Parameter estimation and analysis on SIS-SEIS types model of tuberculosis transmission in east java Indonesia

Fatmawati, D. C. Maulana, Windarto, Moh. I. Utoyo, U. D. Purwati,

C.W. Chukwu

Available online at https://scik.org/index.php/cmbn/article/download/7739/3639

Commun. Math. Biol. Neurosci. 2022, 2022:114

https://doi.org/10.28919/cmbn/7739

ISSN: 2052-2541

ISSN 2052-2541

Mathematical Biology and Neuroscience

Editor-in-Chief: Lansun Chen

Associate Editors:

Marcos Amaku Ioannis P. Androulakis Tiaza Bem Glenna C. L. Bett Anuj Chauhan Fengde Chen Ahmed Elaiw Irina Erchova Wenjiang Fu Mladen Glavinovic Hongjian Guo Stephen F. Hubbard Mahendra Kavdia Bing Liu Maoxing Liu Hasan Al-Nashash

Fahima Nekka Yongzhen Pei Laurent Pezard Zhihui Wang Alexander Zelikovsky Hong Zhang

SCIK Publishing Corporation

Scopus

Documents

Export Date: 27 Nov 2022 Search: AU-ID("Windarto, undefined" 41862696300)

- Fatmawati, Maulana, D.C., Windarto, Utoyo, M.I., Purwati, U.D., Chukwu, C.W.
 PARAMETER ESTIMATION AND ANALYSIS ON SIS-SEIS TYPES MODEL OF TUBERCULOSIS TRANSMISSION IN EAST JAVA INDONESIA
 (2022) Communications in Mathematical Biology and Neuroscience, 2022, .
- https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140905347&doi=10.28919%2fcmbn%2f7739&partnerID=40&md5=ced DOI: 10.28919/cmbn/7739

Document Type: Article Publication Stage: Final Source: Scopus

ELSEVIER

Source details

Communic	ations in Mathematio	cal Biology and Neuroscience	CiteScore 2021 1 Q
Scopus coverage	years: from 2017 to Present		1.7
Publisher: SCIK	Publishing Corporation		
E-ISSN: 2052	-2541		SJR 2021
Subject area: 🛛 🕅	1athematics: Applied Mathematics		0.233
В	iochemistry, Genetics and Molecular Biology	r: General Biochemistry, Genetics and Molecular Biology)	
	leuroscience: General Neuroscience		SNIP 2021 0 674
Source type: Jou	urnal		0.071
View all documents	> Set document alert III Sa	ve to source list Source Homepage	
CiteScore Cite	eScore rank & trend Scopus	content coverage	
i Improved CiteScore 2 papers pub	d CiteScore methodology 2021 counts the citations received in 202 Iished in 2018-2021, and divides this by	18-2021 to articles, reviews, conference papers, book chapters and data y the number of publications published in 2018-2021. Learn more >	
CiteScore 2	021	CiteScoreTracker 2022 ①	
455	5 Citations 2018 - 2021	547 Citations to date	
1.9 = -243	Documents 2018 - 2021	1.7 = 331 Documents to date	
Calculated on 05 May, 20	122	Last updated on 05 November, 2022 • Updated monthly	
CiteScore rank	x 2021 ①		
Category	Rank Percentile		
Mathematics	^		
Applied Mathematics	#317/590 46th		
Biochemistry, Genetics and Molecular Biology	#120/204 41st		
General Biochemistry,	~		
View CiteScore meth	odology 〉 CiteScore FAQ 〉 Add C	iteScore to your site 🔗	

About Scopus

What is Scopus Content coverage Scopus blog Scopus API Privacy matters

Language

Customer Service

Help Tutorials Contact us

ELSEVIER

Terms and conditions $\urcorner \quad \mathsf{Privacy} \ \mathsf{policy} \ \urcorner$

Copyright \bigcirc Elsevier B.V ightarrow . All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies 7.

