnik 2013). The 

entomopathogenic activity of biosurfactants against A. aegypti is caused by surfactin produced by B. subtilis. Surfactin 

triggers the surface tension of the water, causing a lack of oxygen underwater. The concentration of O2 causes the larval 

spiracles of A. aegypti to open so that it can cause the insect death. In addition, surfactin can be very active against pH, 

temperature around 25-42°C, and UV stability, making it enjoyable to develop as a larvicidal agent (Guimarães et al. 

2019). 

The emulsification index value of B. subtilis BK7.1 is a low category. Lipopeptides such as surfactin consist of 

cycloheptapeptides with amino acids attached to fatty acids of a different chain. This chemical structure causes surfactin 

to be amphiphilic and able to mix in both polar and non-polar solvents, while this amphiphilic structure allows surfactin 

to form emulsions. The characteristics of surfactin are involved in cell attachment and cause membrane disruption (Chen 

et al. 2022). The ability of surfactin to bind Ca2+ causes a conformational change in the peptide cycle and allows it to be 

incorporated into the phospholipid bilayer (Khedher et al. 2015, Khedher et al. 2017). 

 The emulsification activity of B. subtilis BK7.1 in 1-hour observation tends to decrease compared to 24 hours 

observation. This difference has shown that the emulsion is unstable because the isolate produces biosurfactants which 

act as active surface molecules only in decreasing surface tension. Based on molecular weight, biosurfactants have been 

classified into low and high molecular weight biosurfactants. Low molecular weight biosurfactants, including 

glycolipids, phospholipids, and lipopeptides, are efficient in reducing surface tension. Meanwhile, high molecular weight 

biosurfactants, such as proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers, are more 

effective in stabilizing oil-in-water emulsions as emulsifiers (Uzoigwe et al. 2015). This result is supported by the fact 

that the biosurfactant produced by B. subtilis 21332 has shown high emulsification activity values on glucose substrates 

up to 55.2% (Zhu et al. 2016). In contrast to the reported that value of the emulsification activity of B. subtilis 573 to 

27.1%, with the addition of 1% bacterial culture concentration (Pereira et al. 2013), while in this study, the addition of 

4%. Differences in the addition of culture affect the activity of biosurfactants produced by bacteria. The higher the 

concentration of bacterial culture added to the media, the density of bacteria in the substrate also increases and affects the 

speed of using the available substrate to produce biosurfactants. 

Bacillus species have srfAA gene, which encodes phosphopantetheinyl transferase and contributes to the 

nonribosomal biosynthesis of surfactin (Plaza et al. 2015). The nonribosomal peptide synthetase complex is coded by 

srfAA and srfAD gene known as surfactin synthetase. The srfAA and srfAD genes have contributed to the control of 

surfactin biosynthesis gene expression. The 4-phosphopantetheinyl transferase is an activating enzyme for the srfA 

multienzyme complex. The srfAA, srfAB, srfAC, and srfAD genes are involved in the assembly of heptamodular non-

ribosomal peptide (NPRS) synthesis in which the modular enzyme contains a typical N-terminal in the CLP-BGCs 

domain and acylates the first amino acid, glutamine with various 3-OH fatty acids derived from of primary metabolism 

(Théatre et al. 2021). The surfactin gene transforms surfactin synthetase into an active form. The production of 

biosurfactants especially surfactin, that have Bacillus influenced by srfAA and srfAD gene (Plaza et al. 2015). The Table 

3 showed that the similarity results have a value of 91.04%, because there are several differences in amino acids 

possessed by B. subtilis BK 7.1 and other strains of B. subtilis. The presence of gene diversity can cause this even in the 

same B. subtilis group. 

 The results of this study have also reported that there are differences in the production of biosurfactants. The higher 

emulsification activity from B. subtilis 573 to 48.4% (Pereira et al. 2013), B. subtilis 21332 up to 55.2% (Zhu et al. 

2016), and B. subtilis N3-4P up to 38.3% (Zhu et al. 2016) on mineral salt media containing using different carbon 

sources than glycerol. The production of biosurfactant by Bacillus nealsonii S2M in glycerol substrate has been able to 

emulsify various hydrocarbons in 55% (Phulpoto et al. 2020). 

Biosurfactant production of B. subtilis BK7.1 observed through surface tension values is shown in Fig. 6d. Glucose 

and sucrose substrates have been reported as the best carbon sources for the biosurfactant production process by the 

Bacillus group (Abdel-Mawgoud et al. 2008). B. subtilis BK7.1 reduced the surface tension up to 51.47 mN/m at 48 h 

incubation. B. subtilis B30, in 2% glucose substrate has the lowest surface tension value (25.56 mN/m) (Al-Wahaibi et al. 
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2014). The difference in surface tension reduction is caused by different species and strains of bacteria, as well as the 

level of their ability to utilize various substrates. Variations in nucleotide sequences between bacteria species affect the 

formation of biosurfactant biosynthetic genes. 

On the glycerol substrate, B. subtilis BK7.1 has reduced the surface tension to 53.67 mN/m at 48 h, 42.01 at 96 h, and 

54.36 at 72 h incubation, respectively. B. subtilis N3-4P has grown better on glycerol substrate than glucose, hexadecane, 

and diesel. This B. subtilis N3-4P decreased the surface tension to 27.8 mN/m on glycerol substrate (Zhu et al. 2016). 

The same has been reported that the difference in the value of the decrease in surface tension by B. subtilis 309, B. 

subtilis 311, and B. subtilis 573 on glycerol and glucose substrates, with the value of the decrease in surface tension on 

glycerol substrates 29.7, 30.1, and 29.9 mN/m, but on glucose substrates 29.2, 29.0, and 29.5 mN/m, respectively 

(Pereira et al. 2013). 

The value of the surface tension of B. subtilis BK7.1, on molasses substrate, was 45.91 mN/m. B. subtilis SNW3 on 

molasses substrate was able to reduce the surface tension up to 41 mN/m (Umar et al. 2021), B. subtilis ATCC 6633 up 

to 30.48 mN/m (Kashkouli et al. 2011), and B. subtilis RSL-2 up to 24.09 mN/m (Verma et al. 2020). This difference has 

been due to the influence of various concentrations of molasses substrate, B. subtilis BK7.1 used 2% molasses, B. subtilis 

ATCC 6633 used 3% molasses (Kashkouli et al. 2011), and B. subtilis RSL-2 used 5% molasses (Verma et al. 2020). In 

addition, the efficiency of biosurfactant production by B. subtilis 3KP with molasses substrate is influenced by the 

instability of the biosurfactant product. Differences in composition and nutrient content in molasses, suspected related to 

the processing of sugar from the molasses (Ni’matuzahroh et al. 2017). The difference in sugar content of molasses as the 

main carbon source for the growth of B. subtilis 3KP bacteria has affected the productivity of biosurfactant production 

(Ni’matuzahroh et al. 2017). 

Indigenous entomopathogenic B. subtilis BK7.1 isolated from Baluran National Park, East Java, Indonesia, 98.68% 

similarity to B. subtilis subsp. inaquosorum strain BGSC 3A28. The results of screening for biosurfactant activity showed 

positive hemolytic activity, decreased surface tension, and increased emulsification activity. The srfAA and srfAD genes 

were detected encoding surfactin, which has the capacity for biosurfactant production on various glucose, glycerol, and 

molasses substrates. B. subtilis BK7.1 produced biosurfactant, the potential to develop for environmentally friendly 

biocontrol agent for biopesticides in agriculture and disease vector control in public health. 
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Abstract. Biosurfactants as biocontrol agents have received much attention for pest control and disease vectors. The research aimed to 26 
identify the species and genetic relationship, hemolytic activity, detect coding genes, and trial production of biosurfactants on various 27 
substrates of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in Baluran National Park, East Java, Indonesia. 28 
Biosurfactant screening was carried out by testing hemolytic activity, surface tension, and emulsification activities, detecting coding 29 
genes of biosurfactant biosynthesis, and testing biosurfactant production in various substrates. The results of the molecular 30 
identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method for Bacillus sp. BK7.1 has a 31 
genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed positive hemolytic activity 32 
results, reduced surface tension, increased emulsification activities, and the production of biosurfactant in glucose, glycerol, and 33 
molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding surfactin biosynthesis, 34 
giving it the potential to produce bioinsecticide compounds. Based on these studies, the indigenous entomopathogenic B. subtilis 35 
BK7.1 can be developed as environmentally friendly microbial bioinsecticides for pest control and disease vectors.  36 
 37 
Keywords: Biosurfactant production, crop protection, entomopathogenic Bacillus subtilis BK7.1, hemolytic activity, srfAA-srfAD 38 
gene.  39 
 40 
Running Title: Biosurfactant production of Bacillus subtilis BK7.1 41 
 42 

INTRODUCTION 43 

Controlling insect pests and insect vectors with chemical insecticides is used widely all around the globe (Safni et al. 44 
2018). However, the chemical insecticides have a negative impact on control of disease vector and pest because they 45 
cause insect resistance (Şengül et al. 2022). There are a number of biocontrol methods available to resolve these 46 
problems. Entomopathogens are natural enemies that can produce toxic metabolites against insect pests and plant 47 
pathogens. Biocontrol methods can be used as an alternative in fighting diseases transmitted by vector mosquitoes, plant 48 
pathogens, and insect pests. These methods do not cause pollution and are environmentally friendly (Thomas 2017). 49 

Biocontrol agents using Bacillus strains are methods that have been widely developed because they are proven to be 50 
environmentally friendly (Abdel-Aziz et al. 2020, Bergamasco et al. 2013, Syaharuddin et al. 2018, Qureshi et al. 2021). 51 

mailto:salamun@fst.unair.ac.id


A group of bacteria, fungi, and yeasts have produced biosurfactants are capable of producing biosurfactants with 52 
different surface activities and molecular structures (Santos et al. 2018). Several groups of microbes can synthesize 53 
biosurfactants, which can be used to replace non-biodegradable and non-environmental friendly synthetic surfactants 54 
(Moro et al. 2018). The biosurfactant produced by Bacillus is one of the entomopathogenic mechanisms that have caused 55 
the death of insects. Biosurfactants are unique microbial metabolites that appear in biological action against plant 56 
pathogens and insect pests.  57 

Biosurfactants have many interesting features including high levels of biodegradability and optimal activity under 58 
extreme conditions (Khedher et al. 2017). Following previous studies, Bacillus subtilis, B. amyloliquefaciens, and B. 59 
velezensis produce biosurfactant and are efficient biocontrol agents against different targets (Revathi et al. 2013, 60 
Nafidiastri et al. 2021). Bacillus sp. is able to synthesize lipopeptide biosurfactants, such as surfactin, fengicin, and iturin 61 
(Théatre et al. 2021). Surfactin consists of 7 amino acids bonded to a carboxyl group and a fatty acid hydroxyl group at 62 
carbon atoms number 12-16, synthesized by a complex mechanism, catalyzed by Nonribosomal Peptide Synthetase 63 
(NRPS) and encoded by the srfA operon. Surfactin can suppress plant diseases through strong biosurfactant activity 64 
(Cawoy et al. 2014) by inhibiting bacterial growth, lysing cell membranes or destroying them through physicochemical 65 
interactions (Deleu et al. 2013), suppressing fungi by promoting colonization of beneficial bacteria (Jia et al. 2015), and 66 
triggering systemic resistance (Cawoy et al. 2014). Biosurfactants have been applied in various industrial and petroleum 67 
fields (Nwaguma et al. 2016, Pele et al. 2019, Gomaa et al. 2019). Biosurfactants are lower in toxicity, more 68 
biodegradable and environmentally friendly, harmless, and work more specifically (De Almeida et al. 2016, Chaves et al. 69 
2018, Gayathiri et al. 2022). Biosurfactants are stable and efficient under unfavorable salinity, pH and temperature 70 
conditions often encountered in the petroleum industry (Silva et al. 2014). Biosurfactants can reduce surface and 71 
interfacial tension, as well as suitable emulsifiers and dispersing agents and are widely used in the industrial sector 72 
(Mulligan et al. 2014).  73 

