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Abstract: The immune system has an important role in protecting the body from tumors. However, several clinical
studies have shown that not all immune cells in the body work positively against tumors, such as regulatory T cells
which are known to modulate the function of effector cells and inhibit their cytotoxic activity. The purpose of this
paper is to analyze the mathematical model of tumor-immune system dynamics by considering the regulatory T cells
role. Based on the model analysis results obtained eight equilibrium points, where two equilibrium points are unstable,
namely the equilibrium point of normal, tumor, effector cells extinction and the equilibrium point of normal, tumor
cells extinction, then four equilibrium points are conditionally asymptotically stable, namely the equilibrium point of
normal and effector cells extinction, tumor and effector cells extinction, tumor cells extinction, and effector cells
extinction, and two equilibrium points are thought to tend to be asymptotically stable when the existence conditions
are satisfied, namely the equilibrium point of normal cells extinction and coexistence. The numerical simulation results
show that regulatory T cells play an important role in inhibiting effector cells and promoting tumor cell growth.

Furthermore, a numerical bifurcation analysis is performed which shows the presence of saddle-node bifurcation and
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bistable behavior in the system.
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1. INTRODUCTION

The number of cancer sufferers worldwide is expected to increase significantly. The World
Health Organization (WHO) in 2020 estimates that over the next 20 years the number of cancer
cases will increase by 60%. The World Health Organization (WHO) also informed that there were
18.1 million new cancer cases and 9.6 million deaths due to cancer in 2018 [1]. Cancer is a type
of disease that has a very broad scope, involving uncontrolled cell division [2]. This uncontrolled
cell division leads to the growth of tumor cells. Tumor cells can be benign or malignant. Benign
tumor cells do not invade the surrounding tissue and do not spread through the blood vessels to
other parts of the body. However malignant tumor cells can attack normal cells, spread to other
parts of the body, and cause cancer. Tumor cells continue to proliferate until they can be detected
in certain physiological spaces in the human body. Then, the immune system will be triggered into
“Search and Destroy” mode [3]. Tumor cells will express antigens or substances that can be
recognized by the immune system. These substances can stimulate the immune system to produce
antibodies as a form of resistance against tumor cells [2].

The immune system has an important role in fighting tumor cells. It has two main
components that interact with each other to defend the organism from pathogens, namely natural
and adaptive components [4]. T lymphocytes is one of the adaptive component cells that plays an
important role in fighting tumor cells. T lymphocytes will develop into special cells, including
CD8+ T cells and CD4+ T cells. In general, CD4+ T cells can be classified into helper T cells and
regulatory T cells. Helper T cells have a role in controlling adaptive immunity against pathogens
and tumors by activating CD8+ T cells [4]. After activation by helper T cells, CD8+ T cells
differentiate into cytotoxic T lymphocytes, which are commonly called effector cells. Regulatory

T cells themselves also play an important role in suppressing excessive immune responses, but
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regulatory T cells modulate the function of effector cells which makes effector cells unable to
continue their cytotoxic activity and causes a weak immune response against tumor cells [5].

Many Research related to the interaction of the immune system and tumor cells has been
carried out several times in several scientific fields; one of them is mathematics. By using
mathematical model approach, Kuznetsov et al. [6] built a tumor growth model by analyzing the
impact of effector cells on tumor cells. Kirschner and Panetta [7] introduced interleukin-2 (IL-2)
to form a classical tumor immunotherapy model, then predicted several infusion effector cells and
IL-2 could eradicate tumors. Wilson and Levy [8] developed a mathematical model containing
regulatory T cells and studied the absence of treatment, vaccine treatment, anti-TGF-f treatment,
and combination vaccine and anti-TGF-f treatment, as well as sensitivity analysis of several
important parameters. Dong et al. [9] constructed a three-dimensional ordinary differential
equation model focusing on the effect of helper T cells on the tumor immune system. Pang et al.
[10] built a simple and realistic mathematical model of anti-tumor immune response involving the
role of immature and mature lymphocytes. Makhlouf et al. [11] proposed a mathematical model
of ordinary differential equations predicting the interactions of tumor cells, natural killer cells,
CD4+ T cells, CD8+ T cells, circulating lymphocytes, and interleukin-2. Then Yang et al. [12]
proposed a model of the interaction of the immune system and tumor cells considering regulatory
T cells.

