Mathematical modelling of motorcycle sale competition in Indonesia

Windarto, Eridani

Available online at https://scik.org/index.php/cmbn/article/download/5309/2612 Commun. Math. Biol. Neurosci. 2021, 2021:8

https://doi.org/10.28919/cmbn/5309

ISSN: 2052-2541

Scopus

Documents

Export Date: 27 Nov 2022 Search:

Windarto, Eridani
 Mathematical modelling of motorcycle sale competition in Indonesia
 (2021) Communications in Mathematical Biology and Neuroscience, 2021, art. no. 8, pp. 1-10.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101555742&doi=10.28919%2fcmbn%2f5309&partnerID=40&md5=d3a
 DOI: 10.28919/cmbn/5309

Document Type: Article Publication Stage: Final Source: Scopus

ELSEVIER

Brought to you by Airlangga University

Scopus

Source details

Communications in Mathematic Scopus coverage years: from 2017 to Present			cal Biology and Neuroscience	CiteScore 2020	Ū
Publisher: SCIK Pub E-ISSN: 2052-2543 Subject area: Mathem	lishing Corpora L atics: Applied Mathen	natics		SJR 2020 0.189	Ū
Biocher Neurosc Source type: Journal	nistry, Genetics and M ience: General Neuro	lolecular Biology: science	: General Biochemistry, Genetics and Molecular Biology	SNIP 2020 0.432	Ū
View all documents >	Set document ale	ert 💾 Sav	ve to source list Source Homepage		
CiteScore CiteScor	re rank & trend	Scopus	content coverage		
i Improved Cit CiteScore 2020 c papers published	eScore method ounts the citations I in 2017-2020, and	ology received in 201 divides this by	17-2020 to articles, reviews, conference papers, book chapters and / the number of publications published in 2017-2020. Learn more	data e >	×
CiteScore 2020 1.3 = $\frac{221 \text{ Cite}}{172 \text{ Docu}}$ Calculated on 05 May, 2021	ations 2017 - 20 uments 2017 - 2	120 2020	CiteScoreTracker 2021 ① 1.9 = $\frac{453 \text{ Citations to date}}{242 \text{ Documents to date}}$ Last updated on 06 April, 2022 • Updated monthly		
CiteScore rank 202	20 🛈				
Category	Rank Percer	ntile			
Mathematics Applied Mathematics	#355/548	35th			
Biochemistry, Genetics and Molecular Biology General Biochemistry, Genetics and Molecular Biology	#137/204	33rd			

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site \mathscr{P}

۹ 📃

About Scopus

What is Scopus Content coverage Scopus blog Scopus API Privacy matters

Language

日本語に切り替える 切換到简体中文 切換到繁體中文 Русский язык

Customer Service

Help Tutorials Contact us

ELSEVIER

Terms and conditions ieqtarrow Privacy policy ieqtarrow

Copyright © Elsevier B.V 7. All rights reserved. Scopus® is a registered trademark of Elsevier B.V. We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

RELX

Communications in Mathematical Biology and Neuroscience

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United Kingdom Universities and research institutions in United Kingdom	Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (miscellaneous) Mathematics Applied Mathematics Neuroscience Neuroscience (miscellaneous)	SCIK Publishing Corporation	10
PUBLICATION TYPE	ISSN	COVERAGE	
Journals	20522541	2017-2021	

SCOPE

Information not localized

 \bigcirc Join the conversation about this journal

Quartiles

<u>₹</u> 8

Cited documents Uncited documents

 $\leftarrow \text{Show this widget in}$ your own website

> Just copy the code below and paste within your html code:

<a href="https://www.scimaç

G Explore, visually communicate and make sense of data with our new data visualization tool.

SCImago Graphica

Metrics based on Scopus® data as of April 2022

Communications in Mathematical Biology and Neuroscience

USER Username windarto	HomeAboutTable of ContentsEditorial BoardAPublication EthicsEditorial WorkflowContact				
Password	Home > Editorial Board				
Log In Register Reset Password	Editor-in-Chief: <u>Lansun Chen</u> , Chinese Academy of Sciences, China				
Email					
	Associate Editors:				
	Marcos Amaku, Universidade de Sao Paulo, Brazil				
	Ioannis P. Androulakis, The State University of New Jersey, USA				
	Tiaza Bem, Institute of Biocybernetics and Biomedical Engineering, Polar				
• <u>For Authors</u>	Glenna C. L. Bett, State University of New York at Buffalo, USA				
JOURNAL	Anuj Chauhan, University of Florida, USA				
CONTENT	Fengde Chen, Fuzhou University, China				
	Ahmed Elaiw, King Abdulaziz University, Saudi Arabia				
All 🗸	Irina Erchova, Cardiff University, UK				
Search	Wenjiang Fu, Michigan State University, USA				
Browse	Mladen Glavinovic, McGill University, Canada				
 <u>By Issue</u> <u>By Author</u> 	Hongjian Guo, Xinyang Normal University, China				
• <u>By Title</u>	Stephen F. Hubbard, University of Dundee, UK				
	Mahendra Kavdia, Wayne State University, USA				
	Bing Liu, Anshan Normal University, China				
	Maoxing Liu, North University of China, China				
	Hasan Al-Nashash, American University of Sharjah, UAE				
	Fahima Nekka, Université de Montréal, Canada				
	Yongzhen Pei, Tianjin Polytechnic University, China				
	Laurent Pezard, Aix-Marseille Université, France				
	Mutasem O. Taha, University of Jordan, Jordan				
	Zhihui Wang, University of Texas Health Science Center at Houston, USA				
	Alexander Zelikovsky, Georgia State University, USA				
	Hong Zhang, Jiangsu University, China				