Perspective studies to find entomopathogenic Bacillus spp. are still being carried out to find the safest way to control 74 
disease vectors transmitted caused by mosquitoes. The results of screening tests for potential initial toxicity against A. 75 
aegypti larvae have reported that 68 entomopathogenic Bacillus sp. which have been isolated from 30 natural soil 76 
samples with potential status variations from low to very high. In the affirmation test, there were three isolates coded 77 
BK7.1, BK7.2, and BK5.2, with the highest entomopathogenic potential status, larval mortality rates at 48 hours of 78 
exposure were 93, 87 and 70%, respectively (Salamun et al. 2020). Bacillus sp. BK5.2, after molecular identification, has 79 
been identified as B. thuringiensis BK5.2 which produces an entomopathogenic cry toxin (Salamun et al. 2021). The 80 
identification of Bacillus sp. BK7.1 has been carried out through morphological and physiological characterization 81 
(Salamun et al. 2020). It is necessary to carry out molecular identification and mechanism of action of Bacillus sp. BK7.1 82 
as an entomopathogenic bacteria. Genetic characteristics were used in this study to determine the species and their 83 
relationships in the phylogenetic tree, as well as the detection of biosurfactant coding genes and the screening of 84 
biosurfactant activities such as hemolytic activity, surface tension, emulsification activity, and production on various 85 
substrates. 86 

 87 

MATERIALS AND METHODS 88 

Bacteria and Culture Condition 89 
Bacillus sp. BK7.1 was isolated from Baluran National Park soil samples. This isolate has already been identified 90 
conventionally such as macroscopic, microscopic, and physiological, was identified as B. sphaericus, but further 91 
identification is needed through 16S rRNA in an effort development of future research like bioinsectiside product 92 
(Salamun et al. 2020). This bacteria was maintained aerobically on NB agar plates and was regularly transferred into 93 
fresh NB medium slant for shortterm storage. 94 
 95 
Identification 16 S rRNA gene  96 
The DNA genome of Bacillus sp. BK7.1 was isolated according to the Thermo Scientific GeneJet Genomic DNA 97 
Purification Kit, visualized under ultraviolet by electrophoresis, purity and concentration with a Thermo Scientific 98 
Multiskan GO Microdroplet Spectrophotometer; purity was calculated by the ratio between the values of 260 nm and 280 99 
nm in the DNA samples (Meena et al. 2020). Amplifying genomic DNA of Bacillus sp. BK7.1 utilized 16S rRNA 100 
primers (27f and 1492r), examined by electrophoresis on 1% agarose gel followed by ethidium bromide (EtBr) dye and 101 
visualized under ultraviolet light, then purified and sequenced. Amplicon result was then aligned and contigs were 102 
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developed from the sequences using the BioEdit Sequence Alignment Editor software for Windows. The 16S rRNA 103 
nucleotide sequence was aligned with 16S rRNA gene sequences from other microorganisms published in GenBank. 104 
Genetic similarity was determined to contig alignment and phylogenetic tree construction using the Program of Mega 7. 105 
The phylogenetic tree was designed by inputting FASTAs from BLAST species (Kumar et al. 2016). 106 

Screening biosurfactant activities  107 
Screening of biosurfactants was carried out by three methods, hemolytic activity, surface tension value, and 108 
emulsification activity. Hemolytic activity using blood agar media inoculated with Bacillus sp. BK7.1 by spots method 109 
and incubated for two days at room temperature and zone of inhibition observed around the colony. Surface tension was 110 
measured with Du Nouy Tensiometer, with 50% Tween 20 as a positive control and Nutrient Broth as a negative control. 111 
The decrease in the surface tension value (10 mN/m) indicated the potential to produce biosurfactants. The emulsification 112 
activity was measured by inserting a 2 mL supernatant fraction and kerosene in a test tube. This mixture was stirred on 113 
Vortex Mixer for 1 minute, incubated for 24 hours at room temperature, and measured after the emulsion height was 114 
stable. The percentage (%) of the emulsion layer height (cm) divided by the total solution height was calculated as the 115 
emulsion index value (E24). 116 

Detection srfAA and srfAD surfactin gene  117 
Amplification of the srfAA and srfAD surfactin genes of Bacillus sp. BK7.1 was carried out by using primers selected 118 
according to the literature. Electrophoresis and visualization were performed under UV Transluminator. Forward primer 119 
F-5' TCGGGACAGGAAGACATCAT 3' and reverse primer R-5' CCACTCAAACGGATAATCCTGA 3' for srfAA 120 
gene (Mora et al. 2020, Kim et al. 2020). Forward primer F-5’ ATGAGCCAACTCTTCAAATCATTTG 3’ and reverse 121 
primer R-5’ TCACGATTGAATGATTGGATGCT  3’ for srfAD gene. The amplicons were aligned and developed from 122 
the sequences by the BioEdit Sequence Alignment Editor for Windows software. The nucleotide sequences are translated 123 
into a protein to be formed. The translation of the nucleotide sequence aligned with BLASTp from the other Bacillus, 124 
which has been published on GenBank. 125 

Biosurfactant production  126 
The biosurfactant production activity begins by providing synthetic mineral water (SMW), by dissolving one by one, 3 g 127 
(NH4)2SO4, 10 g NaCl, 0.2 g MgSO4.7H2O, 0.01 g CaCl2, 0.001 g MnSO4.H2O, 0.001 g H3BO3, 0.001 g 128 
ZnSO4.7H2O, 0.001 g CuSO4.5H2O, 0.005 g CoCl2.6H2O, and 0.001 g NaMoO4.2H2O into 900 mL distilled water, 129 
respectively. The elements phosphate and iron were made separately. The phosphate elements dissolved 5 g of KH2PO4 130 
and 2 g of K2HPO4 into 50 mL of distilled water, while, the iron element dissolved 0.0006 g of FeSO4.7H2O into 50 mL 131 
of distilled water, respectively. The phosphate and iron elements were sterilized using an autoclave for 15-20 minutes at 132 
121°C with 1 atm. 133 

A 250 mL culture bottle was prepared to be filled with 86.4 mL of SMW and added 2% substrates (glucose, glycerol, 134 
molasses) solution, was homogenized and ensured that the pH was 7.0. The culture vial was sterilized by autoclave for 135 
15-20 minutes at 121°C 1 atm. After sterilization, the culture was cooled at room temperature, then 4.8 mL of phosphate 136 
and iron elements were added. Then each added 4% (4 mL) of bacterial culture with an absorbance value of 0.5 Optical 137 
Density in 650 nm. The culture solution was incubated at room temperature for 96 hrs with an agitation of 130 rpm. 138 
Every 24 hrs, bacterial biomass, surface tension value, and emulsification activity against diesel and kerosene were 139 
measured until 96 hrs incubation. 140 

RESULTS AND DISCUSSION 141 

Results 142 
Identification of 16S rRNA gene 143 
Purity and concentration of DNA genome of Bacillus sp. BK 7.1 obtained a 1.782 and a 31 ng/µL and after being 144 
confirmed with agarose gel electrophoresis 1% in Fig. 1. Bacillus sp. BK7.1 has a size of 1449 bp of the 16S rRNA 145 
nucleotide sequence, which similarity to Bacillus subtilis subsp. inaquosorum strain BGSC 3A28, homology level of 146 
98.68% (Table 1).  147 
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 148 

Fig. 1 The electrophoresis results of DNA genome (a) and 16S rRNA gene (b) of Bacillus sp. BK7.1 on 1% agarose gel. Descriptions: 149 
M 100 bp DNA marker, S sample, S1 sample of DNA genome, S2 sample of 16SrRNA gene  150 

Table 1 The species of Bacillus sp. BK7.1 based on approach 16S rRNA gene with Basic Local Alignment Search Tools (BLAST) 151 
program 152 
 153 

No. Species Accession No. E value %ID 
Query 

Cover (%) 

1 
Bacillus subtilis subsp. inaquosorum 

strain BGSC 3A28  
NR_104873.1 0.0 98.68 99 

2 Bacillus subtilis strain DSM 10  NR_027552.1 0.0 98.61 99 

3 Bacillus subtilis strain JCM 1465  NR_113265.1 0.0 98.61 99 

 154 

The phylogenetic analysis results where Bacillus sp. BK7.1 and some strain of known Bacillus are presented in Fig. 155 
2. The closest relative of Bacillus sp. BK7.1 is a strain of Bacillus subtilis strain SBMP4, and this grouping only shows 156 
the closeness of the strains based on the similarity of the 16S rRNA sequence, and does not describe the ability to 157 
produce biosurfactants, especially surfactin.  158 

 159 
 160 
Fig. 2 Analysis of the phylogenetic tree of Bacillus sp. BK7.1 based on cladograms of other species and strains, and Escherichia coli 161 
as an outgroup species. 162 

Screening of biosurfactant activity  163 
The hemolytic activity of B. subtilis BK7.1 can be seen in Fig. 3. The surface tension value of the supernatant fraction of 164 
B. subtilis BK7.1 of 49.17 mN/m can be seen in Table 2. When compared with the surface tension value of the control in 165 
the form of distilled water and the control media of Nutrient Broth (NB), the value of the culture supernatant of B. 166 
subtilis BK7.1 experienced a decrease in surface tension value of 15.21 mN/m from the NB media control and 22.83 167 

https://www.ncbi.nlm.nih.gov/nucleotide/NR_104873.1?report=genbank&log$=nucltop&blast_rank=1&RID=ANP2AB3B013
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mN/m from the distilled water control. The emulsification index value of the supernatant B. subtilis BK7.1 of 18.02%, 168 
which was  left for one hour while after 24 hours the emulsification index value becomes 25.53%, where it was decreased 169 
by 21.92% (Fig. 4). The emulsification index value indicates the stability of the emulsion and lines that produce values 170 
above 50%. 171 

 172 

 173 
 174 
Fig. 3 Screening biosurfactant using hemolytic activity in Bacillus subtilis BK7.1 on blood agar plate media.  Descriptions: a isolate, b 175 
clear zone around the colony, c blood agar plate, R Replicates. 176 

 177 
Table 2. Value of surface tension (mN/m) of supernatant fraction of Bacillus subtilis BK7.1 on treatment variation 178 
 179 
Treatment Surface Tension 

Control of sterile water 72 

Control of Nutrient Broth (NB) medium, room temperature, pH = 7 64.38 

Control of Tween 20 at 50% solution 37.11 

Supernatant of Bacillus subtilis BK7.1 (24 hours), room temperature, pH = 8 49.17 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against sterile water 22.83 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against NB medium 15.21 

 180 
 181 
Fig. 4 The emulsification activity of supernatant Bacillus subtilis BK7.1 on the kerosene substrate.  Descriptions: a kerosene, b 182 
emulsion, c isolate, (a) 1 hour of exposure, (b) 24 hours of exposure.  183 

Detection srfAA and srfAD surfactin gene  184 
The encoding gene of surfactin discovered sizes scale 201 bp, expected as srfAA gene, and 723 bp expected as srfAD 185 
gene (Fig. 5). In Table 3 showed that the similarity results, which have a value of 91.04% because there are several 186 

differences in amino acids possessed by B. subtilis BK 7.1 and other strains of B. subtilis. This can be caused by the 187 
presence of gene diversity even in the same B. subtilis group. 188 

 189 



 190 
 191 
Fig. 5 The electrophoresis results of srfAD (a) and srfAA (b) surfactin gene amplification of Bacillus subtilis BK7.1.  Description: M 192 
100 bp DNA marker, SA sample of srfAA surfactin gene 201 bp, SD sample of srfAD surfactin gene 729 bp 193 
 194 
Table 3.  The results of Basic Local Alignment Search Tools (BLAST) analysis of srfAA and srfAD protein isolates of Bacillus 195 
subtilis BK 7.1 196 
 197 

No. Protein Species  Accession No. E value %ID 
Query 

Cover (%) 