Based on these descriptions, the authors are interested to develop mathematical model by
Yang et al. [12]. We add normal cells compartment on the model that compete with tumor cells
and considering the inactivation of effector cells by tumor cells, as well as altering the bilinear
form of the immune system and tumor cells interactions become Michaelis-Menten kinetic form.
The Michaelis-Menten kinetic form can describe chemical reactions and the mechanism of
interaction between the immune system and tumor cells which are known to be very complex [13].
The work is put in order as follows. In section 2, we discuss model formulation and analysis of the
model. In section 3, the stability of the model is analyzed. Section 4 demonstrates the numerical

results to illustrate the dynamics of the model and the conclusion is summarized in section 5.




ALFINIYAH, NISA, WINDARTO, MILLAH

2. MODEL FORMULATION

This section will discuss the mathematical model of the tumor-immune system by
considering the regulatory T cells role. The basic model used refers to the paper written by Yang
et al. [12]. The mathematical model is divided into five populations, namely the population of
normal cells (N), tumor cells (T), effector cells (E), helper T cells (H), and regulatory T cells
(R). The assumptions used in this mathematical model are as follows:

1. The population of normal cells and tumor cells show the rate of logistics proliferation (the
process of cells multiplying naturally)

2. The population of normal cells and tumor cells compete with each other for available resources.

3. The growth rate of tumor cells is faster than normal cells.

4. The inhibition rate of normal cells by tumor cells is faster than that of tumor cells by normal
cells.

Based on the assumptions, we construct the governing equations of the mathematical model
of the tumor-immune system by considering the regulatory T cells role. Then lists of parameters
unit used in model can be seen in the table 2.1.

The normal cell population (N) grows logistically at an intrinsic growth rate of r; and
grows until it is limited by the maximum capacity of cells in the biological environment of 1/b,.

The normal cell population decreased due to the rate of competition with tumor cells of £,

d—!:rzrlN(l—blN)—ﬁlNT. (D

The tumor cell population (T) grows logistically at an intrinsic growth rate of r, and
grows until it was limited by the maximum capacity of cells in the biological environmentof 1/b,.
Tumor cell population decreased due to the competition rate with normal cells of f,, and
eradication rate by effector cells of f3, which was written in the form of Michaelis-Menten

kinetics to show that the immune response was limited to tumor immunosuppressive activity due

to the presence of pro-tumor factors [14],

B3ET
a, +T°

T
- = TZT(l - sz) —ﬁzNT -

dt @
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The Effector cell population (E) increased due to the activation rate by helper T cells of
p. Effector cell population decreased due to the rate of inactivation by tumor cells of 8, and the

rate of inhibition by regulatory T cells of g and the natural death rate of d,,
dE
aszH—ﬁ,;ET— qRE — d,E. (3)

The Helper T cell population (H) increases due to a constant recruitment from bone
marrow at rate s and the presence of tumor cell antigens identified at rate k. It was written in
Michaelis-Menten kinetics form to show the growth rate of helper T cells that depend on tumor

cell abundance. Helper T cell population was decreased due to a natural death rate of d,,
dH + kTH
a ST +T

— d,H. @)

The population of regulatory T cells (R) increased due to the rate of activation by effector
cells and helper T cells, a; and a,, respectively. Regulatory T cells population decrease due to

the natural death rate of d;,

dR

Table 2.1 Definition of the parameters.

Parameter Definition Unit
n Normal cell growth rate time™!
7y Tumor cell growth rate time™!
by Normal cell carrying capacity cell™?
by Tumor cell carrying capacity cell™?
By Rate of competition between normal and tumor cells (cell - time)™?
B Rate of competition between tumor and normal cells (cell - time)™*
B3 Rate of tumor cell eradication by effector cells time™!
Ba Rate of effector cells inactivation by tumor cells (cell - time)™?
p Rate of effector cells activation by helper T cells (cell - time)™1
q Rate of effector cells inhibition by regulatory T cells (cell - time)™1

a, Rate of regulatory T cells activation by effector cells time™!
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a; Rate of regulatory T cells activation by helper T cells time™!

s The recruitment rate of helper T cells produced in the bone marrow cell - time™?!

k Helper T cell stimulation rate due to the presence of tumor antigen time™!
aq, Half saturation constant cell

dq The natural death rate of effector cells time™!

d, The natural death rate of helper T cells time™?

ds The natural death rate of regulatory T cells time™!