Managing Editors:

Fengde Chen, Yi Pan, Yongzhen Pei, Shi Shen, Yuan Tian, Kaifa Wang, Xia

Commun. Math. Biol. Neurosci.

ISSN 2052-2541

Editorial Office: office@scik.org

Copyright ©2022 CMBN

Vol 2021 (2021)

Table of Contents

Zineb Rachik, Sara Bidah, Hamza Boutayeb, Omar Zakary, Mostafa Rachik <u>Understanding the different objectives of information and their mutual</u> impacts multi-information model	
Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 1	
Adesoye Idowu Abioye, Mfon David Umoh, Olumuyiwa James Peter, Helen Olaronke Edogbanya, Festus Abiodun Oguntolu, Oshinubi Kayode, Sylvanus Amadiegwu <u>Forecasting of COVID-19 pandemic in Nigeria using real statistical</u> <u>data</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 2	PDF
Puji Andayani, Lisa Risfana Sari <u>The cell-to-cell transmission of Guillain-Barre syndromes: modeling</u> <u>and analysis</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 3	PDF
Vilzati Juned, Yusra - Using fuzzy c-means algorithm to cluster human development index Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 5PI	<u>DF</u>
S. S. Safaai, S. L. Yap, S. V. Muniady, M. Ayaz Ahmad <u>Some aspects of fluctuations dynamics of particles in dusty plasma</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 6	R
Yaqing Rao, Dandan Hu, Gang Huang <u>Dynamical analysis of COVID-19 epidemic model with individual</u> <u>mobility</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 7	PDF
Windarto -, Eridani - Mathematical modelling of motorcycle sale competition in Indonesia Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 8P	DF
Zineb Rachik, Sara Bidah, Hamza Boutayeb, Omar Zakary, Mostafa Rachik <u>On the control of information and their objectives: multi-information</u> model	<u>PDF</u>
Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 9	
Titin Siswantining, Taufik Anwar, Devvi Sarwinda, Herley Shaori Al- Ash <u>A novel centroid initialization in missing value imputation towards</u> <u>mixed datasets</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 11	PDF

Dominic Otoo, Getachew Teshome Tilahun, Shaibu Osman, Getinet Alemayehu Wole <u>Modeling the dynamics of tuberculosis with drug resistance in North</u> <u>Shoa Zone, Oromiya Regional State, Ethiopia</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 12		
Johnson De-Graft Ankamah, Eric Okyere, Sampson Takyi Appiah, Sacrifice Nana-Kyere <u>Nonlinear dynamics of COVID-19 SEIR infection model with optimal</u> <u>control analysis</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 13		
Isnani Darti, Ummu Habibah, Suci Astutik, Wuryansari Muharini Kusumawinahyu, Marsudi -, Agus Suryanto <u>Comparison of phenomenological growth models in predicting</u> <u>cumulative number of COVID-19 cases in East Java Province</u> , <u>Indonesia</u> Commun, Math. Biol. Neurosci., 2021 (2021). Article ID 14		
Debasish Bhattacharjee, Ankur Jyoti Kashyap, Hemanta Kumar Sarmah, Ranu Paul <u>Dynamics in a ratio-dependent eco-epidemiological predator-prey</u> <u>model having cross species disease transmission</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 15		
Hetty Rohayani, Harco Leslie Hendric Spits Warnars, Tuga Mauritsius, Edi Abdurrachman <u>Wind speed forecasting in big data and machine learning: from</u> <u>presents, opportunities and future trends</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 16		
Festus Abiodun Oguntolu, Gbolahan Bolarin, Olumuyiwa James Peter, Abdullah Idris Enagi, Kayode Oshinubi <u>Mathematical model for the control of lymphatic filariasis transmission</u> <u>dynamics</u> Commun, Math. Biol. Neurosci., 2021 (2021), Article ID 17		
Abadi -, Rudianto Artiono, Budi Priyo Prawoto The dynamics of rubella virus with two-dose vaccination strategy Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 21PDF		
Hamza Boutayeb, Sara Bidah, Omar Zakary, Mustapha Lhous, Mostafa Rachik <u>Automated optimal vaccination and travel-restriction controls with a</u> <u>discrete multi-region SIR epidemic model</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 22		
I.G.N.M. Jaya, F. Kristiani, Y. Andriyana, B.N. Ruchjana <u>Modeling dengue disease transmission for juvenile in Bandung</u> , <u>Indonesia</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 23		
Kasbawati -, Rifaldy Atlant Tungga, Andi Kresna Jaya, Anisa Kalondeng <u>A mathematical study of tuberculosis infections using a deterministic</u> <u>model in comparison with continuous Markov chain model</u>	PDF	

Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 25	
Nurvita Trianasari, I Made Sumertajaya, Erfiani -, I Wayan MangkuPDBivariate beta mixture model with correlations Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 26PD	<u>PF</u>
Carissa I. Pardamean, James W. Baurley, Bens PardameanPDEPharmacotherapy based on medical genetics for smoking cessationCommun. Math. Biol. Neurosci., 2021 (2021), Article ID 27	
Marisa Rifada, Nur Chamidah, Vita Ratnasari, Purhadi - Estimation of nonparametric ordinal logistic regression model using local maximum likelihood estimation Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 28	PDF
Hamza Boutayeb, Sara Bidah, Omar Zakary, Mustapha Lhous, Mostafa Rachik <u>On the optimal vaccination and travel-restriction controls with a</u> <u>discrete multi-region SIRS epidemic model</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 31	PDF
Naina Arya, Palak Mrig, Sumit Kaur Bhatia, Sudipa Chauhan, Puneet Sharma <u>Dynamical analysis of polluted prey-predator system with infected prey</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 32	<u>PDF</u>
Mouhcine Naim, Ghassane Benrhmach, Fouad Lahmidi, Abdelwahed Namir <u>Local stability of a fractional order sis epidemic model with specific</u> <u>nonlinear incidence rate and time delay</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 33	<u>PDF</u>
Amine Alabkari, Khalid Adnaoui, Ahmed Kourrad, Abdelkarim Bennar Optimal control of a community violence model: community violence treated as a contagious disease Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 34	PDF
Lunga Matsebula, Farai Nyabadza, Josiah Mushanyu <u>Mathematical analysis of typhoid fever transmission dynamics with</u> <u>seasonality and fear</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 36	<u>PDF</u>
Resa Septiani Pontoh, Solichatus Zahroh, Antony Akbar, Nabila Mahardika Jiwani, Neneng Sunengsih <u>Children mental health in Bandung during COVID-19 pandemic: a</u> <u>cross-sectional study</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 37	PDF
Saida Amine, El Mehdi Farah <u>Global stability of HIV-1 and HIV-2 model with drug resistance</u> <u>compartment</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 38	PDF
Nicholas Dominic, Daniel -, Tjeng Wawan Cenggoro, Arif Budiarto, Bens Pardamean <u>Transfer learning using inception-ResNet-v2 model to the augmented</u>	PDF

neuroimages data for autism spectrum disorder classification Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 39	
Amine El Bhih, Adil El Alami Laaroussi, Rachid Ghazzali, Mostafa Rachik <u>An optimal chemoprophylaxis and treatment control for a</u> <u>spatiotemporal tuberculosis model</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 40	PDF
Anna Chadidjah, I.G.N.M. Jaya <u>An evaluation of the log-transformed strategy for count data in</u> <u>ecological studies</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 41	PDF
Alhadi Bustamam, Devvi Sarwinda, Radifa H. Paradisa, Andi Arus Victor, Anggun Rama Yudantha, Titin Siswantining <u>Evaluation of convolutional neural network variants for diagnosis of</u> <u>diabetic retinopathy</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 42	PDF
Dominic Otoo, Isaac Odoi Abeasi, Shaibu Osman, Elvis Kobina Donkoh <u>Mathematical modeling and analysis of the dynamics of hepatitis B</u> <u>with optimal control</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 43	PDF
Nurvita Trianasari, I Made Sumertajaya, Erfiani -, I Wayan Mangku <u>Application of beta mixture distribution in data on GPA proportion and</u> <u>course scores at the MBTI Telkom University</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 44	PDF
Ahmed Kourrad, Amine Alabkari, Khalid Adnaoui, Omar Zakary, Youssef Tabit, Adil El Alami Laaroussi, Fouad Lahmidi <u>A spatiotemporal model with optimal control for the novel coronavirus</u> <u>epidemic in Wuhan, China</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 45	PDF
Jonner Nainggolan, Fatmawati - <u>Optimal prevention strategy of the type SIR COVID-19 spread model in</u> <u>Indonesia</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 46	PDF
Delian hendardi, William Felix Josephen, Harco Leslie Hendric Spits Warnars, Edi Abdurrachman, Priati Assiroj, Achmad Imam Kistijantoro, Antoine Doucet <u>Dragonfly algorithm in 2020: review</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 47	PDF
Sigit Susanto Putro, Firmansyah Adiputra, Eka Mala Sari Rochman, Aeri Rachmad, Muhammad Ali Syakur, Satria Bayu Seta <u>Comparison of SAW and WP methods to determine the best</u> <u>agricultural land</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 49	PDF
Rachik Zineb, Bidah Sara, Boutayeb Hamza, Zakary Omar, Rachik Mostafa <u>Extended optimal feedback control of information dissemination in</u>	PDF