RELX

Communications in Mathematical Biology and Neuroscience

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
United Kingdom Universities and research institutions in United Kingdom	Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (miscellaneous) Mathematics Applied Mathematics Neuroscience Neuroscience (miscellaneous)	SCIK Publishing Corporation	10
PUBLICATION TYPE	ISSN	COVERAGE	
Journals	20522541	2017-2021	

SCOPE

Information not localized

 \bigcirc Join the conversation about this journal

Quartiles

<u>₹</u> 8

Cited documents Uncited documents

 $\leftarrow \text{Show this widget in}$ your own website

> Just copy the code below and paste within your html code:

<a href="https://www.scimaç

G Explore, visually communicate and make sense of data with our new data visualization tool.

SCImago Graphica

Metrics based on Scopus® data as of April 2022

Communications in Mathematical Biology and Neuroscience

USER Username windarto	HomeAboutTable of ContentsEditorial BoardAPublication EthicsEditorial WorkflowContact			
Password	Home > Editorial Board			
Log In Register Reset Password	Editor-in-Chief: <u>Lansun Chen</u> , Chinese Academy of Sciences, China			
Email				
	Associate Editors:			
	Marcos Amaku, Universidade de Sao Paulo, Brazil			
	Ioannis P. Androulakis, The State University of New Jersey, USA			
	Tiaza Bem, Institute of Biocybernetics and Biomedical Engineering, Polar			
• <u>For Authors</u>	Glenna C. L. Bett, State University of New York at Buffalo, USA			
JOURNAL	Anuj Chauhan, University of Florida, USA			
CONTENT	Fengde Chen, Fuzhou University, China			
	Ahmed Elaiw, King Abdulaziz University, Saudi Arabia			
All 🗸	Irina Erchova, Cardiff University, UK			
Search	Wenjiang Fu, Michigan State University, USA			
Browse	Mladen Glavinovic, McGill University, Canada			
 <u>By Issue</u> <u>By Author</u> 	Hongjian Guo, Xinyang Normal University, China			
• <u>By Title</u>	Stephen F. Hubbard, University of Dundee, UK			
	Mahendra Kavdia, Wayne State University, USA			
	Bing Liu, Anshan Normal University, China			
	Maoxing Liu, North University of China, China			
	Hasan Al-Nashash, American University of Sharjah, UAE			
	Fahima Nekka, Université de Montréal, Canada			
	Yongzhen Pei, Tianjin Polytechnic University, China			
	Laurent Pezard, Aix-Marseille Université, France			
	Mutasem O. Taha, University of Jordan, Jordan			
	Zhihui Wang, University of Texas Health Science Center at Houston, USA			
	Alexander Zelikovsky, Georgia State University, USA			
	Hong Zhang, Jiangsu University, China			

Managing Editors:

Fengde Chen, Yi Pan, Yongzhen Pei, Shi Shen, Yuan Tian, Kaifa Wang, Xia

Commun. Math. Biol. Neurosci.