3. MODEL ANALYSIS

3.1  Equilibrium Point

In this section, the equilibrium points and the existence conditions will be determined.

a. The equilibrium point for the extinction of normal, tumor, and effector cells is obtained by

PU = (NU! TQ, EQ; HUJ RU) = (U’ U’ U’ diz’ ;;2:3).

b. The equilibrium point for the extinction of normal and tumor cells is obtained by

dz(ps—didz)—qazs s ps—dqd
Pl = (Nh TlJ ElJHllRl) = (U, U, 2 2 2 » : 2)1

qaidp ds qdz

dqd d s—dqd
132 and q< S(Pa 31 2)_
2

which exists when p >

¢. The equilibrium point for the extinction of normal and effector cells is obtained by
P, = (N,, T, E, HyR,) = ((],i,(] _slagbo+l) “2_”2)

by ,dz(ﬁzbz"—l)—k, ds

which exists when k < d,(a,b, + 1).

d. The equilibrium point for the extinction of tumor and effector cells is obtained by

P3 = (N3’T3’E3!H3: RB) = (bilﬁ 0, Uﬁdiz’%)-

e. The equilibrium point for the extinction of tumor cells is obtained by

1 dz(ps—dqida)—qazs s s—dqd
Pq_ - (Nq_; Tq_; Eq_; Hq_, Rq_) — (_, U, 3(p 1dz)—qaz ,_,p 1 2)’
by qaids dz  qds
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did ds(ps—dqd
2 and q < 2aps—dadz)

which exists when p >
s azs

The equilibrium point for the extinction of effector cells is obtained by
PS = (N_n;, T_n;, E_n;, H_n;, RS)

P = ( ry(ryby—f1) 1y (ryby —B3) 5(“2(?‘151?‘zbz—ﬁ-lﬁz)"'?‘-l(?‘zb-l—ﬁz)} asz)
2 T by Taby— BBy T b b1, 'dz'12(?‘151?‘2bz—315’72)‘*(‘12—’()(?&(?‘2b-l—.ez))' ds )’

which exists when B, < rybs, B2 <1uby, B1fs <1ribirabs, k < ds.

The equilibrium point for the extinction of normal cells is obtained by

Ps = (Ng, Ty, Eg, He, Rg)

where Ng =0
E — r2(1=baTg) a1+ Tg)

= 2 sl liTe

B
_ S(o2+Ts)

He = dy (atp+Tg)— KT
R. = a3 75(1—by Te)(ay +T5 ) dop(@p +Tg)— kT )+say fz(az+Tg)

6 =

3B (d (a3 +Te)— KTg)
and Ty is the solution of the characteristic equation
A TE+ AT+ AsTe+ Ay =0 (6)

where,
Ay = 1ybyqayd; — rybyqask,
Ay = Bafadsk — Bafadzdy + rybaqasdyay — r2qasd; + by qagd; +r2qa ke — by qask,
Az = psdafs — ryqaidyay + rrbyayqaydyay — raaiqayd; + rpaiqask — Bafadsdya; —

dydzdyfs + dydafzk — qazsPs, Ay = psdzayfz — didzdyazfs — qazsazfs — r,qaidaa;.
The equilibrium point Pg will exist if
1 dyay

To <= min{(g,m)},k >d, and g <

raaidy+azsfs
The equilibrium point of coexistence, namely P* = (N*,T*, E*, H*,R*)

=T

riby

where N* =
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E* = (ra(ryby (1-byT*)=f3) +41 5 T*) (a1 +T°)

ribifs
Ha — 5(“2"‘?‘..}
dy (e +T*)— KT
R* = aq(da (cta+T*)— KT*)((ry(r2by (1—baT*)—B2) + 51 B T* Wty +T7) )+ azs (@ +T*)r1 by Ba

7y by Bad s(dy (@ +T*)— kT¥)

where T is the solution of the characteristic equation

AsT*® + AgT*? + A;T" + Ag = 0 (7)
where,
As = —nrqaybibyd; + qagdy frffz + niraqaibibok — qaqfr Bok,
Ag = —nnqaibibydyay + qaydyayf By +niraqasbydy, —rinqagdybibray —riqaydy By +
qaidza1$1f2 —rir2qaibik + nirpqasbibrask + riqai fok — qasas fi ok + ribidads Bz fs —
r1byd3f3 sk,
Az = mnqaibidyay —rinaqaybibydaaiay — riqagdaanfy + qagdaanayfifoT + niraqasbidaag —
nqa dy By — iraqaibyas k +riqayaq fok — psribydz By + qsriazbyfz + ribidadzan 3y +
ribididydsf3 —r1biddafisk,
Ag = mnqaibydyaiay —1iqaydaay @y By + qsriaghy s — psribydzafz + ribididydzas fa.
The equilibrium point P* will exist if

bydsfs(ps—dyd,)
@y dyaty (raby=fz)+sazby fis”