<u>online environments</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 50		
Ratna Dwi Christyanti, Adymas Putro Utomo, Siti Aisyah, Toto Nusantara, Vita Kusumasari <u>A simulation of SIMV host - vector dengue model</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 51		
Ilyas Sitli, Mouhcine Naim, Fouad Lahmidi, Abdelwahed Namir <u>On the controllability and observability of positive nonlinear</u> <u>continuous systems</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 52	PDF	
Lahbib Benahmadi, Mustapha Lhous, Abdessamad Tridane <u>Mathematical modeling of COVID-19 in Morocco and the impact of</u> <u>controlling measures</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 53	PDF	
Rahmi Lubis, Zahrotur Rusyda Hinduan, Ratna Jatnika, Hendriati Agustiani <u>Addressing the indirect effects family function towards sexual</u> <u>intention on high school student</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 54	PDF	
Dominic Otoo, Shaibu Osman, Stephen Atta Poku, Elvis Kobina Donkoh <u>A deterministic model for the transmission dynamics of tuberculosis</u> (TB) with optimal control Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 56	PDF	
Ghassane Benrhmach, Khalil Namir, Jamal Bouyaghroumni, Abdelwahed Namir <u>On the impact of vaccination campaigns and social distancing in the</u> <u>control of the novel coronavirus outbreaks</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 57	PDF	
Rizka Amalia, Alhadi Bustamam, Anggun Rama Yudantha, Andi Arus Victor <u>Diabetic retinopathy detection and captioning based on lesion features</u> <u>using deep learning approach</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 59	PDF	
Ma'rufah Hayati, Aji Hamim Wigena, Anik Djuraidah, Anang Kurnia <u>A new approach to statistical downscaling using Tweedie compound</u> <u>Poisson gamma response and lasso regularization</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 60	PDF	
Fuad A. Awwad, Brian J. Francis, Mohamed R. Abonazel <u>Down syndrome, temporal variation and fallout radiation revisited:</u> <u>statistical evidence</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 61	PDF	
Ferdian Agustiana, Muhtosim Arief, Asnan Furinto, Mohammad Hamsal <u>Building airport collaboration model based on dynamic capability and</u> <u>environmental dynamism</u>	PDF	

Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 62			
Hasan S. Panigoro, Agus Suryanto, Wuryansari Muharini Kusumawinahyu, Isnani Darti <u>Global stability of a fractional-order Gause-type predator-prey model</u> <u>with threshold harvesting policy in predator</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 63			
Fatmawati -, H. Tasman, U.D. Purwati, F.F. Herdicho, C.W. Chukwu <u>An optimal control problem of malaria model with seasonality effect</u> <u>using real data</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 66			
Ro'fah Nur Rachmawati, Derwin Suhartono, Anita Rahayu <u>Mapping sub-districts-level and predicting spatial spread of COVID-19</u> <u>death case in Jakarta</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 69	PDF		
Eka Mala Sari Rochman, Wahyudi Agustiono, Nita Suryani, Aeri Rachmad <u>Comparison between the backpropagation and single exponential</u> <u>smoothing method in sugar production forecasting case</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 70			
Priati Assiroj, Harco Leslie Hendric Spits Warnars, Edi Abdurachman, Achmad Imam Kistijantoro, Antoine Doucet <u>Fingerprint identification with memetic algorithm and high-</u> <u>performance computing memetic algorithm (HPCMA)</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 71	PDF		
Resa Septiani Pontoh, Fanny Salsabila, Farin Cyntiya Garini, Rahmalisa Aulia Fatharani, Solichatus Zahroh, Enny Supartini <u>Clustering of fishery management areas based on the level of</u> <u>utilization in Indonesia</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 74	PDF		
Prasnurzaki Anki, Alhadi Bustamam, Rinaldi Anwar Buyung Looking for the link between the causes of the COVID-19 disease using the multi-model application Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 75			
Mariem Elkaf, Adil Meskaf, Karam AllaliPDFDynamics of cancer cells with immunotherapy and virotherapyPDFCommun. Math. Biol. Neurosci., 2021 (2021), Article ID 76PDF			
Hasan S. Panigoro, Emli Rahmi, Novianita Achmad, Sri Lestari Mahmud, R. Resmawan, Agusyarif Rezka Nuha <u>A discrete-time fractional-order Rosenzweig-Macarthur predator-prey</u> <u>model involving prey refuge</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 77	<u>PDF</u>		
Issaka Haruna, Haileyesus Tessema Alemneh, Getachew Teshome Tilahun The effect of quarantine and treatment in COVID-19 transmission: <u>from mathematical modeling perspective</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 78			