1. 
surfactin non-ribosomal 

peptide synthetase srfAA 

Bacillus subtilis 

inaquosorum 
WP_060397903.1 9e-34 91.04 100 

2. 
surfactin biosynthesis 

thioesterase SrfAD  

Bacillus subtilis 

group 
WP_075750164.1 5e-178 99.17 99 

Biosurfactant production  198 
Biosurfactant productions of B. subtilis BK7.1 on glucose, glycerol, and molasses substrates can be detected through a 199 
bacterial growth curve, surface tension value, and emulsification activity (Fig. 6). The growth activity of B. subtilis 200 
BK7.1 showed on various substrates in Fig. 6a. The isolates had grown well on SMW media with the addition of glucose, 201 
glycerol, and molasses as substrates. On glucose substrate with up to 72 hrs incubation, isolates still showed an 202 
exponential phase, and 96 hrs incubation entered the stationary phase, as well as on glycerol substrate. On molasses 203 
substrate, it still showed an exponential phase until 96 hrs incubation. 204 

The results showed that the emulsification activity of B. subtilis BK7.1 on the three substrates tended to increase up to 205 
96 hrs of incubation (Fig. 6bc), which proved that the isolate produced surfactin. On glucose substrate, the highest 206 
emulsification activity occurred at 96 hrs of incubation. Decreased in surface tension values are shown in Fig. 6d. 207 

 208 
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 209 
Fig. 6 Biosurfactant productions of Bacillus subtilis BK7.1 on glucose, glycerol, and molasses substrates, incubation period 0-, 24-, 210 
48-, 72-, 96-hours. Descriptions: a cells density, b emulsification activity (1 hour), c emulsification activity (24 hours), d surface 211 
tension value 212 

Discussions 213 
Conventional identification of Bacillus sp. BK7.1 has been carried out. Based on the macroscopic, microscopic, and 214 
physiological characteristics of Bacillus sp. BK7.1 has similarities with Bacillus sphaericus (Salamun et al., 2020). 215 
Researchers suggest further research to confirm the species name, by identifying the 16S rRNA gene. The electrophoresis 216 
results from 16S rRNA gene amplification of Bacillus sp. BK7.1 showed a band over 1500 bp in size (Fig. 1). Bacillus 217 
sp. BK7.1 had has a 98.68% similarity to Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 based on molecular 218 
identification. The gene of 16S rRNA can could be used for the identification of microorganisms because it is one of the 219 
genes with specific characteristics (Pearson 2013). The 16S RNA gene sequencing is was a fast and accurate method for 220 
bacterial identification. Bacteria represented the same genus if they have a similarity index above 95% and the same 221 
species above 97% (Johnson et al. 2019, Srinivasan et al. 2015). The similarity was is less than 100% because there are 222 
were variations in amino acid sequences that affect the genotypic character but do not affect the phenotypic character 223 
(Johnson et al. 2019).  224 

Research has shown that B. subtilis strain SBMP4 can could control pathogenic fungi such as Aspergillus and 225 
Fusarium in early Arachis hypogea plants (Syed et al. 2020). Bacillus has adapted to and grown in extreme 226 
environmental conditions, forms endospores that are resistant to stress, and secretes various secondary metabolites such 227 
as surfactin (Shafi et al. 2017). Another essential characteristic is was the abundance of secondary metabolites and 228 
moderate dietary requirements with a fast growth rate (Yadav et al. 2016, Mishra and Arora 2018). Biosurfactant 229 
lipopeptides from entomopathogenic microbes can could act as biocontrol, especially antimicrobials and anti-biofilms 230 
(Abdel-Aziz et al. 2020, Qureshi et al. 2021). Surfactin produced by B. subtilis is was one of the most effective 231 
biosurfactants. Surfactin reduced the surface tension of water up to 27 mN/m, with a critical micelle concentration of 232 
0.01 g/L and high emulsification activity and has shown antimicrobial, antiviral, and antitumor activity (Gudina et al. 233 
2013, Gudina et al. 2016). 234 
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Controlling insects can use biosurfactants introduced as an alternative to synthetic chemicals. Many reports that 235 
biosurfactant activity produced by the Bacillus strain can could kill adult mosquitoes. The hemolytic activity of B. 236 
subtilis BK7.1 can could be seen in Fig. 3. The clear zone on the hemolytic activity test by biosurfactants has caused lysis 237 
of the red blood cell membrane, and the cells secrete hemoglobin. The hemolytic activity occurs occured through two 238 
different mechanisms, at a high concentration occur, cell membrane lysis, and at low concentrations increase, membrane 239 
permeability to solutes and cause osmotic lysis (Zaragosa et al. 2010). The inhibition zone formed in the observation of 240 
hemolytic activity indicates a biosurfactant production process; the larger the lysis diameter of blood agar, the higher the 241 
biosurfactant concentration (Singh 2012). 242 

Bacteria can could produce biosurfactants if they can reduce surface tension values by ≥ 10 mN/m (de Oliveira et al. 243 
2021). The surface and interfacial tension decrease is caused by the presence of hydrophobic and hydrophilic groups in 244 
the biosurfactants, where these compounds can accumulate between the liquid phases (Kapadia and Yagnik 2013). The 245 
entomopathogenic activity of biosurfactants against A. aegypti is was caused by surfactin produced by B. subtilis. 246 
Surfactin triggers the surface tension of the water, causing a lack of oxygen underwater. The concentration of O2 causes 247 
caused the larval spiracles of A. aegypti to open so that it can cause the insect death. In addition, surfactin can could be 248 
very active against pH, temperature around 25-42°C, and UV stability, making it enjoyable to develop as a larvicidal 249 
agent (Guimarães et al. 2019). 250 

The emulsification index value of B. subtilis BK7.1 is was a low category. Lipopeptides such as surfactin consist of 251 
cycloheptapeptides with amino acids attached to fatty acids of a different chain. This chemical structure causes caused 252 
surfactin to be amphiphilic and able to mix in both polar and non-polar solvents, while this amphiphilic structure allows 253 
surfactin to form emulsions. The characteristics of surfactin are were involved in cell attachment and cause membrane 254 
disruption (Chen et al. 2022). The ability of surfactin to bind Ca2+ causes caused a conformational change in the peptide 255 
cycle and allows it to be incorporated into the phospholipid bilayer (Khedher et al. 2015, Khedher et al. 2017). 256 
 The emulsification activity of B. subtilis BK7.1 in 1-hour observation tends tended to decrease compared to 24 hrs 257 
observation. This difference has shown that the emulsion is was unstable because the isolate produces biosurfactants 258 
which act as active surface molecules only in decreasing surface tension. Based on molecular weight, biosurfactants have 259 
been classified into low and high molecular weight biosurfactants. Low molecular weight biosurfactants, including 260 
glycolipids, phospholipids, and lipopeptides, are were efficient in reducing surface tension. Meanwhile, high molecular 261 
weight biosurfactants, such as proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers, are 262 
were more effective in stabilizing oil-in-water emulsions as emulsifiers (Uzoigwe et al. 2015). This result is was 263 
supported by the fact that the biosurfactant produced by B. subtilis 21332 has shown high emulsification activity values 264 
on glucose substrates up to 55.2% (Zhu et al. 2016). In contrast to the reported that value of the emulsification activity of 265 
B. subtilis 573 to 27.1%, with the addition of 1% bacterial culture concentration (Pereira et al. 2013), while in this study, 266 
the addition of 4%. Differences in the addition of culture affected the activity of biosurfactants produced by bacteria. The 267 
higher the concentration of bacterial culture added to the media, the density of bacteria in the substrate also increases and 268 
affects the speed of using the available substrate to produce biosurfactants. 269 

Bacillus species have had srfAA gene, which encodes phosphopantetheinyl transferase and contributes to the 270 
nonribosomal biosynthesis of surfactin (Plaza et al. 2015). The nonribosomal peptide synthetase complex is was coded 271 
by srfAA and srfAD gene known as surfactin synthetase. The srfAA and srfAD genes have contributed to the control of 272 
surfactin biosynthesis gene expression. The 4-phosphopantetheinyl transferase is was an activating enzyme for the srfA 273 
multienzyme complex. The srfAA, srfAB, srfAC, and srfAD genes are were involved in the assembly of heptamodular 274 
non-ribosomal peptide (NPRS) synthesis in which the modular enzyme contains a typical N-terminal in the CLP-BGCs 275 
domain and acylates the first amino acid, glutamine with various 3-OH fatty acids derived from of primary metabolism 276 
(Théatre et al. 2021). The surfactin gene transforms transformed surfactin synthetase into an active form. The production 277 
of biosurfactants especially surfactin, that have Bacillus influenced by srfAA and srfAD gene (Plaza et al. 2015). The 278 
Table 3 showed that the similarity results have a value of 91.04%, because there are were several differences in amino 279 
acids possessed by B. subtilis BK 7.1 and other strains of B. subtilis. The presence of gene diversity can could cause this 280 
even in the same B. subtilis group. 281 
 The results of this study have also reported that there are differences in the production of biosurfactants. The higher 282 
emulsification activity from B. subtilis 573 to 48.4% (Pereira et al. 2013), B. subtilis 21332 up to 55.2% (Zhu et al. 283 
2016), and B. subtilis N3-4P up to 38.3% (Zhu et al. 2016) on mineral salt media containing using different carbon 284 
sources than glycerol. The production of biosurfactant by Bacillus nealsonii S2M in glycerol substrate has been able to 285 
emulsify various hydrocarbons in 55% (Phulpoto et al. 2020). 286 
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Biosurfactant production of B. subtilis BK7.1 observed through surface tension values is shown in Fig. 6d. Glucose 287 
and sucrose substrates have been reported as the best carbon sources for the biosurfactant production process by the 288 
Bacillus group (Abdel-Mawgoud et al. 2008). B. subtilis BK7.1 reduced the surface tension up to 51.47 mN/m at 48 h 289 
incubation. B. subtilis B30, in 2% glucose substrate has the lowest surface tension value (25.56 mN/m) (Al-Wahaibi et al. 290 
2014). The difference in surface tension reduction is was caused by different species and strains of bacteria, as well as the 291 
level of their ability to utilize various substrates. Variations in nucleotide sequences between bacteria species affected the 292 
formation of biosurfactant biosynthetic genes. 293 

On the glycerol substrate, B. subtilis BK7.1 has reduced the surface tension to 53.67 mN/m at 48 h, 42.01 at 96 h, and 294 
54.36 at 72 h incubation, respectively. B. subtilis N3-4P has grown better on glycerol substrate than glucose, hexadecane, 295 
and diesel. This B. subtilis N3-4P decreased the surface tension to 27.8 mN/m on glycerol substrate (Zhu et al. 2016). 296 
The same has been reported that the difference in the value of the decrease in surface tension by B. subtilis 309, B. 297 
subtilis 311, and B. subtilis 573 on glycerol and glucose substrates, with the value of the decrease in surface tension on 298 
glycerol substrates 29.7, 30.1, and 29.9 mN/m, but on glucose substrates 29.2, 29.0, and 29.5 mN/m, respectively 299 
(Pereira et al. 2013). 300 

The value of the surface tension of B. subtilis BK7.1, on molasses substrate, was 45.91 mN/m. B. subtilis SNW3 on 301 
molasses substrate was able to reduce the surface tension up to 41 mN/m (Umar et al. 2021), B. subtilis ATCC 6633 up 302 
to 30.48 mN/m (Kashkouli et al. 2011), and B. subtilis RSL-2 up to 24.09 mN/m (Verma et al. 2020). This difference has 303 
been due to the influence of various concentrations of molasses substrate, B. subtilis BK7.1 used 2% molasses, B. subtilis 304 
ATCC 6633 used 3% molasses (Kashkouli et al. 2011), and B. subtilis RSL-2 used 5% molasses (Verma et al. 2020). In 305 
addition, the efficiency of biosurfactant production by B. subtilis 3KP with molasses substrate is was influenced by the 306 
instability of the biosurfactant product. Differences in composition and nutrient content in molasses, suspected related to 307 
the processing of sugar from the molasses (Ni’matuzahroh et al. 2017). The difference in sugar content of molasses as the 308 
main carbon source for the growth of B. subtilis 3KP bacteria has affected the productivity of biosurfactant production 309 
(Ni’matuzahroh et al. 2017). 310 

Indigenous entomopathogenic B. subtilis BK7.1 isolated from Baluran National Park, East Java, Indonesia, 98.68% 311 
similarity to B. subtilis subsp. inaquosorum strain BGSC 3A28. The results of screening for biosurfactant activity 312 
showed positive hemolytic activity, decreased surface tension, and increased emulsification activity. The srfAA and 313 
srfAD genes were detected encoding surfactin, which has the capacity for biosurfactant production on various glucose, 314 
glycerol, and molasses substrates. B. subtilis BK7.1 produced biosurfactant, the potential to develop for environmentally 315 
friendly biocontrol agent for biopesticides in agriculture and disease vector control in public health. Therefore, this 316 
research needs to be followed up to detect the chemical components of biosurfactants produced by these bacteria. 317 
 318 
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Abstract. Salamun, Susetyo RD, Ni’matuzahroh, Fatimah, Geraldi A, Supriyanto A, Nurhariyati T, Nafidiastri FA, Nisa N, Endarto. 