ISSN 2052-2541

Editorial Office: office@scik.org

Copyright ©2022 CMBN

Communications in Mathematical Biology and Neuroscience

Username windarto	
Password ••••••• Home > Archives > Vol 2022 (2022)	
Remember me	
Log In Register Table of Contonts	
Reset Password	
Email Hery Harjono Muljo, Bens Pardamean, Kartika Purwandari,	<u>PDF</u>
Tjeng Wawan Cenggoro	
COVID-19 radiography database	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 1	
INFORMATION M. Fariz Fadillah Mardianto, Suliyanto -, Faried Effendy, Antonio	<u>PDF</u>
<u>For Authors</u> Chaerobby Fakhri Fauzaan Purwoko, Netha Aliffia	
Classification of food menu and grouping of food potential to	
JOURNAL Support the food security and huthion quality CONTENT Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 2	
Search Naina Anya Sumit Kaur Bhatia Amrita Kumar	DDE
Stability and bifurcation analysis of a contaminated sir model	
All v with saturated type incidence rate and Holling type-III	
Search Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 3	
Browse	PDF
By Issue Spatiotemporal early warning system for COVID-19 pandemic	
• By Title Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 4	
Restu Arisanti, Mentari Dara Puspita	<u>PDF</u>
variable in forecasting USD/IDR exchange rate	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 5	
Stephen Edward Moore, Eric Okyere	<u>PDF</u>
Controlling the transmission dynamics of COVID-19	
Commun. Main. Blot. Neurosci., 2022 (2022), Article ID 0	
Maria Acim, Brahim Roukiane, Mehdi Zahid ARFIMA model applied to Malaysian stock market	<u>PDF</u>
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 7	
Rudianto Artiono, Atik Wintarti, Budi Priyo Prawoto, Yuliani Puji	<u>PDF</u>
Astuti	
treatment: stability and threshold	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 8	
Winnie Mokeira Onsongo, Enoch Deyaka Mwini, Brian	<u>PDF</u>
Nyasagare Nyanaro, Shaibu Osman Stability analysis and modelling the dynamics of psittacosis in	
human and poultry populations	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 9	
Sigit Susanto Putro, Muhammad Ali Syakur, Eka Mala Sari	<u>PDF</u>
Comparison of backpropagation and ERNN methods in	
predicting corn production	
Commun. Main. Blot. Neurosci., 2022 (2022), Article ID 10	
I.G.N.M. Jaya, A. Chadidjah, N. Sunengsih, R. Arisanti Structural equation modeling of the COVID-10 incidence rate	<u>PDF</u>
associated with the death rate and the impact of	
socioeconomic factors in ASEAN countries Commun Math Biol Neurosci 2022 (2022) Article ID 11	
E. Bonyan, м. Juga, Fatmawati - <u>Fractional dyn</u> amics of coronavirus with comorbidity via	
Caputo-Fabrizio derivative	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 12	
Sediono -, M. Fariz Fadillah Mardianto, Siti Maghfirotul Ulyah, Alvito Anyo Pangestu, Pita Suganti, Haydar Aroy Firdayo	<u>PDF</u>
Christopher Andreas	
The modelling of earthquake magnitude in the southern part of Java Island using geographically weighted regression	

Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 13	
Firas Hussean Maghool, Raid Kamel Naji <u>Chaos in the three-species Sokol-Howell food chain system</u> with fear	<u>PDF</u>
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 14	
Haileyesus Tessema, Issaka Haruna, Shaibu Osman, Endeshaw Kassa	<u>PDF</u>
<u>A mathematical model analysis of marriage divorce</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 15	
Ahmed A. El-Sheikh, Mohamed R. Abonazel, Mohamed C. Ali <u>Proposed two variable selection methods for big data:</u> <u>simulation and application to air quality data in Italy</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 16	<u>PDF</u>
Mohamed R. Abonazel, Nesma M. Darwish <u>Forecasting confirmed and recovered COVID-19 cases and</u> <u>deaths in Egypt after the genetic mutation of the virus: ARIMA</u> <u>Box-Jenkins approach</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 17	<u>PDF</u>
Abdelhak Eseghir, Abdelghani Kissami, Mohamed Latifi, Khalid Hattaf	<u>PDF</u>
The asymptotic behavior of an SIR epidemic model: collective Reed-Frost process Commun Math Biol, Neurosci, 2022 (2022), Article ID 18	
Fatuh Inayaturohmat, Nursanti Anggriani, Asep Kuswandi	<u>PDF</u>
Supriatna Optimal control and sensitivity analysis of COVID-19 transmission model with the presence of waning immunity in West Java, Indonesia	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 19 Abdelbar El Mansouri, Abderrahim Labzai, Mohamed Belam,	PDF
Mostafa Rachik <u>Mathematical modeling and optimal control strategy for the</u> <u>obesity epidemic</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 20	
Ahmed M. Gad, Asmaa A. M. Ali, Ramadan H. Mohamed <u>A multiple imputation approach to evaluate the accuracy of</u> <u>diagnostic tests in presence of missing values</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 21	<u>PDF</u>
Melly Amelia, Agus M. Soleh, Erfiani - <u>The development of clusterwise regression model on</u> gamma-normal mixed distribution with genetic algorithm Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 22	<u>PDF</u>
Nidhomuddin -, Nur Chamidah, Ardi Kurniawan <u>Confidence interval of the parameter on multipredictor</u> <u>biresponse longitudinal data analysis using local linear</u> <u>estimator for modeling of case increase and case fatality rates</u> <u>COVID-19 in Indonesia: A theoretical discussion</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 23	<u>PDF</u>
Rasha Majeed Yaseen, Hassan Fadhil Al-Husseiny <u>A careful study of the effect of the infectious diseases and</u> <u>refuge on the dynamical behavior of prey-scavenger</u> <u>modeling</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 24	<u>PDF</u>
Abdelhak Essounaini, Abderrahim Labzai, Hassan Laarabi, Mostafa Rachik <u>Mathematical modeling and optimal control strategy for a</u> <u>discrete time model of COVID-19 variants</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 25	<u>PDF</u>
Benny Yong, Jonathan Hoseana, Livia Owen <u>A design of governmental policies for the eradication of</u> <u>COVID-19 in Jakarta using an SIR-type mathematical model</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 26	<u>PDF</u>
lffah Nuril Khasanah, Agus Suryanto, Ummu Habibah Multistage variational iteration method for a SEIQR COVID-19 epidemic model with isolation class Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 27	<u>PDF</u>