Enoch Deyaka Mwini, Winnie Mokeira Onsongo, Alfred Asiwome Adu <u>Survival analysis of average time to justice delivery in the Northern</u> <u>Region of Ghana</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 79	PDF
Mohamed Yasser Sahnoune, Khadija Akdim, Adil Ez-Zetouni, Mehdi	PDF
A virus dynamics model for information diffusion in online social <u>networks</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 80	
Zakaria Khatar, Dounia Bentaleb, Omar Bouattane <u>Analysis of a new SIR-M epidemic model with infection during</u> transport	PDF
Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 81	
Vievien Abigail Damu Djara, I.G.N.M. Jaya <u>The spatial econometrics of stunting toddlers in Nusa Tenggara Timur</u> <u>Province 2019</u>	PDF
Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 82	
Joshua A. Mwasunda, Jacob I. Irunde, Damian Kajunguri, Dmitry Kuznetsov	<u>PDF</u>
Optimal control and cost-effectiveness analysis of taeniasis and cysticercosis in humans, pigs and cattle Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 83	
Zakaria Hajhouji, Majda El Younoussi, Khalid Hattaf, Noura Yousfi <u>A numerical method for a diffusive HBV infection model with multi-</u> <u>delays and two modes of transmission</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 84	PDF
Bevina D. Handari, Imannuel M. S. Niman, Abdullah Hasan, Jusup R. P. Purba, Gatot F. Hertono <u>Comparation of Elman neural network, long short-term memory, and</u> <u>gated recurrent unit in predicting dengue hemorrhagic fever at DKI</u> <u>Jakarta</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 87	PDF
Novi Hidayat Pusponegoro, Anang Kurnia, Khairil Anwar Notodiputro, Agus Mohamad Soleh, Erni Tri Astuti <u>Area specific effects selection of small area estimation for construction</u> <u>of regional consumer price indices in Indonesia</u> Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 90	PDF
Yeni Kustiyahningsih, Eza Rahmanita, Purbandini -, Aeri Rachmad,	PDF
Integration interval type-2 FAHP-FTOPSIS group decision-making problems for salt farmer recommendation Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 92	
Trisilowati -, Rosida Dwi Hastuti, Isnani Darti, Agus Suryanto On the implementation of a variational iteration method for a SEIQR <u>COVID-19 epidemic model</u> Commun. Math. Biol. Neurosci., 2021 (2021). Article ID 94	PDF

Devie Rosa Anamisa, Aeri Rachmad, Muhammad Yusuf, Achmad	<u>PDF</u>
Jauhari, Rhezha Dwi Taufiq Erdiansa, Mohammad Yanuar Hariyawan	
Classification of diseases for rice plant based on Naive Bayes classifier	
with a combination of PROMETHEE	
Commun. Math. Biol. Neurosci., 2021 (2021), Article ID 95	

Commun. Math. Biol. Neurosci.

ISSN 2052-2541

Editorial Office: office@scik.org

Copyright ©2022 CMBN

Available online at http://scik.org Commun. Math. Biol. Neurosci. 2021, 2021:8 https://doi.org/10.28919/cmbn/5309 ISSN: 2052-2541

MATHEMATICAL MODELLING OF MOTORCYCLE SALE COMPETITION IN INDONESIA

WINDARTO*, ERIDANI

Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Motorbike is a means of transportation that is widely used in Indonesia and other developing countries. In this paper, we apply the Lotka-Volterra competition mathematical model to describe the dynamics of motorcycle sale competition between two motorcycle producers in Indonesia. We also estimate the parameter values of the model using the particle swarm optimization method. We found that the mathematical model quite well to explain the annual motorcycle sales of both companies. The results of the model analysis show that the competition between the two motorcycle producers is pure competition, with the first producer dominates market share of motorcycle selling in Indonesia.

Keywords: motorcycle sale competition; mathematical model; Lotka-Volterra; parameter estimation; particle swarm optimization.

2010 AMS Subject Classification: 37N40.

1. INTRODUCTION

The population increase causes an increase in the need for transportation facilities. People need transportation to support their mobility. Motorbikes are a transportation mode that is widely used in Indonesia and other developing countries. The use of motorbikes in Indonesia

^{*}Corresponding author

E-mail address: windarto@fst.unair.ac.id

Received December 9, 2020

WINDARTO, ERIDANI

is common because of their relatively low price. The motorcycle also has the advantage of being able to maneuver between traffic jams. The use of motorbikes also provides efficiency in travel costs. The use of motorbikes can also increase the population's mobility in terms of flexibility and shorten travel time. Furthermore, motorbikes can foster economic activity in the form of goods or goods delivery services. In the last ten years, online transportation services using motorbikes have even begun to develop in Indonesia.