2023. Biosurfactant production of entomopathogenic Bacillus subtilis BK7.1, as potential biocontrol bacteria, isolated from Baluran 

National Park, East Java, Indonesia. Biodiversitas 24: xxx. Biosurfactants as biocontrol agents have received much attention for pest 

control and disease vectors. The research aimed to identify the species and genetic relationship, hemolytic activity, detect coding genes, 

and trial production of biosurfactants on various substrates of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in Baluran 

National Park, East Java, Indonesia. Biosurfactant screening was carried out by testing hemolytic activity, surface tension, and 

emulsification activities, detecting coding genes of biosurfactant biosynthesis, and testing biosurfactant production in various substrates. 

The results of the molecular identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method for 

Bacillus sp. BK7.1 has a genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed 

positive hemolytic activity results, reduced surface tension, increased emulsification activities, and the production of biosurfactant in 

glucose, glycerol, and molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding 

surfactin biosynthesis, giving it the potential to produce bioinsecticide compounds. Based on these studies, the indigenous 

entomopathogenic B. subtilis BK7.1 can be developed as environmentally friendly microbial bioinsecticides for pest control and disease 

vectors.  

Keywords: Biosurfactant production, crop protection, entomopathogenic Bacillus subtilis BK7.1, hemolytic activity, srfAA-srfAD gene.  

INTRODUCTION 

Controlling insect pests and insect vectors with 

chemical insecticides is used widely all around the globe 

(Safni et al. 2018). However, the chemical insecticides 

have a negative impact on control of disease vector and 

pest because they cause insect resistance (Şengül et al. 

2022). There are a number of biocontrol methods available 

to resolve these problems. Entomopathogens are natural 

enemies that can produce toxic metabolites against insect 

pests and plant pathogens. Biocontrol methods can be used 

as an alternative in fighting diseases transmitted by vector 

mosquitoes, plant pathogens, and insect pests. These 

methods do not cause pollution and are environmentally 

friendly (Thomas 2017). 

Biocontrol agents using Bacillus strains are methods 

that have been widely developed because they are proven 

to be environmentally friendly (Bergamasco et al. 2013; 

Syaharuddin et al. 2018; Abdel-Aziz et al. 2020; Qureshi et 

al. 2021). A group of bacteria, fungi, and yeasts have 

produced biosurfactants are capable of producing 

biosurfactants with different surface activities and 

molecular structures (Santos et al. 2018). Several groups of 

microbes can synthesize biosurfactants, which can be used 

to replace non-biodegradable and non-environmental 

friendly synthetic surfactants (Moro et al. 2018). The 

biosurfactant produced by Bacillus is one of the 

entomopathogenic mechanisms that have caused the death 

of insects. Biosurfactants are unique microbial metabolites 
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that appear in biological action against plant pathogens and 

insect pests.  

Biosurfactants have many interesting features including 

high levels of biodegradability and optimal activity under 

extreme conditions (Khedher et al. 2017). Following 

previous studies, Bacillus subtilis, Bacillus 

amyloliquefaciens, and Bacillus velezensis produce 

biosurfactant and are efficient biocontrol agents against 

different targets (Revathi et al. 2013; Nafidiastri et al. 

2021). Bacillus sp. is able to synthesize lipopeptide 

biosurfactants, such as surfactin, fengicin, and iturin 

(Théatre et al. 2021). Surfactin consists of 7 amino acids 

bonded to a carboxyl group and a fatty acid hydroxyl group 

at carbon atoms number 12-16, synthesized by a complex 

mechanism, catalyzed by Nonribosomal Peptide Synthetase 

(NRPS) and encoded by the srfA operon. Surfactin can 

suppress plant diseases through strong biosurfactant 

activity (Cawoy et al. 2014) by inhibiting bacterial growth, 

lysing cell membranes or destroying them through 

physicochemical interactions (Deleu et al. 2013), 

suppressing fungi by promoting colonization of beneficial 

bacteria (Jia et al. 2015), and triggering systemic resistance 

(Cawoy et al. 2014). Biosurfactants have been applied in 

various industrial and petroleum fields (Nwaguma et al. 

2016, Pele et al. 2019, Gomaa et al. 2019). Biosurfactants 

are lower in toxicity, more biodegradable and 

environmentally friendly, harmless, and work more 

specifically (De Almeida et al. 2016; Martins and Martins 

et al. 2018; Gayathiri et al. 2022). Biosurfactants are stable 

and efficient under unfavorable salinity, pH and 

temperature conditions often encountered in the petroleum 

industry (Silva et al. 2014). Biosurfactants can reduce 

surface and interfacial tension, as well as suitable 

emulsifiers and dispersing agents and are widely used in 

the industrial sector (Mulligan et al. 2014).  

Perspective studies to find entomopathogenic Bacillus 

spp. are still being carried out to find the safest way to 

control disease vectors transmitted by mosquitoes. The 

results of screening tests for potential initial toxicity against 

Aedes aegypti Linnaeus, 1762 larvae have reported that 68 

entomopathogenic Bacillus sp. which have been isolated 

from 30 natural soil samples with potential status variations 

from low to very high. In the affirmation test, there were 

three isolates coded BK7.1, BK7.2, and BK5.2, with the 

highest entomopathogenic potential status, larval mortality 

rates at 48 hours of exposure were 93, 87 and 70%, 

respectively (Salamun et al. 2020). Bacillus sp. BK5.2, 

after molecular identification, has been identified as 

Bacillus thuringiensis BK5.2 which produces an 

entomopathogenic cry toxin (Salamun et al. 2021). The 

identification of Bacillus sp. BK7.1 has been carried out 

through morphological and physiological characterization 

(Salamun et al. 2020). It is necessary to carry out molecular 

identification and mechanism of action of Bacillus sp. 

BK7.1 as an entomopathogenic bacteria. Genetic 

characteristics were used in this study to determine the 

species and their relationships in the phylogenetic tree, as 

well as the detection of biosurfactant coding genes and the 

screening of biosurfactant activities such as hemolytic 

activity, surface tension, emulsification activity, and 

production on various substrates. 

MATERIALS AND METHODS 

Isolation and identification of bacteria 

Bacillus sp. BK7.1 was isolated from Baluran National 

Park soil samples. This isolate was identified 

conventionally such as macroscopic, microscopic, and 

physiological characters first and then at molecular level 

through 16S rRNA (Salamun et al. 2020). This bacteria 

was maintained aerobically on NB agar plates and was 

regularly transferred into fresh NB medium slant for short-

term storage. 

Molecular identification using 16 S rRNA gene  

The DNA genome of Bacillus sp. BK7.1 was isolated 

according to the Thermo Scientific GeneJet Genomic DNA 

Purification Kit, visualized under ultraviolet by 

electrophoresis, purity and concentration with a Thermo 

Scientific Multiskan GO Microdroplet Spectrophotometer; 

purity was calculated by the ratio between the values of 

260 nm and 280 nm in the DNA samples (Meena et al. 

2020). Amplifying genomic DNA of Bacillus sp. BK7.1 

utilized 16S rRNA primers (27f and 1492r) was examined 

by electrophoresis on 1% agarose gel followed by ethidium 

bromide (EtBr) dye and visualized under ultraviolet light, 

then purified and sequenced. Amplicon results were then 

aligned and contigs were developed from the sequences 

using the BioEdit Sequence Alignment Editor software for 

Windows. The 16S rRNA nucleotide sequence was aligned 

with 16S rRNA gene sequences from other microorganisms 

published in GenBank. Genetic similarity was determined 

to contig alignment and phylogenetic tree construction 

using the Program of Mega 7. The phylogenetic tree was 

designed by inputting FASTAs from BLAST species 

(Kumar et al. 2016). 

Screening biosurfactant activities  

Screening of biosurfactants was carried out by three 

methods, hemolytic activity, surface tension value, and 

emulsification activity. Hemolytic activity using blood agar 

media inoculated with Bacillus sp. BK7.1 by spots method 

and incubated for two days at room temperature and zone 

of inhibition observed around the colony. Surface tension 

was measured with du nouy tensiometer, with 50% tween 

20 as a positive control and nutrient broth as a negative 

control. The decrease in the surface tension value (10 

mN/m) indicated the potential to produce biosurfactants. 

The emulsification activity was measured by inserting a 

2mL supernatant fraction and kerosene in a test tube. This 

mixture was stirred on vortex mixer for 1 minute, incubated 

for 24 hours at room temperature, and measured after the 

emulsion height was stable. The percentage (%) of the 

emulsion layer height (cm) divided by the total solution 

height was calculated as the emulsion index value (E24). 
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Detection srfAA and srfAD surfactin gene  

Amplification of the srfAA and srfAD surfactin genes 

of Bacillus sp. BK7.1 was carried out by using primers 

selected according to the literature. Electrophoresis and 

visualization were performed under UV Transluminator. 

Forward primer F-5' TCGGGACAGGAAGACATCAT 3' 

and reverse primer R-5' 

CCACTCAAACGGATAATCCTGA 3' for srfAA gene 

(Mora et al. 2020, Kim et al. 2020). Forward primer F-5’ 

ATGAGCCAACTCTTCAAATCATTTG 3’ and reverse 

primer R-5’ TCACGATTGAATGATTGGATGCT 3’ for 

srfAD gene. The amplicons were aligned and developed 

from the sequences by the BioEdit Sequence Alignment 

Editor for Windows software. The nucleotide sequences are 

translated into a protein to be formed. The translation of the 

nucleotide sequence aligned with BLASTp from the other 

Bacillus, which has been published on GenBank. 

Biosurfactant production  

The biosurfactant production activity begins by 

providing synthetic mineral water (SMW), by dissolving 

one by one, 3 g (NH4)2SO4, 10 g NaCl, 0.2 g 

MgSO4.7H2O, 0.01 g CaCl2, 0.001 g MnSO4.H2O, 0.001 

g H3BO3, 0.001 g ZnSO4.7H2O, 0.001 g CuSO4.5H2O, 

0.005 g CoCl2.6H2O, and 0.001 g NaMoO4.2H2O into 

900 mL distilled water, respectively. The elements 

phosphate and iron were made separately. The phosphate 

elements dissolved 5 g of KH2PO4 and 2 g of K2HPO4 

into 50 mL of distilled water, while, the iron element 

dissolved 0.0006 g of FeSO4.7H2O into 50 mL of distilled 

water, respectively. The phosphate and iron elements were 

sterilized using an autoclave for 15-20 minutes at 121°C 

with 1 atm. 

A 250 mL culture bottle was prepared to be filled with 

86.4 mL of SMW and added 2% substrates (glucose, 

glycerol, molasses) solution, was homogenized and ensured 

that the pH was 7.0. The culture vial was sterilized by 

autoclave for 15-20 minutes at 121°C 1 atm. After 

sterilization, the culture was cooled at room temperature, 

then 4.8 mL of phosphate and iron elements were added. 

Then each added 4% (4 mL) of bacterial culture with an 

absorbance value of 0.5 Optical Density in 650 nm. The 

culture solution was incubated at room temperature for 96 

hrs with an agitation of 130 rpm. Every 24 hrs, bacterial 

biomass, surface tension value, and emulsification activity 

against diesel and kerosene were measured until 96 hrs 

incubation. 