H.T. Soblia, T. Toharudin, Y. Suparman, P.R. Sihombing On the use of generalized additive models in the impact of COVID-19 on human mobility using mobile positioning data in DKI Jakarta, Indonesia Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 28	PDF
Vievien Abigail Damu Djara, Yudhie Andriyana, Lienda Noviyanti <u>Modelling the prevalence of stunting toddlers using spatial</u> <u>autoregressive with instrument variable and S-estimator</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 29	PDF
Mlyashimbi Helikumi, Paride O. Lolika <u>A note on fractional-order model for cholera disease</u> <u>transmission with control strategies</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 30	PDF
Alfiandhani Suci Mutiara, Kasbawati -, Andi Kresna Jaya, Anisa -, Rusni Samsir <u>A comparison of deterministic and stochastic model on the</u> <u>dynamics of HIV and CD4+ T-cells interactions</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 31	PDF
Hiba Abdullah Ibrahim, Dahlia Khaled Bahlool, Huda Abdul Satar, Raid Kamel Naji <u>Stability and bifurcation of a prey-predator system</u> incorporating fear and refuge Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 32	PDF
Dominic Otoo, Shaibu Osman, Houenafa Alain Togbenon, Winnie Mokeira Onsongo, Thierry Gorlon Godjo, Oluwole Daniel Makinde Nonstandard finite difference method of modelling zoonotic <u>diseases</u> Commun Math Biol Neurosci, 2022 (2022) Article ID 33	PDF
Amine El Koufi, Nouhaila El Koufi <u>A stochastic epidemic model with general incidence rate</u> <u>control approach</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 34	PDF
Vita Ratnasari, Purhadi -, Igar Calveria Aviantholib, Andrea Tri Rian Dani <u>Parameter estimation and hypothesis testing the second</u> order of bivariate binary logistic regression (S-BBLR) model <u>with Berndt Hall-Hall-Hausman (BHHH) iterations</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 35	PDF
Mohammed Semlali, Khalid Hattaf, Mohamed Elyousfi El Kettani <u>Modeling and analysis of the dynamics of COVID-19</u> <u>transmission in presence of immigration and vaccination</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 36	PDF
Rachid El Chaal, Moulay Othman Aboutafail <u>A comparative study of back-propagation algorithms:</u> <u>Levenberg-Marquart and BFGS for the formation of multilayer</u> <u>neural networks for estimation of fluoride</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 37	PDF
Amine El Koufi <u>A stochastic viral model with cell-to-cell transmission</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 38	PDF
Hamza El Mamouni, Majda El Younoussi, Zakaria Hajhouji, Khalid Hattaf, Noura Yousfi <u>Existence and uniqueness results of solutions for Hattaf-type</u> <u>fractional differential equations with application to</u> <u>epidemiology</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 39	PDF
G. Santhosh Kumar, C. Gunasundari <u>Turing instability of a diffusive predator-prey model along with</u> <u>an Allee effect on a predator</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 40	PDF
Eka Mala Sari Rochman, Miswanto -, Herry Suprajitno <u>Comparison of clustering in tuberculosis using fuzzy c-means and k-means methods</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 41	PDF
Firas Hussean Maghool, Raid Kamel Naji <u>The effect of fear on the dynamics of two competing prey-one</u> <u>predator system involving intra-specific competition</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 42	PDF