Indonesia is the country with the most purchases of motorbikes in Southeast Asia. Also, Indonesia is the third-largest motor vehicle user in the world after India and China. Referring to Motorcycles data, motorcycle sales in Indonesia in 2019 reached 6.53 million units, an increase of 1.3% from the previous year. Japanese brands dominated motorcycles' sales in Indonesia and controlling more than 98% of Indonesia's motorcycle market [1]. Motorcycle sales in Indonesia are dominated by companies that are members of the Association of Indonesian Motorcycle Industry. This association consists of five companies, manufacturers of motorcycles with the Honda, TVS, Kawasaki, Suzuki, and Yamaha brands [2]. Based on data from the Association of Indonesian Motorcycle Industry, motorcycle sales in Indonesia in 2019 were dominated by Honda motorbikes and followed by motorcycles from Yamaha, Suzuki, Kawasaki, and TVS brands [3]. Although motorcycle sales in Indonesia have decreased in 2020 due to the Covid-19 pandemic, Indonesia's motorcycle sales are expected to increase in 2021.

The potential for motorcycle sales in Indonesia is large enough, so it encourages motorcycle manufacturers to produce motorcycles that attract consumer interest. Sales competition illustrates consumer trends in choosing motorbikes over a long period. Accurate predictions can help companies identify potential growth or potential decline in demand for a motorbike brand. Moreover, a company can also develop strategies to maintain and increase the market share of motorbike demand in the years to come. Accurate forecasts related to potential motorcycle sales are also a reference for investors in identifying investment targets.

The Lotka-Volterra type competition mathematical model has been used to describe the competition between species. In 1934, Gause applied the Lotka-Volterra competition model to explain competition between two Protozoa species, namely *Paramecium caudatum* and *Paramecium aurelia* species [4]. Recently, Novoa-Munoz et al. used the Lotka-Volterra competition model to explain the competition dynamics between two lizards species, namely *Liolaemus cyanogaster* and *Liolaemus tenuis* species [5]. The Lotka-Volterra type competition model was also used to explain competition between companies in the struggle for share, including competition between the Korean stock markets [6], the retail industry in Taiwan [7], and commercial banks and rural banks competition in Indonesia [8].

In this paper, we apply the Lotka-Volterra type competition mathematical model to explain the competitive dynamics of motorcycle sales from two motorcycle producers in Indonesia. We also estimate the parameters of the model using the particle swarm optimization method. Moreover, we perform a stability analysis of the model by changing the estimation results' parameter values and finding the model's equilibria. We also perform a stability analysis of each equilibrium model, and we simulate the model to study the future competitive conditions of the two motor producers.

2. MATHEMATICAL MODEL OF MOTORCYCLE SALES COMPETITION

In this section, we present an application of the Lotka-Volterra type competition mathematical model to describe the dynamics of motorcycle sales competition in Indonesia. We examine the dynamics of competition between two motorcycle producers (companies) in Indonesia. Here, the first and second motorcycle producers are the market-leader producer and the market-leader main competitor. Suppose y_1 and y_2 represent the number of annual motorcycle sales of the first producer and the second producer in Indonesia. The mathematical model of the two motorbike producers' competition is constructed based on the following assumptions:

- (1) There are only two motorcycle producers (manufacturers) considered in the model.
- (2) Competition between the two motorcycle manufacturers and other manufacturers was ignored because the two companies' motorcycle sales were much higher than other motorbikes' sales.
- (3) In the absence of competition, the two motorcycle producers' sales grow following the logistic growth model.
- (4) Motorcycle variations are ignored in the mathematical model.
- (5) Sales of motorbikes for export are neglected.

(6) The decline rate of motorcycle sales due to the competition is proportional to the two motorcycle producers' motorcycle sales.

Based on these assumptions, the competitive dynamics of the two motor manufacturers can be represented in the following differential equation system:

(1)
$$\frac{dy_1}{dt} = a_1 y_1 \left(1 - \frac{y_1}{K} \right) - b_1 y_1 y_2,$$

(2)
$$\frac{dy_2}{dt} = a_2 y_2 \left(1 - \frac{y_2}{K}\right) - b_2 y_1 y_2.$$

Here, parameters a_1 , a_2 are the growth rates of the first and second producer. Parameter K represents the maximum number of annual motor sales from both producers. Parameters b_1 , and b_2 denote the decline rates in the first producer and the second producer's annual sales of motorcycles, respectively. We assume that a_1 , a_2 , K > 0 and b_1 , $b_2 \ge 0$.