. 1 dya
T < '-zmm{(r—l,—, 2
He B1’ by’ k=ds

)} 7abs(1 = b;T*) > Bk > dy and q <

32 Stability Analysis

This section will analyze the stability of each equilibrium point that has been obtained
previously. A mathematical model of the tumor-immune system by considering the regulatory T
cells role is a nonlinear differential equation, so it is necessary to linearize it using the Jacobian

matrix. The following Jacobian matrix is obtained:

Ay —BN 0 0 0
_ BT
BT A —iig 0 0
J(P)= 0 —BE Ay pE —qE (8)
kT
0 A 0 —o-dy 0

0 0 a; a; _d3
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where

Ag =n - 2?’1b1N _ﬁlT

All] =71 — 2?’2sz - ﬁzN - E"‘ By ET

a 4T @y +T)2
Ay =pH— BT —qR—d,

_ kH KTH
127 00+ (ag+7)?

Based on the Jacobian matrix J(P), the characteristic equation can be formed:

A—Ay —piN 0 0 0
BaT
—BT A-Ao -5 0 0
det(Al —J(P)) = 0 —B,E  A—Ay, pE —qE 9)
0 Ay 0 A-——+d, 0
2
0 0 aq iy A + d3

a. Stability of equilibrium point for the extinction of normal, tumor, and effector cells

By substituting P, in characteristic equation (9) are obtained:
A=1)A+d)A+d)A-1) (2-E -T2 _q,) =0 (10)

From equation (10) it can be seen that there are two positive eigenvalues. Thus, it can be

concluded that the equilibrium point P, is unstable.

b. Stability of equilibrium point for the extinction of normal and tumor cells
By substituting P; in characteristic equation (9) are obtained:
(A=1)A = Az)(A+dy)[A* +d3d — a1A16] = 0 (1)
From equation (11) it can be seen that there is one positive eigenvalue. Thus, it can be

concluded that the equilibrium point P, is unstable.

c. Stability of equilibrium point for the extinction of normal and effector cells

By substituting P, in characteristic equation (9) are obtained:

A+ dy) (- +dy) A+ 1)(A— B)A — By) = 0 (12)

by +1

From equation (12) the eigenvalues are obtained
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_ __k _ _ _ B1
)11 = _dg,llz = m_ d2,113 = _?’2,)14 = Bl =n _E
_ psbads(azby+1)—byqays(azby +1)—fFads (dy ap by+dy —k)—dy byds(dyayby +d;—k)

Az = B-
5 2 bada(daaz by +dy—k)

Because A; and A; are negative. So, it is necessary to specify the conditions for 4,,4,,and
Ag to be negative. Thus, the equilibrium point of P, will be asymptotically stable if

i. k<k,,where k;, =d,(a,b, +1)

ii. f; >mnb,

_ (£4d3+d1d3b2)(d2(a2b2+1)—k)+qa2$b2(a2b2+1)
iii. p <p, where p; = sboda(aybat )

Stability of equilibrium point for the extinction of tumor and effector cells

By substituting P; in characteristic equation (9) are obtained:

- Ba) (3 — b5 4 99 -
A+m)(A+ dy)(A + d3) (2 ?’2+u1) (2 By +d;) =0 (13)
From equation (13) the eigenvalues are obtained
- _ - - _ B 1 —Ps_ 995
)11 = ?’1,)12 = d2,113 = d3,114 =T b, and )15 = a, ayd, dl‘

Because A, 4,, and A3 are negative. So, it is necessary to specify the conditions for A, and
Ag to be negative. Thus, the equilibrium point of P; will be asymptotically stable if
L. B2 >mby

dz(ps—dqda)

ii. q>q,,where q, = P

Stability of equilibrium point for the extinction of tumor cells
By substituting P, in characteristic equation (9) are obtained:
(A+1)A—B)(A+dy)[1% + dsd — B,a,] = 0 (14)

From equation (14) the eigenvalues are obtained

rebiaigaid;—Poaiqard;—f3psdsbi+fzdadsbi+53q9a, sby Ao = —d
b d s 3 — 2
1@y ds

)11 = _?’1,112 = Bl =
and the roots of the following equation
P24 cal+c,=0 (15)

where,
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3 =dj3, ¢4 = —B;a,
Because A, and A; are negative. So, it is necessary to specify the conditions for A, to be
negative. Then, because the eigenvalues in equation (15) are difficult to determine analytically,
we use the Routh Hurwitz criteria. Based on the Routh Hurwitz criteria, the equation (15) has
roots that the real part is negative, and consequently cs, ¢, > 0. Thus, the equilibrium point of