RESULTS AND DISCUSSION 

Results 

Identification of 16S rRNA gene 

Purity and concentration of DNA genome of Bacillus 

sp. BK 7.1 obtained a 1.782 and a 31 ng/µL and after being 

confirmed with agarose gel electrophoresis 1% in Figure 1. 

Bacillus sp. BK7.1 has a size of 1449 bp of the 16S rRNA 

nucleotide sequence, which similarity to Bacillus subtilis 

subsp. inaquosorum strain BGSC 3A28, homology level of 

98.68% (Table 1).  

The phylogenetic analysis results where Bacillus sp. 

BK7.1 and some strain of known Bacillus are presented in 

Figure 2. The closest relative of Bacillus sp. BK7.1 is a 

strain of Bacillus subtilis strain SBMP4, and this grouping 

only shows the closeness of the strains based on the 

similarity of the 16S rRNA sequence, and does not describe 

the ability to produce biosurfactants, especially surfactin. 

Screening of biosurfactant activity  

The hemolytic activity of B. subtilis BK7.1 can be seen 

in Figure 3. The surface tension value of the supernatant 

fraction of B. subtilis BK7.1 of 49.17 mN/m can be seen in 

Table 2. When compared with the surface tension value of 

the control in the form of distilled water and the control 

media of Nutrient Broth (NB), the value of the culture 

supernatant of B. subtilis BK7.1 experienced a decrease in 

surface tension value of 15.21 mN/m from the NB media 

control and 22.83 mN/m from the distilled water control. 

The emulsification index value of the supernatant B. 

subtilis BK7.1 of 18.02%, which was left for one hour 

while after 24 hours the emulsification index value 

becomes 25.53%, where it was decreased by 21.92% 

(Figure 4). The emulsification index value indicates the 

stability of the emulsion and lines that produce values 

above 50%. 

 

 
Table 1. The species of Bacillus sp. BK7.1 based on approach 

16S rRNA gene with Basic Local Alignment Search Tools 

(BLAST) program 

 

Species 
Accession 

No. 

E 

value 
%ID 

Query 

Cover 

(%) 

Bacillus subtilis subsp. 

inaquosorum strain 

BGSC 3A28  

NR_10487

3.1 
0.0 98.68 99 

Bacillus subtilis strain 

DSM 10  

NR_02755

2.1 
0.0 98.61 99 

Bacillus subtilis strain 

JCM 1465  

NR_11326

5.1 
0.0 98.61 99 

 

 

 
 

Figure 1. The electrophoresis results of DNA genome (a) and 16S 

rRNA gene (b) of Bacillus sp. BK7.1 on 1% agarose gel. 

Descriptions: M 100 bp DNA marker, S sample, S1 sample of 

DNA genome, S2 sample of 16SrRNA gene 

https://www.ncbi.nlm.nih.gov/nucleotide/NR_104873.1?report=genbank&log$=nucltop&blast_rank=1&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_104873.1?report=genbank&log$=nucltop&blast_rank=1&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_113265.1?report=genbank&log$=nucltop&blast_rank=3&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_113265.1?report=genbank&log$=nucltop&blast_rank=3&RID=ANP2AB3B013
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Table 2. Value of surface tension (mN/m) of supernatant fraction 

of Bacillus subtilis BK7.1 on treatment variation 

 

Treatment 
Surface 

Tension 

Control of sterile water 72 
Control of Nutrient Broth (NB) medium, room 

temperature, pH = 7 
64.38 

Control of Tween 20 at 50% solution 37.11 
Supernatant of Bacillus subtilis BK7.1 (24 

hours), room temperature, pH = 8 
49.17 

Δ Surface tension of supernatant of Bacillus 

subtilis BK7.1 against sterile water 
22.83 

Δ Surface tension of supernatant of Bacillus 

subtilis BK7.1 against NB medium 
15.21 

 

 

 

 
 

Figure 3. Screening biosurfactant using hemolytic activity in 

Bacillus subtilis BK7.1 on blood agar plate media. Descriptions: a 

isolate, b clear zone around the colony, c blood agar plate, R 

Replicates. 

 

 

 
 

Figure 4. The emulsification activity of supernatant Bacillus 

subtilis BK7.1 on the kerosene substrate. Descriptions: a 

kerosene, b emulsion, c isolate, (a) 1 hour of exposure, (b) 24 

hours of exposure.  

 

Detection srfAA and srfAD surfactin gene  

The encoding gene of surfactin discovered sizes scale 

201 bp, expected as srfAA gene, and 723 bp expected as 

srfAD gene (Figure 5). In Table 3 showed that the 

similarity results, which have a value of 91.04% because 

there are several differences in amino acids possessed by B. 

subtilis BK 7.1 and other strains of B. subtilis. This can be 

caused by the presence of gene diversity even in the same 

B. subtilis group. 

Biosurfactant production  

Biosurfactant productions of B. subtilis BK7.1 on 

glucose, glycerol, and molasses substrates can be detected 

through a bacterial growth curve, surface tension value, and 

emulsification activity (Figure 6). The growth activity of B. 

subtilis BK7.1 showed on various substrates in Fig. 6a. The 

isolates had grown well on SMW media with the addition 

of glucose, glycerol, and molasses as substrates. On 

glucose substrate with up to 72 hrs incubation, isolates still 

showed an exponential phase, and 96 hrs incubation 

entered the stationary phase, as well as on glycerol 

substrate. On molasses substrate, it still showed an 

exponential phase until 96 hrs incubation. 

The results showed that the emulsification activity of B. 

subtilis BK7.1 on the three substrates tended to increase up 

to 96 hrs of incubation (Figure 6b and Figure 6c), which 

proved that the isolate produced surfactin. On glucose 

substrate, the highest emulsification activity occurred at 96 

hrs of incubation. Decreased in surface tension values are 

shown in Figure 6d. 
 

 

 
 

Figure 5. The electrophoresis results of srfAD (a) and srfAA (b) 

surfactin gene amplification of Bacillus subtilis BK7.1.  

Description: M 100 bp DNA marker, SA sample of srfAA 

surfactin gene 201 bp, SD sample of srfAD surfactin gene 729 bp 

 

 

Table 3. The results of Basic Local Alignment Search Tools (BLAST) analysis of srfAA and srfAD protein isolates of Bacillus subtilis 

BK 7.1 

 

No. Protein Species  Accession No. E value %ID 
Query Cover 

(%) 

1. 
surfactin non-ribosomal 

peptide synthetase srfAA 
Bacillus subtilis inaquosorum WP_060397903.1 9e-34 91.04 100 

2. 
surfactin biosynthesis 

thioesterase SrfAD  
Bacillus subtilis group WP_075750164.1 5e-178 99.17 99 
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Figure 2. Analysis of the phylogenetic tree of Bacillus sp. BK7.1 based on cladograms of other species and strains, and Escherichia coli 

as an outgroup species 

.

 

 
 

Figure 6. Biosurfactant productions of Bacillus subtilis BK7.1 on 

glucose, glycerol, and molasses substrates, incubation period 0-, 

24-, 48-, 72-, 96-hours. Descriptions: a cells density, b 

emulsification activity (1 hour), c emulsification activity (24 

hours), d surface tension value 

Discussions 

Conventional identification of Bacillus sp. BK7.1 has 

been carried out. Based on the macroscopic, microscopic, 

and physiological characteristics of Bacillus sp. BK7.1 has 

similarities with Bacillus sphaericus (Salamun et al., 2020). 

Researchers suggest further research to confirm the species 

name, by identifying the 16S rRNA gene. The 

electrophoresis results from 16S rRNA gene amplification 

of Bacillus sp. BK7.1 showed a band over 1500 bp in size 

(Figure 1). Bacillus sp. BK7.1 had a 98.68% similarity to 

Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 

based on molecular identification. The gene of 16S rRNA 

could be used for the identification of microorganisms 

because it is one of the genes with specific characteristics 

(Pearson 2013). The 16S RNA gene sequencing is was a 

fast and accurate method for bacterial identification. 

Bacteria represented the same genus if they have a 

similarity index above 95% and the same species above 

97% (Johnson et al. 2019; Srinivasan et al. 2015). The 

similarity was less than 100% because there were 

variations in amino acid sequences that affect the genotypic 

character but do not affect the phenotypic character 

(Johnson et al. 2019).  

Research has shown that B. subtilis strain SBMP4 could 

control pathogenic fungi such as Aspergillus and Fusarium 

in early Arachis hypogea plants (Syed et al. 2020). Bacillus 

has adapted to and grown in extreme environmental 

conditions, forms endospores that are resistant to stress, 

and secretes various secondary metabolites such as 

surfactin (Shafi et al. 2017). Another essential 

characteristic was the abundance of secondary metabolites 

and moderate dietary requirements with a fast growth rate 

(Yadav et al. 2016; Mishra and Arora 2018). Biosurfactant 

lipopeptides from entomopathogenic microbes could act as 

biocontrol, especially antimicrobials and anti-biofilms 

(Abdel-Aziz et al. 2020, Qureshi et al. 2021). Surfactin 

produced by B. subtilis was one of the most effective 

biosurfactants. Surfactin reduced the surface tension of 

water up to 27 mN/m, with a critical micelle concentration 
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of 0.01 g/L and high emulsification activity and has shown 

antimicrobial, antiviral, and antitumor activity (Gudina et 

al. 2013; Gudina et al. 2015). 

Controlling insects can use biosurfactants introduced as 

an alternative to synthetic chemicals. Many reports that 

biosurfactant activity produced by the Bacillus strain could 

kill adult mosquitoes. The hemolytic activity of B. subtilis 

BK7.1 could be seen in Figure 3. The clear zone on the 

hemolytic activity test by biosurfactants has caused lysis of 

the red blood cell membrane, and the cells secrete 

hemoglobin. The hemolytic activity occurred through two 

different mechanisms, at a high concentration occur, cell 

membrane lysis, and at low concentrations increase, 

membrane permeability to solutes and cause osmotic lysis 

(Zaragosa et al. 2010). The inhibition zone formed in the 

observation of hemolytic activity indicates a biosurfactant 

production process; the larger the lysis diameter of blood 

agar, the higher the biosurfactant concentration (Singh 

2012). 

Bacteria could produce biosurfactants if they can reduce 

surface tension values by ≥10 mN/m (Oliveira et al. 2021). 

The surface and interfacial tension decrease is caused by 

the presence of hydrophobic and hydrophilic groups in the 

biosurfactants, where these compounds can accumulate 

between the liquid phases (Kapadia and Yagnik 2013). The 

entomopathogenic activity of biosurfactants against A. 

aegypti was caused by surfactin produced by B. subtilis. 

Surfactin triggers the surface tension of the water, causing 

a lack of oxygen underwater. The concentration of O2 

caused the larval spiracles of A. aegypti to open so that it 

can cause the insect death. In addition, surfactin could be 

very active against pH, temperature around 25-42°C, and 

UV stability, making it enjoyable to develop as a larvicidal 

agent (Guimarães et al. 2019). 

The emulsification index value of B. subtilis BK7.1 was 

a low category. Lipopeptides such as surfactin consist of 

cycloheptapeptides with amino acids attached to fatty acids 

of a different chain. This chemical structure caused 

surfactin to be amphiphilic and able to mix in both polar 

and non-polar solvents, while this amphiphilic structure 

allows surfactin to form emulsions. The characteristics of 

surfactin were involved in cell attachment and cause 

membrane disruption (Chen et al. 2022). The ability of 

surfactin to bind Ca2+ caused a conformational change in 

the peptide cycle and allows it to be incorporated into the 

phospholipid bilayer (Khedher et al. 2015, Khedher et al. 

2017). 