Equation (1) represents the rate of change in motorcycle sales from the first producer (the market-leader producer) per time unit. The number of the first producer's annual sales may increase due to the first producer's motorcycle sales growth rate. On the other hand, the first manufacturer's motorbikes' annual sales may decline due to competition between the first producer and the second producer.

Equation (2) describes the dynamics of the number of annual sales of motorcycles from the second producer (the first producer's main competitor) per time unit. The yearly motorcycle sale of the second producer could increase due to the company's growth rate. On the other hand, the second producer's annual motorcycle sale could decrease due to competition with the first producer.

3. PARAMETER ESTIMATION ON THE MATHEMATICAL MODEL OF MOTORCYCLE SELL-ING COMPETITION

In this section, we estimate the parameter values in the mathematical model of motorbike sales competition in Indonesia, as presented in equations (1) - (2). Because the analytic solution of the differential equation system in equations (1) - (2) is unknown, then we could apply heuristic methods such as genetic algorithms and particle swarm optimization method to determine the parameter values of the competition mathematical model [9, 10]. Here we use the particle

swarm optimization method as a parameter estimation method since the particle swarm optimization method is more robust than the genetic algorithm [10]. We use annual motorcycle sales data from 2006 (t = 0) to 2019 (t = 13). The annual sales data of motorcycles from the first and second producer were cited from the literature [11, 12, 13, 14, 15], and the data were presented in Figure 1 and Figure 2, respectively.

FIGURE 1. The annual motorcycle sales data of the first producer (the market leader producer)

The parameter value is selected in such a way that the parameter produces the smallest error value. In this article, we use MAPE (Mean Absolute Percentage Error) as an objective function. The MAPE (E) value for this problem is given by

$$E = \frac{1}{2n} \sum_{i=1}^{n} \left(\left| \frac{y_{1,i}^* - y_{1,i}}{y_{1,i}} \right| + \left| \frac{y_{2,i}^* - y_{2,i}}{y_{2,i}} \right| \right).$$

Here, *n* is the number of data, $y_{1,i}$, $y_{2,i}$ are the annual motorcycle sales data from the first and second producers in the year *i*, where and i = 0, 1, 2, ..., n. Besides, $y_{1,i}^*$, $y_{2,i}^*$ are the predicted annual motorcycle sales quantities of the first and second producers in the year *i*.

The particle swarm optimization method was carried out as many as 50 trials with 300 iterations for each trial. We obtained the best objective function value (the smallest MAPE value) of 0.086222 or 8.622%. The best parameter values from the parameter estimation process are presented in Table 1.

WINDARTO, ERIDANI

FIGURE 2. Annual motorcycle sales data for the second producer (the main competitor of market-leader producer)

 TABLE 1. Best parameter values

Parameter	Parameter values
a_1	0.174947
b_1	0
K	5830774
<i>a</i> ₂	1.194924
<i>b</i> ₂	2.00262×10^{-7}

Figure 3 and Figure 4 show the comparison of the model prediction results and the data of the first and second producers, respectively.

Figure 3 shows the comparison between the data and the prediction results of motorbike sales in the first producer. The prediction results of motorbike sales tend to increase by around 5 million units of motorcycles/year. Figure 4 shows the comparison between the data and the prediction from the model of motorcycle sales model for the second producer. After experiencing an increase in sales until the fourth year, the prediction results of the second manufacturer's motorcycle sales have decreased to a sales figure of around 1.4 million units of motorcycles/year. Although there is quite a big difference between the data and the model prediction of the second

FIGURE 3. Comparison between the data and the predicted annual sales of motorcycles from the first producer

FIGURE 4. Comparison between the data and the predicted annual sales of motorcycles from the second producer

producer in the fourth and fifth years (2010 and 2011), the trend of the projection of motorbike sales in the second company is quite useful in describing the dynamics of growing and declining of the motorcycle sales from the company.

By substituting the parameter values in Table 1 into equations (1) -(2), the competitive mathematical model of motorcycle sales in Indonesia, between two producers, can be described in the following form.

(3)
$$\frac{dy_1}{dt} = 0.174947y_1 \left(1 - \frac{y_1}{5830774}\right),$$

(4)
$$\frac{dy_2}{dt} = 1.194924y_2 \left(1 - \frac{y_2}{5830774}\right) - 2.00262 \times 10^{-7} y_1 y_2.$$

The mathematical model of motorbike sales competition in equations (3)-(4) has four equilibria, namely:

- (1) The equilibrium of the two producers went bankrupt $P_1(y_1, y_2) = (0, 0)$.
- (2) The equilibrium for the bankruptcy of the second producer $P_2(y_1, y_2) = (5830774, 0)$.
- (3) The equilibrium for the bankruptcy of the first producer $P_3(y_1, y_2) = (0, 5830774)$.
- (4) The coexistence equilibrium $P_4(y_1, y_2) = (5830774, 132928)$.