P, will be asymptotically stable if

bifzdz(ps—dids)
ayayda(raby—B2)+brazsps

i. g<gqs where q; =

dz(ps—dqda)
a5

ii. g <gq,,where q, =

Stability of equilibrium point for the extinction of effector cells
By substituting P in characteristic equation (9) are obtained:

(A4 d3)(A— FR)(A — Fe)[A* + (—Fy — F)A + FiFy — F2F3] = 0 (16)
From equation (16) the eigenvalues are obtained

k(ryraby—fy1y)
tta(ribiraby—PB1fa)4riraby —fory

A =—dzdy =Fg =

psDy rirpby—fan qsaz Dy
3 6 D, Ba rby 1y by —p By d; D, 1

and the roots of the following equation
2 4esd+ce=0 (17)
where,
cs=—F —F,, cg, =F Fy—FF;

Because A; is negative. So, it is necessary to specify the conditions for A; and A3 to be
negative. In similar way, because the eigenvalues in equation (17) are difficult to determine
analytically, we use the Routh Hurwitz criteria. Based on the Routh Hurwitz criteria, the
equation (17) has roots that the real part is negative, and consequently cs,cg > 0. Thus, the

equilibrium point of P; will be asymptotically stable if
ribiraba—B1fs
r1(rzby—B2)

. r1(rab1—fF2)+qgsasDi+ddzDo(r{birabo— )
i p<p2,denganp2=3412132f121 13_2 1b112b2— 162
sd3Dq(rib1m2b2—f152)

i. k<d,(ayb;+1),dengan b; =
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baba(ritry)
b1f1+b2f>

iv. B, < f5,dengan B5 =

iii.

r Tzl’zblblbz(rlbz—ﬁl }
B8, (r-l bz—ﬁl}+r2b1(n ribz by +,|9.“|9.1}

Stability of equilibrium point for the extinction of normal cells
By substituting Pg in characteristic equation (9) are obtained:
(A= F)(A* + c; 23 + cgA® +cod +¢19) = 0 (18)
From equation (18) the eigenvalues are obtained
M =Fy=n—piTs

and the roots of the following equation

()14 + C7113 + Cgﬂz + Cg)‘l + Cli]) =0 [19)
where,
kT,
€7 =—F3 —Fio— ﬂz+ﬁ?‘a +d;+ds,
_ B3F11Tg kT
Cg = FioF1p + dy(Fip + Fio) + ————— —d3| (Fiz2 + Fyo) + +dy | —aiFia,
aq + Tﬁ [147) + Tﬁ
co = Fr2t Fio)kTe — FioFiokTs kF11B3T¢ _ daF11 3T B3Fi3FisTe
o ay +Tg 202 g, +T) (g +Tg)  ag+ T a, +Tg
B3F11T a kT
+d,(F Fyy + dy(Fip + Fio) + ) (—+ad,+aF )
3| Frof12 2(F12 + Fip) @+ T, 1\, v 1, G2t Ao
e = d. (Fip + F10)kTg — F1F12kTg —doFFan — KkFy1p3T¢ _ dyF1183Tg
0= "3 ay +Tg 2012, + Te) (g +Tg)  ag + T
B3F13F 5T a1 kFyoF 14T ay 3 F 4F 5T
aq +T6 [147) +T6 I'.I1+T6

Because the eigenvalues in equation (19) are difficult to determine, both analytically and under
the Routh Hurwitz criteria. Therefore, the equilibrium point of P, will be analyzed through
numerical simulation.

This simulation is done by giving three different initial values for
N(0),T(0), E(0),H(0),R(0), and parameter values that satisfy the existence conditions. The

following is a table of parameter values and initial values used
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Table 3.1 Parameter values for Py, Py, Py, P*

Parameters Value Source
r 1 [13]
, 1.636 [9]
by 0.1 Assumption
1 (for Ps, Py) [13]
b,
0.1 (for Pg, P*) Assumption
1 (for P3) [13]
By 0.5 (for Pg) Assumption
0.1 (for P*) Assumption
0.5 (for P3) [13]
B2
0.01 (for P,, Pg, PY) Assumption
B 0.1 Assumption
Ba 0.01 Assumption
0.18 (for Py) Assumption
P 0.48 (for Py, Pg, P*) [9]
0.15 (for P,)
q Assumption
0.4 (for Py, Py, P*)
s 0.38 [9]
k 0.06 Assumption
a, 0.15 [12]
a; 0.2 [12]
a, 1 Assumption
a, 102 Assumption
d, 0.3743 [9]
d, 0.055 [5]
ds 0.55 Assumption
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Table 3.2 Initial value of phase plane