 The emulsification activity of B. subtilis BK7.1 in 

1-hour observation tended to decrease compared to 24 hrs 

observation. This difference has shown that the emulsion 

was unstable because the isolate produces biosurfactants 

which act as active surface molecules only in decreasing 

surface tension. Based on molecular weight, biosurfactants 

have been classified into low and high molecular weight 

biosurfactants. Low molecular weight biosurfactants, 

including glycolipids, phospholipids, and lipopeptides, 

were efficient in reducing surface tension. Meanwhile, high 

molecular weight biosurfactants, such as proteins, 

lipopolysaccharides, lipoproteins or complex mixtures of 

these biopolymers, were more effective in stabilizing oil-

in-water emulsions as emulsifiers (Uzoigwe et al. 2015). 

This result was supported by the fact that the biosurfactant 

produced by B. subtilis 21332 has shown high 

emulsification activity values on glucose substrates up to 

55.2% (Zhu et al. 2016). In contrast to the reported that 

value of the emulsification activity of B. subtilis 573 to 

27.1%, with the addition of 1% bacterial culture 

concentration (Pereira et al. 2013), while in this study, the 

addition of 4%. Differences in the addition of culture 

affected the activity of biosurfactants produced by bacteria. 

The higher the concentration of bacterial culture added to 

the media, the density of bacteria in the substrate also 

increases and affects the speed of using the available 

substrate to produce biosurfactants. 

Bacillus species had srfAA gene, which encodes 

phosphopantetheinyl transferase and contributes to the 

nonribosomal biosynthesis of surfactin (Plaza et al. 2015). 

The nonribosomal peptide synthetase complex was coded 

by srfAA and srfAD gene known as surfactin synthetase. 

The srfAA and srfAD genes have contributed to the control 

of surfactin biosynthesis gene expression. The 4-

phosphopantetheinyl transferase was an activating enzyme 

for the srfA multienzyme complex. The srfAA, srfAB, 

srfAC, and srfAD genes were involved in the assembly of 

heptamodular non-ribosomal peptide (NPRS) synthesis in 

which the modular enzyme contains a typical N-terminal in 

the CLP-BGCs domain and acylates the first amino acid, 

glutamine with various 3-OH fatty acids derived from of 

primary metabolism (Théatre et al. 2021). The surfactin 

gene transformed surfactin synthetase into an active form. 

The production of biosurfactants especially surfactin, that 

have Bacillus influenced by srfAA and srfAD gene (Plaza 

et al. 2015). The Table 3 showed that the similarity results 

have a value of 91.04%, because there were several 

differences in amino acids possessed by B. subtilis BK 7.1 

and other strains of B. subtilis. The presence of gene 

diversity could cause this even in the same B. subtilis 

group. 

 The results of this study have also reported that 

there are differences in the production of biosurfactants. 

The higher emulsification activity from B. subtilis 573 to 

48.4% (Pereira et al. 2013), B. subtilis 21332 up to 55.2% 

(Zhu et al. 2016), and B. subtilis N3-4P up to 38.3% (Zhu 

et al. 2016) on mineral salt media containing using 

different carbon sources than glycerol. The production of 

biosurfactant by Bacillus nealsonii S2M in glycerol 

substrate has been able to emulsify various hydrocarbons in 

55% (Phulpoto et al. 2020). 

Biosurfactant production of B. subtilis BK7.1 observed 

through surface tension values is shown in Fig. 6d. Glucose 

and sucrose substrates have been reported as the best 

carbon sources for the biosurfactant production process by 

the Bacillus group (Abdel-Mawgoud et al. 2008). B. 

subtilis BK7.1 reduced the surface tension up to 51.47 

mN/m at 48 h incubation. B. subtilis B30, in 2% glucose 

substrate has the lowest surface tension value (25.56 

mN/m) (Al-Wahaibi et al. 2014). The difference in surface 

tension reduction was caused by different species and 

strains of bacteria, as well as the level of their ability to 

utilize various substrates. Variations in nucleotide 
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sequences between bacteria species affected the formation 

of biosurfactant biosynthetic genes. 

On the glycerol substrate, B. subtilis BK7.1 has reduced 

the surface tension to 53.67 mN/m at 48 h, 42.01 at 96 h, 

and 54.36 at 72 h incubation, respectively. B. subtilis N3-

4P has grown better on glycerol substrate than glucose, 

hexadecane, and diesel. This B. subtilis N3-4P decreased 

the surface tension to 27.8 mN/m on glycerol substrate 

(Zhu et al. 2016). The same has been reported that the 

difference in the value of the decrease in surface tension by 

B. subtilis 309, B. subtilis 311, and B. subtilis 573 on 

glycerol and glucose substrates, with the value of the 

decrease in surface tension on glycerol substrates 29.7, 

30.1, and 29.9 mN/m, but on glucose substrates 29.2, 29.0, 

and 29.5 mN/m, respectively (Pereira et al. 2013). 

The value of the surface tension of B. subtilis BK7.1, on 

molasses substrate, was 45.91 mN/m. B. subtilis SNW3 on 

molasses substrate was able to reduce the surface tension 

up to 41 mN/m (Umar et al. 2021), B. subtilis ATCC 6633 

up to 30.48 mN/m (Kashkouli et al. 2011), and B. subtilis 

RSL-2 up to 24.09 mN/m (Verma et al. 2020). This 

difference has been due to the influence of various 

concentrations of molasses substrate, B. subtilis BK7.1 

used 2% molasses, B. subtilis ATCC 6633 used 3% 

molasses (Kashkouli et al. 2011), and B. subtilis RSL-2 

used 5% molasses (Verma et al. 2020). In addition, the 

efficiency of biosurfactant production by B. subtilis 3KP 

with molasses substrate was influenced by the instability of 

the biosurfactant product. Differences in composition and 

nutrient content in molasses, suspected related to the 

processing of sugar from the molasses (Ni’matuzahroh et 

al. 2017). The difference in sugar content of molasses as 

the main carbon source for the growth of B. subtilis 3KP 

bacteria has affected the productivity of biosurfactant 

production (Ni’matuzahroh et al. 2017). 

Indigenous entomopathogenic B. subtilis BK7.1 

isolated from Baluran National Park, East Java, Indonesia, 

98.68% similarity to B. subtilis subsp. inaquosorum strain 

BGSC 3A28. The results of screening for biosurfactant 

activity showed positive hemolytic activity, decreased 

surface tension, and increased emulsification activity. The 

srfAA and srfAD genes were detected encoding surfactin, 

which has the capacity for biosurfactant production on 

various glucose, glycerol, and molasses substrates. B. 

subtilis BK7.1 produced biosurfactant, the potential to 

develop for environmentally friendly biocontrol agent for 

biopesticides in agriculture and disease vector control in 

public health. Therefore, this research needs to be followed 

up to detect the chemical components of biosurfactants 

produced by these bacteria. 
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Abstract. Salamun, Susetyo RD, Ni’matuzahroh, Fatimah, Geraldi A, Supriyanto A, Nurhariyati T, Nafidiastri FA, Nisa’ N, Endarto. 

2023. Biosurfactant production of entomopathogenic Bacillus subtilis BK7.1, as potential biocontrol bacteria, isolated from Baluran 

National Park, East Java, Indonesia. Biodiversitas 24: 1785-1792. Biosurfactants as biocontrol agents have received much attention for 

pest control and disease vectors. The research aimed to identify the species and genetic relationship, hemolytic activity, detect coding 

genes, and trial production of biosurfactants on various substrates of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in 

Baluran National Park, East Java, Indonesia. Biosurfactant screening was carried out by testing hemolytic activity, surface tension, and 

emulsification activities, detecting coding genes of biosurfactant biosynthesis, and testing biosurfactant production in various substrates. 

The results of the molecular identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method for 

Bacillus sp. BK7.1 has a genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed 

positive hemolytic activity results, reduced surface tension, increased emulsification activities, and the production of biosurfactant in 

glucose, glycerol, and molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding 

surfactin biosynthesis, giving it the potential to produce bioinsecticide compounds. Based on these studies, the indigenous 

entomopathogenic B. subtilis BK7.1 can be developed as environmentally friendly microbial bioinsecticides for pest control and disease 

vectors.  

Keywords: Bacillus subtilis BK7.1, biosurfactant production, crop protection, entomopathogenic, hemolytic activity, srfAA-srfAD gene  

INTRODUCTION 

Controlling insect pests and insect vectors with 

chemical insecticides is used widely all around the globe 

(Safni et al. 2018). However, the chemical insecticides 

have a negative impact on control of disease vector and 

pest because they cause insect resistance (Şengül et al. 

2022). There are a number of biocontrol methods available 

to resolve these problems. Entomopathogens are natural 

enemies that can produce toxic metabolites against insect 

pests and plant pathogens. Biocontrol methods can be used 

as an alternative in fighting diseases transmitted by vector 

mosquitoes, plant pathogens, and insect pests. These 

methods do not cause pollution and are environmentally 

friendly (Thomas 2017). 

Biocontrol agents using Bacillus strains are methods 

that have been widely developed because they are proven 

to be environmentally friendly (Bergamasco et al. 2013; 

Syaharuddin et al. 2018; Abdel-Aziz et al. 2020; Qureshi et 

al. 2021). A group of bacteria, fungi, and yeasts have 

produced biosurfactants are capable of producing 

biosurfactants with different surface activities and 

molecular structures (Santos et al. 2018). Several groups of 

microbes can synthesize biosurfactants, which can be used 

to replace non-biodegradable and non-environmental 

friendly synthetic surfactants (Moro et al. 2018). The 

biosurfactant produced by Bacillus is one of the 

entomopathogenic mechanisms that have caused the death 

of insects. Biosurfactants are unique microbial metabolites 

that appear in biological action against plant pathogens and 

insect pests.  



 BIODIVERSITAS  24 (3): 1785-1792, March 2023 

 

1786 

Biosurfactants have many interesting features including 

high levels of biodegradability and optimal activity under 

extreme conditions (Khedher et al. 2017). Following 

previous studies, Bacillus subtilis, Bacillus 

amyloliquefaciens, and Bacillus velezensis produce 

biosurfactant and are efficient biocontrol agents against 

different targets (Revathi et al. 2013; Nafidiastri et al. 

2021). Bacillus sp. is able to synthesize lipopeptide 

biosurfactants, such as surfactin, fengicin, and iturin 

(Théatre et al. 2021). Surfactin consists of 7 amino acids 

bonded to a carboxyl group and a fatty acid hydroxyl group 

at carbon atoms number 12-16, synthesized by a complex 

mechanism, catalyzed by Nonribosomal Peptide Synthetase 

(NRPS) and encoded by the srfA operon. Surfactin can 

suppress plant diseases through strong biosurfactant 

activity (Cawoy et al. 2014) by inhibiting bacterial growth, 

lysing cell membranes or destroying them through 

physicochemical interactions (Deleu et al. 2013), 

suppressing fungi by promoting colonization of beneficial 

bacteria (Jia et al. 2015), and triggering systemic resistance 

(Cawoy et al. 2014). Biosurfactants have been applied in 

various industrial and petroleum fields (Nwaguma et al. 

2016; Pele et al. 2019; Gomaa et al. 2019). Biosurfactants 

are lower in toxicity, more biodegradable and 

environmentally friendly, harmless, and work more 

specifically (De Almeida et al. 2016; Martins and Martins 

et al. 2018; Gayathiri et al. 2022). Biosurfactants are stable 

and efficient under unfavorable salinity, pH and 

temperature conditions often encountered in the petroleum 

industry (Silva et al. 2014). Biosurfactants can reduce 

surface and interfacial tension, as well as suitable 

emulsifiers and dispersing agents and are widely used in 

the industrial sector (Mulligan et al. 2014).  

Perspective studies to find entomopathogenic Bacillus 

spp. are still being carried out to find the safest way to 

control disease vectors transmitted by mosquitoes. The 

results of screening tests for potential initial toxicity against 

Aedes aegypti Linnaeus, 1762 larvae have reported that 68 

entomopathogenic Bacillus sp. which have been isolated 

from 30 natural soil samples with potential status variations 

from low to very high. In the affirmation test, there were 

three isolates coded BK7.1, BK7.2, and BK5.2, with the 

highest entomopathogenic potential status, larval mortality 

rates at 48 hours of exposure were 93, 87 and 70%, 

respectively (Salamun et al. 2020). Bacillus sp. BK5.2, 

after molecular identification, has been identified as 

Bacillus thuringiensis BK5.2 which produces an 

entomopathogenic cry toxin (Salamun et al. 2021). The 

identification of Bacillus sp. BK7.1 has been carried out 

through morphological and physiological characterization 

(Salamun et al. 2020). It is necessary to carry out molecular 

identification and mechanism of action of Bacillus sp. 