By using the eigenvalues method, the equilibria P_1 , P_2 , P_3 are unstable, and the coexistence equilibrium P_4 is locally asymptotically stable. The coexistence equilibrium P_4 is asymptotically stable so that this equilibrium may occur in real situations. From a practical point of view, the motorcycle sales competition from the two producers is a pure competition with the domination of the first producer as the market-leader producer.

Next, we present numerical simulations to predict annual motorcycle sales and the dynamics of competition between the first and second companies for the future. We also perform numerical simulations by using parameter values in Table 1 and the initial value from the motorcycles sales data in 2006. Numerical simulations are carried out from t = 0 to t = 30 (years). The results of the numerical model simulation are presented in Figure 5.

Figure 5 uses the motorcycle sales data of the two manufacturers in 2006. The initial values used in the simulation process are 2339168 motor units and 1458561 motor units. The results show that the annual number of motorbikes from the first manufacturer tends to increase, while the yearly sales of motorbikes from the second manufacturer have decreased after 2010). The annual sales of the first producer reached more than 5 million units/year. The first producer should maintain the best efforts to hold and to increase its market share. On the other hand, the motorcycle annual sales of the second producer have the potential to decrease with sales figures of less than 1 million units of motorcycles/year in the twentieth year (2026). Without the right

FIGURE 5. Dynamics of annual motorcycle sales of first and second producers

marketing strategy, the annual sales of the second motorcycle producer have the potential to decrease towards sales figures of less than 150 thousand units of motorbikes/year in the long term.

4. CONCLUSION

In this paper, the mathematical model of the Lotka-Volterra competition has been successfully applied to explain the dynamics of the motorcycle sales competition between two manufacturers in Indonesia. The Lotka-Volterra competition model adequately describes the annual motorcycle sales figures of both manufacturers. The results of the model analysis show that the competition between the two motorbike manufacturers is pure competition, with the first manufacturer controlling the motorcycle market in Indonesia.

ACKNOWLEDGEMENT

This research was funded by the Ministry of Research and Technology/National Research and Innovation Agency, Republic of Indonesia through "Penelitian Dasar" project scheme.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

WINDARTO, ERIDANI

REFERENCES

- https://www.motorcyclesdata.com/2020/10/23/indonesia-motorcycles/ accessed on 10 November 2020 (in Indonesian).
- [2] https://www.aisi.or.id/members/ accessed on 10 November 2020.
- [3] https://kumparan.com/kumparanoto/penjualan-sepeda-motor-tembus-6-3-juta-unit-honda-masih-dominan-1548118993305107927/full?ref=rel, accessed on 10 November 2020 (in Indonesian).
- [4] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, second edition, Springer, New York, 2012.
- [5] F. Novoa-Muñoz, N. Gómez-Fuentealba, F. Osorio-Baeza, Lotka–Volterra model applied to two sympatric species of Liolaemus in competition, Ecol. Model. 439 (2021), 109347.
- [6] [1]S.-J. Lee, D.-J. Lee, H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka–Volterra model, Technol. Forecast. Soc. Change. 72 (2005), 1044–1057.
- [7] H. Hung, Y. Tsai, M. Wu, A modified Lotka–Volterra model for competition forecasting in Taiwan's retail industry, Computers Ind. Eng. 77 (2014), 70–79.
- [8] Fatmawati, M.A. Khan, M. Azizah, Windarto, S. Ullah, A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos Solitons Fractals. 122 (2019), 32--46.
- [9] Windarto, An implementation of continuous genetic algorithm in parameter estimation of predator-prey model, AIP Conf. Proc. 1718 (2016), 110005.
- [10] Windarto, Eridani, U.D. Purwati, A comparison of continuous genetic algorithm and particle swarm optimization in parameter estimation of Gompertz growth model, AIP Conf. Proc. 2084 (2019), 020017.
- [11] https://oto.detik.com/motor/d-1810150/penjualan-motor-2011-tembus-8-juta-honda-makin-dominan , accessed on 11 November 2020 (in Indonesian).
- [12] https://oto.detik.com/motor/d-1810150/penjualan-motor-2011-tembus-8-juta-honda-makin-dominan, accessed on 11 November 2020 (in Indonesian).
- [13] https://bmspeed7.com/data-aisi-penjualan-motor-selama-2018/, accessed on 11 November 2020 (in Indonesian).
- [14] https://bmspeed7.com/data-penjualan-motor-2019/, accessed on 11 November 2020 (in Indonesian).
- [15] http://triatmono.info/data-penjualan-tahun-2012/data-penjualan-motor-tahun-2005/, accessed on 11 November 2020 (in Indonesian).