Initial
N(0) T(0) E(0) H(0) R(0) Color
Value
1 10 3 5 4 2 Red
2 12 2.5 3.4 3.7 3 Green
3 15 3.3 5.5 3.9 1.8 Blue

This simulation is only carried out at times t = 0 to t = 200. The results of the phase plane
simulation for normal cell extinction are shown in Figure 3.1. In Figure 3.1, it can be seen that
the graphs of effector cells (E) — regulatory T cells (R) population tends to converge to one
point (E; R) = (19;7.937), as well as the graphs of tumor cells (T) — helper T cells (H)
population tend to converge to one point (T; H) = (8.809; 7.579), which means that the
overall dynamics of each population in the model going closer to the equilibrium point of
normal cells extinction P, where P, = (0;8.8717;19.0019;7.5789;7.9386). In addition,
the existence condition of the equilibrium point Py is also fulfilled. Thus, it is concluded that

the equilibrium point of normal cell extinction is thought to tend to be asymptotically stable.

Stability of equilibrium point of coexistence
By substituting P* in characteristic equation (9) are obtained:
A5+t + 3A3 e d? el + e =0 =0 (20

Similar to the equilibrium point Py, it is difficult to determine the roots of the characteristic
equation (20) analytically, so this coexistence equilibrium point will be analyzed through
numerical simulation. The parameter values used refer to the parameter values in Table 3.1
and the initial values used refer to Table 3.2.

This simulation is only carried out at times t = 0 to t = 200. The results of the phase plane
simulation for coexistence conditions are shown in Figure 3.2. It can be seen that the graphs
of effector cells (E) — regulatory T cells (R) populations, tumor cell (T) — helper T cells

(H) populations,and normal cell (N) — tumorcells (T") populations tend to converge to one
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point, namely  (E; R) = (18.99;7.932),(T; H) =(8.729;757) and (N;7T) =
(1.27; 8.729), which means the overall dynamics of each population in the model going closer
to the equilibrium point of coexistence P* , with the wvalue P*=
(1.2707,8.7287;18.9904; 7.5723; 7.9328) . In addition, the existence condition of the
equilibrium point P* is also fulfilled. Thus, it can be concluded that the coexistence

equilibrium point is thought to tend to be asymptotically stable.

X 10,0026
¥ 7.03845

(a) (b)

(a) (b) (©)

Figure 3.2 Graph of phase plane in coexistence conditions (a) E—R (b) T—H (¢) N =T
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The summary of the existence and stability conditions for each equilibrium point that has been
obtained can be seen in Table 3.3

Table 3.3 The existence and stability conditions for each equilibrium point

Equilibrium Existence Conditions Stability Conditions

Py Always exists Unstable
P > didy Unstable

s
P, k <k k <ky
Py Always exists B2 >12by
P, p> D2 q<4qs

s

(L L toticall

P Ts < py = min [(_, )] asymptotically

b,k —d,

rn 1 dya ;
p* T* <, ~ min [(_1,_, 22 )] asymptotically

e B b k—d,

4. NUMERICAL SIMULATION
Numerical simulations will be carried out according to the conclusions of the analysis

obtained in the previous section and examine the effect of the inhibitory role of effector cells by
regulatory T cells on tumor cell growth. In addition, numerical bifurcation analysis and
interpretation of each numerical simulation were also provided. The initial value used is N(0) =
8,T(0)=5,E(0)=3,H(0) =4,R(0) =2 and it is carried out at time t = 0 to t = 200. The
parameter values used refer to Table 3.1 and Table 4.1.
a. Numerical simulation of normal and effector cells extinction conditions

Based on Figure 4.1 (a), it can be seen that the tumor cell population increased from t = 5,
then constant until ¢t = 200. Both normal and effector cell populations decreased from t = 2,
then became extinctuntil t = 200. Biologically, this condition is referred to as tumor cell invasion.
Tumor cells have managed to escape from effector cells and penetrate normal surrounding tissues,

then proliferate until the cell's capacity is limited. Furthermore, the population of helper T cells
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will continue increase due to a constant source from bone marrow. Consequently, regulatory T
cells population also increasing, because helper T cells promote the activation of regulatory T cells.
Neither helper T cells nor regulatory T cells can attack tumor cells, therefore helper T cells and

regulatory T cells populations will persist even after the invasion of tumor cells occurs.