BK7.1 as an entomopathogenic bacteria. Genetic 

characteristics were used in this study to determine the 

species and their relationships in the phylogenetic tree, as 

well as the detection of biosurfactant coding genes and the 

screening of biosurfactant activities such as hemolytic 

activity, surface tension, emulsification activity, and 

production on various substrates. 

MATERIALS AND METHODS 

Isolation and identification of bacteria 

Bacillus sp. BK7.1 was isolated from Baluran National 

Park soil samples. This isolate was identified 

conventionally such as macroscopic, microscopic, and 

physiological characters first and then at molecular level 

through 16S rRNA (Salamun et al. 2020). This bacteria 

was maintained aerobically on NB agar plates and was 

regularly transferred into fresh NB medium slant for short-

term storage. 

Molecular identification using 16 S rRNA gene  

The DNA genome of Bacillus sp. BK7.1 was isolated 

according to the Thermo Scientific GeneJet Genomic DNA 

Purification Kit, visualized under ultraviolet by 

electrophoresis, purity and concentration with a Thermo 

Scientific Multiskan GO Microdroplet Spectrophotometer; 

purity was calculated by the ratio between the values of 

260 nm and 280 nm in the DNA samples (Meena et al. 

2020). Amplifying genomic DNA of Bacillus sp. BK7.1 

utilized 16S rRNA primers (27f and 1492r) was examined 

by electrophoresis on 1% agarose gel followed by ethidium 

bromide (EtBr) dye and visualized under ultraviolet light, 

then purified and sequenced. Amplicon results were then 

aligned and contigs were developed from the sequences 

using the BioEdit Sequence Alignment Editor software for 

Windows. The 16S rRNA nucleotide sequence was aligned 

with 16S rRNA gene sequences from other microorganisms 

published in GenBank. Genetic similarity was determined 

to contig alignment and phylogenetic tree construction 

using the Program of Mega 7. The phylogenetic tree was 

designed by inputting FASTAs from BLAST species 

(Kumar et al. 2016). 

Screening biosurfactant activities  

Screening of biosurfactants was carried out by three 

methods, hemolytic activity, surface tension value, and 

emulsification activity. Hemolytic activity using blood agar 

media inoculated with Bacillus sp. BK7.1 by spots method 

and incubated for two days at room temperature and zone 

of inhibition observed around the colony. Surface tension 

was measured with du nouy tensiometer, with 50% tween 

20 as a positive control and nutrient broth as a negative 

control. The decrease in the surface tension value (10 

mN/m) indicated the potential to produce biosurfactants. 

The emulsification activity was measured by inserting a 2 

mL supernatant fraction and kerosene in a test tube. This 

mixture was stirred on vortex mixer for 1 minute, incubated 

for 24 hours at room temperature, and measured after the 

emulsion height was stable. The percentage (%) of the 

emulsion layer height (cm) divided by the total solution 

height was calculated as the emulsion index value (E24). 

Detection srfAA and srfAD surfactin gene  

Amplification of the srfAA and srfAD surfactin genes of 

Bacillus sp. BK7.1 was carried out by using primers 

selected according to the literature. Electrophoresis and 

visualization were performed under UV Transluminator. 

Forward primer F-5' TCGGGACAGGAAGACATCAT 3' 
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and reverse primer R-5' CCACTCAAACGGATAATCCTGA 

3' for srfAA gene (Mora et al. 2020; Kim et al. 2020). 

Forward primer F-5’ ATGAGCCAACTCTTCAAATCATTTG 

3’ and reverse primer R-5’ TCACGATTGAATGATT 

GGATGCT 3’ for srfAD gene. The amplicons were aligned 

and developed from the sequences by the BioEdit Sequence 

Alignment Editor for Windows software. The nucleotide 

sequences are translated into a protein to be formed. The 

translation of the nucleotide sequence aligned with 

BLASTp from the other Bacillus, which has been 

published on GenBank. 

Biosurfactant production  

The biosurfactant production activity begins by 

providing synthetic mineral water (SMW), by dissolving 

one by one, 3 g (NH4)2SO4, 10 g NaCl, 0.2 g 

MgSO4.7H2O, 0.01 g CaCl2, 0.001 g MnSO4.H2O, 0.001 g 

H3BO3, 0.001 g ZnSO4.7H2O, 0.001 g CuSO4.5H2O, 0.005 

g CoCl2.6H2O, and 0.001 g NaMoO4.2H2O into 900 mL 

distilled water, respectively. The elements phosphate and 

iron were made separately. The phosphate elements 

dissolved 5 g of KH2PO4 and 2 g of K2HPO4 into 50 mL of 

distilled water, while the iron element dissolved 0.0006 g 

of FeSO4.7H2O into 50 mL of distilled water, respectively. 

The phosphate and iron elements were sterilized using an 

autoclave for 15-20 minutes at 121°C with 1 atm. 

A 250 mL culture bottle was prepared to be filled with 

86.4 mL of SMW and added 2% substrates (glucose, 

glycerol, molasses) solution, was homogenized and ensured 

that the pH was 7.0. The culture vial was sterilized by 

autoclave for 15-20 minutes at 121°C 1 atm. After 

sterilization, the culture was cooled at room temperature, 

then 4.8 mL of phosphate and iron elements were added. 

Then each added 4% (4 mL) of bacterial culture with an 

absorbance value of 0.5 Optical Density in 650 nm. The 

culture solution was incubated at room temperature for 96 

hrs with an agitation of 130 rpm. Every 24 hrs, bacterial 

biomass, surface tension value, and emulsification activity 

against diesel and kerosene were measured until 96 hrs 

incubation. 

RESULTS AND DISCUSSION 

Identification of 16S rRNA gene 

Purity and concentration of DNA genome of Bacillus 

sp. BK 7.1 obtained a 1.782 and a 31 ng/µL and after being 

confirmed with agarose gel electrophoresis 1% in Figure 1. 

Bacillus sp. BK7.1 has a size of 1449 bp of the 16S rRNA 

nucleotide sequence, which similarity to Bacillus subtilis 

subsp. inaquosorum strain BGSC 3A28, homology level of 

98.68% (Table 1).  

The phylogenetic analysis results where Bacillus sp. 

BK7.1 and some strain of known Bacillus are presented in 

Figure 2. The closest relative of Bacillus sp. BK7.1 is a 

strain of Bacillus subtilis strain SBMP4, and this grouping 

only shows the closeness of the strains based on the 

similarity of the 16S rRNA sequence, and does not describe 

the ability to produce biosurfactants, especially surfactin. 

Screening of biosurfactant activity  

The hemolytic activity of B. subtilis BK7.1 can be seen 

in Figure 3. The surface tension value of the supernatant 

fraction of B. subtilis BK7.1 of 49.17 mN/m can be seen in 

Table 2. When compared with the surface tension value of 

the control in the form of distilled water and the control 

media of Nutrient Broth (NB), the value of the culture 

supernatant of B. subtilis BK7.1 experienced a decrease in 

surface tension value of 15.21 mN/m from the NB media 

control and 22.83 mN/m from the distilled water control. 

The emulsification index value of the supernatant B. 

subtilis BK7.1 of 18.02%, which was left for one hour 

while after 24 hours the emulsification index value 

becomes 25.53%, where it was decreased by 21.92% 

(Figure 4). The emulsification index value indicates the 

stability of the emulsion and lines that produce values 

above 50%. 

 

 

 

 
A B 

 

Figure 1. The electrophoresis results of DNA genome (A) and 

16S rRNA gene (B) of Bacillus sp. BK7.1 on 1% agarose gel. 

Descriptions: M 100 bp DNA marker, S sample, S1 sample of 

DNA genome, S2 sample of 16SrRNA gene 

 

 

 

Table 1. The species of Bacillus sp. BK7.1 based on approach 16S rRNA gene with Basic Local Alignment Search Tools (BLAST) 

program 

 

Species Accession no. E value %ID Query cover (%) 

Bacillus subtilis subsp. inaquosorum strain BGSC 3A28  NR_104873.1 0.0 98.68 99 

Bacillus subtilis strain DSM 10  NR_027552.1 0.0 98.61 99 

Bacillus subtilis strain JCM 1465  NR_113265.1 0.0 98.61 99 

 

https://www.ncbi.nlm.nih.gov/nucleotide/NR_104873.1?report=genbank&log$=nucltop&blast_rank=1&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_027552.1?report=genbank&log$=nucltop&blast_rank=2&RID=ANP2AB3B013
https://www.ncbi.nlm.nih.gov/nucleotide/NR_113265.1?report=genbank&log$=nucltop&blast_rank=3&RID=ANP2AB3B013
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Table 2. Value of surface tension (mN/m) of supernatant fraction of Bacillus subtilis BK7.1 on treatment variation 

 

Treatment Surface Tension 

Control of sterile water 72 

Control of Nutrient Broth (NB) medium, room temperature, pH = 7 64.38 

Control of Tween 20 at 50% solution 37.11 

Supernatant of Bacillus subtilis BK7.1 (24 hours), room temperature, pH = 8 49.17 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against sterile water 22.83 

Δ Surface tension of supernatant of Bacillus subtilis BK7.1 against NB medium 15.21 

 

 

 
 

Figure 2. Analysis of the phylogenetic tree of Bacillus sp. BK7.1 based on cladograms of other species and strains, and Escherichia coli 

as an outgroup species 

 

 
 

Figure 3. Screening biosurfactant using hemolytic activity in 

Bacillus subtilis BK7.1 on blood agar plate media. A. Isolate, B. 

Clear zone around the colony, C. Blood agar plate, R. Replicates 
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Figure 4. The emulsification activity of supernatant Bacillus 

subtilis BK7.1 on the kerosene substrate. A. 1 hour of exposure, 

B. 24 hours of exposure. a. kerosene, b. emulsion, c. isolate 

 

 

Detection srfAA and srfAD surfactin gene  

The encoding gene of surfactin discovered sizes scale 

201 bp, expected as srfAA gene, and 723 bp expected as 

srfAD gene (Figure 5). In Table 3 showed that the 

similarity results, which have a value of 91.04% because 

there are several differences in amino acids possessed by B. 

subtilis BK 7.1 and other strains of B. subtilis. This can be 

caused by the presence of gene diversity even in the same 

B. subtilis group. 

Biosurfactant production  

Biosurfactant productions of B. subtilis BK7.1 on 

glucose, glycerol, and molasses substrates can be detected 

through a bacterial growth curve, surface tension value, and 

emulsification activity (Figure 6). The growth activity of B. 

subtilis BK7.1 showed on various substrates in Figure 6a. 

The isolates had grown well on SMW media with the 

addition of glucose, glycerol, and molasses as substrates. 

On glucose substrate with up to 72 hrs incubation, isolates 

still showed an exponential phase, and 96 hrs incubation 

entered the stationary phase, as well as on glycerol 

substrate. On molasses substrate, it still showed an 

exponential phase until 96 hrs incubation. 

The results showed that the emulsification activity of B. 

subtilis BK7.1 on the three substrates tended to increase up 

to 96 hrs of incubation (Figures 6.B, 6.C), which proved 

that the isolate produced surfactin. On glucose substrate, 

the highest emulsification activity occurred at 96 hrs of 

incubation. Decreased in surface tension values are shown 

in Figure 6.D. 
 

A 

B 

C 
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Table 3. The results of Basic Local Alignment Search Tools (BLAST) analysis of srfAA and srfAD protein isolates of Bacillus subtilis BK 7.1 

 

Protein Species  Accession no. E value %ID Query cover (%) 

Surfactin non-ribosomal peptide synthetase srfAA Bacillus subtilis inaquosorum WP_060397903.1 9e-34 91.04 100 

Surfactin biosynthesis thioesterase SrfAD  Bacillus subtilis group WP_075750164.1 5e-178 99.17 99 

 

 

 
A B 

 

Figure 5. The electrophoresis results of srfAD (a) and srfAA (b) 

surfactin gene amplification of Bacillus subtilis BK7.1. 