Table 4.1 Parameter values for P, and Ps

Parameters Value Source

& 1 [13]

) 1.636 [9]

b, 0.1 Assumption

b, 0.1 Assumption
1 (for P,) [13]

s 0.05 (for Ps) Assumption

B> 0.01 Assumption

B3 0.56 [13]

Ba 0.5 Assumption

p 0.48 [9]

q 0.48 [1]

s 0.38 [9]

k 0.035 Assumption

a, 0.15 [12]

a, 0.2 [12]

a, 10° [11]

a, 2.02x 107 [11]

d, 0.3743 [9]

d, 0.055 [9]

ds 0.25 [12]

b. Numerical simulation of tumor and effector cells extinction conditions

Based on Figure 4.1 (b), it can be seen that the population of normal cells, helper T cells, and
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regulatory T cells increased and remained constant until ¢ = 200. From a biological point of view,
this condition indicates that the body's immune system is working quite effectively against tumor
cells, even before tumor cells proliferate. However, effector cells decreased from t = 15, and
finally they became extinct. The extinction of effector cells occurs due to competition against
tumor cells and also an increase regulatory T cells.
c¢. Numerical simulation of tumor cells extinction conditions

Based on Figure 4.1 (c), it can be seen that the effector and regulatory T cells populations
increased from t = 3, then fluctuated up to ¢t = 22 and increased for certain period before
reached constant value until ¢t = 200. Furthermore, normal and helper T cells populations were
increase from t = 3, then constant until ¢ = 200. From a biological point of view, this condition
indicates a healthy condition, where the immune system works effectively against tumor cells and
maintains normal cells.
d. Numerical simulation of effector cells extinction conditions

Based on Figure 4.1 (d), it can be seen that the tumor cell population increased from t = 4,
then constant until t = 200, while the normal cell population decreased from t =5, then
constant until t = 200. The effector cell population decreased and eventually became extinct.
Biologically, this condition means that tumor cells are free from immune system control and
expected to develop into malignant tumors, that metastasize. This condition has not yet reached
tumor invasion because the normal cell population is still present in the body. Furthermore, the
population of helper T cells will continue increase due to a constant source from bone marrow.
Consequently, regulatory T cells population also increasing, because helper T cells promote the
activation of regulatory T cells.
e. Numerical simulation of normal cells extinction conditions

Based on Figure 4.1 (e), it can be seen that tumor cells, effector cells, and regulatory T cells
populations increased from t = 3, then fluctuated and ended constant until ¢ = 200. The normal
cell population decreased from t = 2, then got extinction. This indicates that tumor cell invasion
occurs. Although effector cells are still effective against tumor cells, effector cells cannot maintain
the existence of normal cells in the body. Therefore, many researchers consider the treatment of

tumor disease can eradicate tumor cells and also maintain the existence of normal cells.
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f.  Numerical simulation of coexistence conditions

Based on Figure 4.1 (f), it can be seen that the effector cells and helper T cells populations
increased from t = 3, then fluctuated and eventually grew steadily until ¢t = 200. Consequently,
the regulatory T cells are also increased. The tumor cells population increased from t = 6, then
slightly decreased and ended constant until ¢ = 200. Although the population of normal cells
decreased, it is not going extinct. The immune system inhibits the tumor spread effectively.
Clinically, this condition shows that the patient can still survive even though there are tumor cells

in the body.

4.1 The inhibitory role of effector cells by regulatory T cells on Tumor cell growth
Based on Figure 4.2, it is clear that the rate of inhibition of effector cells by regulatory T cells
(gq) greatly affects the growth of tumor cells. The density of tumor cell populations with different

g value is written in the following table:

1 ' Table 4.2 Density of tumor cell
S~ - SEEE— population with different q values

q value  Tumor Cell Population Density

- 0.4 8.7241
A 0.32 8.1326
| | 0.24 6.8751
I E— | 018 247 x 10-8

t

Figure 4.2 t-T graph with different q values

The high rate of inhibition of effector cells by regulatory T cells results high tumor cell growth.
Conversely, the low rate of inhibition of effector cells by regulatory T cells results low tumor cells

growth. The effector cells can perform their cytotoxic activity or fight tumor cells optimally.
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4.2 Numerical Bifurcation Analysis

Numerical bifurcation analysis was carried out to determine the effect of a parameter on the
system stability. As the focus of this study, namely the tumor-immune system dynamics with
considering the inhibitory role of regulatory T cells, the bifurcation diagram is plotted with a
continuous value of g, which is the rate of effector cells inhibition by regulatory T cells. In this
simulation, the parameter values used refer to Table 3.1 and the values of q are g, =
1.1710,q , = 0.4218, q3 = 0.4390.