Description: M 100 bp DNA marker, SA sample of srfAA 

surfactin gene 201 bp, SD sample of srfAD surfactin gene 729 bp 

 

 
 

Figure 6. Biosurfactant productions of Bacillus subtilis BK7.1 on 

glucose, glycerol, and molasses substrates, incubation period 0-, 

24-, 48-, 72-, 96-hours. Descriptions: A. Cells density, B. 

Emulsification activity (1 hour), C. Emulsification activity (24 

hours), D. Surface tension value 

Discussions 

Conventional identification of Bacillus sp. BK7.1 has 

been carried out. Based on the macroscopic, microscopic, 

and physiological characteristics of Bacillus sp. BK7.1 has 

similarities with Bacillus sphaericus (Salamun et al. 2020). 

Researchers suggest further research to confirm the species 

name, by identifying the 16S rRNA gene. The 

electrophoresis results from 16S rRNA gene amplification 

of Bacillus sp. BK7.1 showed a band over 1500 bp in size 

(Figure 1). Bacillus sp. BK7.1 had a 98.68% similarity to 

Bacillus subtilis subsp. inaquosorum strain BGSC 3A28 

based on molecular identification. The gene of 16S rRNA 

could be used for the identification of microorganisms 

because it is one of the genes with specific characteristics 

(Pearson 2013). The 16S RNA gene sequencing is was a 

fast and accurate method for bacterial identification. 

Bacteria represented the same genus if they have a 

similarity index above 95% and the same species above 

97% (Johnson et al. 2019; Srinivasan et al. 2015). The 

similarity was less than 100% because there were 

variations in amino acid sequences that affect the genotypic 

character but do not affect the phenotypic character 

(Johnson et al. 2019).  

Research has shown that B. subtilis strain SBMP4 could 

control pathogenic fungi such as Aspergillus and Fusarium 

in early Arachis hypogea plants (Syed et al. 2020). Bacillus 

has adapted to and grown in extreme environmental 

conditions, forms endospores that are resistant to stress, 

and secretes various secondary metabolites such as 

surfactin (Shafi et al. 2017). Another essential 

characteristic was the abundance of secondary metabolites 

and moderate dietary requirements with a fast growth rate 

(Yadav et al. 2016; Mishra and Arora 2018). Biosurfactant 

lipopeptides from entomopathogenic microbes could act as 

biocontrol, especially antimicrobials and anti-biofilms 

(Abdel-Aziz et al. 2020; Qureshi et al. 2021). Surfactin 

produced by B. subtilis was one of the most effective 

biosurfactants. Surfactin reduced the surface tension of 

water up to 27 mN/m, with a critical micelle concentration 

of 0.01 g/L and high emulsification activity and has shown 

antimicrobial, antiviral, and antitumor activity (Gudina et 

al. 2013, 2015). 

Controlling insects can use biosurfactants introduced as 

an alternative to synthetic chemicals. Many reports that 

biosurfactant activity produced by the Bacillus strain could 

kill adult mosquitoes. The hemolytic activity of B. subtilis 

BK7.1 could be seen in Figure 3. The clear zone on the 

hemolytic activity test by biosurfactants has caused lysis of 

the red blood cell membrane, and the cells secrete 

hemoglobin. The hemolytic activity occurred through two 

different mechanisms, at a high concentration occur, cell 

membrane lysis, and at low concentrations increase, 

membrane permeability to solutes and cause osmotic lysis 

A 

B 

C 
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(Zaragosa et al. 2010). The inhibition zone formed in the 

observation of hemolytic activity indicates a biosurfactant 

production process; the larger the lysis diameter of blood 

agar, the higher the biosurfactant concentration (Singh 

2012). 

Bacteria could produce biosurfactants if they can reduce 

surface tension values by ≥10 mN/m (Oliveira et al. 2021). 

The surface and interfacial tension decrease is caused by 

the presence of hydrophobic and hydrophilic groups in the 

biosurfactants, where these compounds can accumulate 

between the liquid phases (Kapadia and Yagnik 2013). The 

entomopathogenic activity of biosurfactants against A. 

aegypti was caused by surfactin produced by B. subtilis. 

Surfactin triggers the surface tension of the water, causing 

a lack of oxygen underwater. The concentration of O2 

caused the larval spiracles of A. aegypti to open so that it 

can cause the insect death. In addition, surfactin could be 

very active against pH, temperature around 25-42°C, and 

UV stability, making it enjoyable to develop as a larvicidal 

agent (Guimarães et al. 2019). 

The emulsification index value of B. subtilis BK7.1 was 

a low category. Lipopeptides such as surfactin consist of 

cycloheptapeptides with amino acids attached to fatty acids 

of a different chain. This chemical structure caused 

surfactin to be amphiphilic and able to mix in both polar 

and non-polar solvents, while this amphiphilic structure 

allows surfactin to form emulsions. The characteristics of 

surfactin were involved in cell attachment and cause 

membrane disruption (Chen et al. 2022). The ability of 

surfactin to bind Ca2+ caused a conformational change in 

the peptide cycle and allows it to be incorporated into the 

phospholipid bilayer (Khedher et al. 2015, Khedher et al. 

2017). 

The emulsification activity of B. subtilis BK7.1 in 1-

hour observation tended to decrease compared to 24 hrs 

observation. This difference has shown that the emulsion 

was unstable because the isolate produces biosurfactants 

which act as active surface molecules only in decreasing 

surface tension. Based on molecular weight, biosurfactants 

have been classified into low and high molecular weight 

biosurfactants. Low molecular weight biosurfactants, 

including glycolipids, phospholipids, and lipopeptides, 

were efficient in reducing surface tension. Meanwhile, high 

molecular weight biosurfactants, such as proteins, 

lipopolysaccharides, lipoproteins or complex mixtures of 

these biopolymers, were more effective in stabilizing oil-

in-water emulsions as emulsifiers (Uzoigwe et al. 2015). 

This result was supported by the fact that the biosurfactant 

produced by B. subtilis 21332 has shown high 

emulsification activity values on glucose substrates up to 

55.2% (Zhu et al. 2016). In contrast to the reported that 

value of the emulsification activity of B. subtilis 573 to 

27.1%, with the addition of 1% bacterial culture 

concentration (Pereira et al. 2013), while in this study, the 

addition of 4%. Differences in the addition of culture 

affected the activity of biosurfactants produced by bacteria. 

The higher the concentration of bacterial culture added to 

the media, the density of bacteria in the substrate also 

increases and affects the speed of using the available 

substrate to produce biosurfactants. 

Bacillus species had srfAA gene, which encodes 

phosphopantetheinyl transferase and contributes to the 

nonribosomal biosynthesis of surfactin (Plaza et al. 2015). 

The nonribosomal peptide synthetase complex was coded 

by srfAA and srfAD gene known as surfactin synthetase. 

The srfAA and srfAD genes have contributed to the control 

of surfactin biosynthesis gene expression. The 4-

phosphopantetheinyl transferase was an activating enzyme 

for the srfA multienzyme complex. The srfAA, srfAB, 

srfAC, and srfAD genes were involved in the assembly of 

heptamodular non-ribosomal peptide (NPRS) synthesis in 

which the modular enzyme contains a typical N-terminal in 

the CLP-BGCs domain and acylates the first amino acid, 

glutamine with various 3-OH fatty acids derived from of 

primary metabolism (Théatre et al. 2021). The surfactin 

gene transformed surfactin synthetase into an active form. 

The production of biosurfactants especially surfactin, that 

have Bacillus influenced by srfAA and srfAD gene (Plaza et 

al. 2015). Table 3 showed that the similarity results have a 

value of 91.04%, because there were several differences in 

amino acids possessed by B. subtilis BK 7.1 and other 

strains of B. subtilis. The presence of gene diversity could 

cause this even in the same B. subtilis group. 

The results of this study have also reported that there 

are differences in the production of biosurfactants. The 

higher emulsification activity from B. subtilis 573 to 48.4% 

(Pereira et al. 2013), B. subtilis 21332 up to 55.2% (Zhu et 

al. 2016), and B. subtilis N3-4P up to 38.3% (Zhu et al. 

2016) on mineral salt media containing using different 

carbon sources than glycerol. The production of 

biosurfactant by Bacillus nealsonii S2M in glycerol 

substrate has been able to emulsify various hydrocarbons in 

55% (Phulpoto et al. 2020). 

Biosurfactant production of B. subtilis BK7.1 observed 

through surface tension values is shown in Fig. 6d. Glucose 

and sucrose substrates have been reported as the best 

carbon sources for the biosurfactant production process by 

the Bacillus group (Abdel-Mawgoud et al. 2008). B. 

subtilis BK7.1 reduced the surface tension up to 51.47 

mN/m at 48 h incubation. B. subtilis B30, in 2% glucose 

substrate has the lowest surface tension value (25.56 

mN/m) (Al-Wahaibi et al. 2014). The difference in surface 

tension reduction was caused by different species and 

strains of bacteria, as well as the level of their ability to 

utilize various substrates. Variations in nucleotide 

sequences between bacteria species affected the formation 

of biosurfactant biosynthetic genes. 

On the glycerol substrate, B. subtilis BK7.1 has reduced 

the surface tension to 53.67 mN/m at 48 h, 42.01 at 96 h, 

and 54.36 at 72 h incubation, respectively. B. subtilis N3-

4P has grown better on glycerol substrate than glucose, 

hexadecane, and diesel. This B. subtilis N3-4P decreased 

the surface tension to 27.8 mN/m on glycerol substrate 

(Zhu et al. 2016). The same has been reported that the 

difference in the value of the decrease in surface tension by 

B. subtilis 309, B. subtilis 311, and B. subtilis 573 on 

glycerol and glucose substrates, with the value of the 

decrease in surface tension on glycerol substrates 29.7, 

30.1, and 29.9 mN/m, but on glucose substrates 29.2, 29.0, 

and 29.5 mN/m, respectively (Pereira et al. 2013). 
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The value of the surface tension of B. subtilis BK7.1, on 

molasses substrate, was 45.91 mN/m. B. subtilis SNW3 on 

molasses substrate was able to reduce the surface tension 

up to 41 mN/m (Umar et al. 2021), B. subtilis ATCC 6633 

up to 30.48 mN/m (Kashkouli et al. 2011), and B. subtilis 

RSL-2 up to 24.09 mN/m (Verma et al. 2020). This 

difference has been due to the influence of various 

concentrations of molasses substrate, B. subtilis BK7.1 

used 2% molasses, B. subtilis ATCC 6633 used 3% 

molasses (Kashkouli et al. 2011), and B. subtilis RSL-2 

used 5% molasses (Verma et al. 2020). In addition, the 

efficiency of biosurfactant production by B. subtilis 3KP 

with molasses substrate was influenced by the instability of 

the biosurfactant product. Differences in composition and 

nutrient content in molasses, suspected related to the 

processing of sugar from the molasses (Ni’matuzahroh et 

al. 2017). The difference in sugar content of molasses as 

the main carbon source for the growth of B. subtilis 3KP 

bacteria has affected the productivity of biosurfactant 

production (Ni’matuzahroh et al. 2017). 

Indigenous entomopathogenic B. subtilis BK7.1 

isolated from Baluran National Park, East Java, Indonesia, 

98.68% similarity to B. subtilis subsp. inaquosorum strain 

BGSC 3A28. The results of screening for biosurfactant 

activity showed positive hemolytic activity, decreased 

surface tension, and increased emulsification activity. The 

srfAA and srfAD genes were detected encoding surfactin, 

which has the capacity for biosurfactant production on 

various glucose, glycerol, and molasses substrates. B. 

subtilis BK7.1 produced biosurfactant, the potential to 

develop for environmentally friendly biocontrol agent for 

biopesticides in agriculture and disease vector control in 

public health. Therefore, this research needs to be followed 

up to detect the chemical components of biosurfactants 

produced by these bacteria. 
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