Figure 4.3 shows the changes in the system stability due to various g parameter values. In
Figure 43 (a), for 0 <q <gq, where q, = 0.19 is a saddle-node bifurcation point, the
equilibrium point P, exists and is unstable, P, exists and is stable, while the other equilibrium
points do not exist. The solution of the system tends to P,, which means the immune system works
very effectively against tumor cells and maintains normal cells. For g, < g < g3, the system has
bistable behavior, because at that interval there is stability at two points, namely equilibrium points
P, and Pg,which implies that the immune system works quite effectively against tumor cells, but
cannot maintain normal cells in the body. For gz < q <gq,, both P; and P, exist and are
unstable, while Py exists and is stable. The solution of the system tends to Py, which means the
immune system’s performance against tumor cells begins to decline and causes the extinction of
normal cells. For q¢ > g,, both P, and P, exist and are unstable, while P, exists and is stable.
The solution of the system tends to P5; It shows the inhibition by regulatory T cells causes effector
cells tends to extinct and the tumor cell population increased.

Furthermore, in Figure 43 (b) for 0 <gq <gqs, where q; =0.2 is the saddle-node
bifurcation point, the equilibrium point P; exists and is unstable, P, exists and is stable, while
the other equilibrium points do not exist. The solution of the system tends to P,, which means the
immune system works very effectively against tumor cells and maintains normal cells. For g5 <
q < q;,the system has bistable behavior, because at that interval there is stability at two points,
namely the equilibrium points P, and P*, which implies that the immune system's performance

against tumor cells is quite effective even though the population of tumor cells is not completely
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extinct in the patient's body. For g3 < q < q,, P; and P, exist and are unstable, while P*
exists and is stable. The solution of the system tends to P*, which means that the patient is still
alive with the presence of tumor cells in the body. For g > q;, both P, and P* exist and are
unstable, while P; exists and is stable. The solution of the system tends to P; and shows
evidence that the inhibition by regulatory T cells causes effector cells tends to extinct and the

tumor cell population increased.

Stlable

Unstable

Stabla
Urstable

0 Py o1m /(/D-N 08 08 1 1.17 o Py 02 044 06 08 1 1
q,

(@) (b)
Figure 4.3 Bistable and Saddle-Node Bifurcation Diagram of T concerning g with a value of
(a) By =0.5.(b) B, =01

Based on above explanation, the g parameter has a significant effect on the inhibition of
the immune system and tumor cell growth, as well as changes in the system stability. It is important
to carry out this analysis before deciding on a suitable tumor treatment strategy so that the immune
system can work optimally to reduce the inhibition by regulatory T cells. Then, tumor cells are

completely eradicated from the patient's body.

5. CONCLUSION

Based on the results of the discussion that has been described in the previous section, the

following conclusions are obtained:
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1. The mathematical model of tumor-immune system dynamics by considering the regulatory T
cells role has eight equilibrium points, namely:

a. Two equilibrium points are unstable, namely the equilibrium point of normal, tumor,
effector cells extinction (P,) and the equilibrium point of normal cells, tumor cells
extinction (P;).

b. Four equilibrium points are conditional asymptotically stable, namely the equilibrium
point of normal and effector cells extinction (P,), tumor and effector cells extinction
(P3), tumor cells extinction (P,), and effector cells extinction (Ps),

¢. Two equilibrium points are supposed to be asymptotically stable when the conditions for
their existence are satisfied, namely the equilibrium point of normal cell extinction (FPg)
and coexist condition (P*).

2. The numerical simulation results of a mathematical model of tumor-immune system by
considering the regulatory T cells role show that the inhibition of effector cells by regulatory

T cells causes tumor cells growth increased, and vice versa. In addition, a numerical

bifurcation analysis was also carried out which showed the presence of saddle-node

bifurcation and bistable behavior in the system. The regulatory T cells play an important role
in the dynamics of the tumor-immune system, especially in inhibiting the performance of

effector cells and promoting tumor cell growth.
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