Amina Allali, Saida Amine <u>Stability analysis of a fractional-order two-strain epidemic</u> <u>model with general incidence rates</u> <u>Commun. Math. Biol. Neurosci. 2000</u> (2000). Article ID (20	<u>PDF</u>
Wahyu Suryaningrat, Nursanti Anggriani, Asep K. Supriatna Mathematical analysis and numerical simulation of spatial- temporal model for rice tungro disease spread Commun. Math. Biol. Neurosci. 2022 (2022). Article ID 44	<u>PDF</u>
Payal Rana, Kuldeep Chaudhary, Sudipa Chauhan, Mamta Barik, Brajesh Kumar Jha Dynamic analysis of mother-to-child transmission of HIV and antiretroviral treatment as optimal control Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 45	<u>PDF</u>
S.T. Tresna, N. Anggriani, A.K. Supriatna <u>Mathematical model of HCV transmission with treatment and</u> <u>educational effort</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 46	<u>PDF</u>
Marwa Al Nuaimi, Shireen Jawad <u>Modelling and stability analysis of the competitional</u> <u>ecological model with harvesting</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 47	<u>PDF</u>
Mengxin Fu, Yongzhen Pei <u>Suppressing tactics by optimal sterile release program</u> against wild mosquitoes Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 48	<u>PDF</u>
A.A. Adeniji, S.E. Fadugba, M.Y. Shatalov <u>Comparative analysis of Lotka-Volterra type models with</u> <u>numerical methods using residuals in Mathematica</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 49	<u>PDF</u>
Amine El Koufi, Nouhaila El Koufi <u>A stochastic hybrid differential equation model: Analysis and application</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 50	<u>PDF</u>
Youssef Benfatah, Issam Khaloufi, Hamza Boutayeb, Mostafa Rachik, Hassan Laarabi <u>Optimal control for a discrete time epidemic model with</u> <u>zones evolution</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 51	<u>PDF</u>
Samuel N. N. Nortey, Ebenezer Bonyah, Michel Torny, Maureen Juga <u>A coinfected modeling of anthrax and listeriosis with power</u> <u>law</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 52	<u>PDF</u>
Faouzi Marzouki, Omar Bouattane Defining and analysis of multimorbidity pattern of diseases using Markov random field approach: a comparative analysis Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 53	<u>PDF</u>
Amine El Bhih, Youssef Benfatah, Mostafa Rachik, Abdessamad Tridane <u>Regional optimal harvesting controls of a spatiotemporal</u> <u>prey-predator three species fishery model</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 54	<u>PDF</u>
Millatul Ulya, Nur Chamidah, Toha Saifudin Local polynomial bi-responses multi-predictors nonparametric regression for predicting the maturity of mango (Gadung Klonal 21): a theoretical discussion and simulation Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 55	<u>PDF</u>
Abdelaziz El Hassani, Khalid Hattaf, Naceur Achtaich <u>Global stability of reaction-diffusion equations with fractional</u> <u>Laplacian operator and applications in biology</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 56	<u>PDF</u>
Reem Mudar Hussien, Raid Kamel Naji <u>The dynamics of the SEIR epidemic model under the</u> <u>influence of delay</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 57	<u>PDF</u>
Y. Baala, M. Rachik <u>A discrete mathematical modeling and optimal control of</u> <u>diseases caused by Fusarium Oxysporum</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 58	<u>PDF</u>

Mlyashimbi Helikumi, Jacob Ismail Irunde <u>Host and vector migration on the spread of animal African</u> <u>trypanosomiasis: the effect of seasonal variation</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 59	<u>PDF</u>
Farai Nyabadza, Motunrayo E. Obanla <u>Modelling the impact of different health care systems and</u> <u>dropouts on the infection dynamics of HIV/AIDS</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 60	<u>PDF</u>
R. Ahmed, A. Ahmad, N. Ali <u>Stability analysis and Neimark-Sacker bifurcation of a</u> <u>nonstandard finite difference scheme for Lotka-Volterra prey- predator model</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 61	PDF
Mohammed Abdellatif Ahmed, Dahlia Khaled Bahlool <u>The influence of fear on the dynamics of a prey-predator-</u> <u>scavenger model with quadratic harvesting</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 62	<u>PDF</u>
Enny Supartini, Puspa Faydian Rahmah, Firya Fatin Rahmadanti, Mila Antikasari, Resa Septiani Pontoh <u>Analysis of obesity rates on calorie consumption of some</u> <u>foods in 40 Asian countries</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 63	PDF
Pankaj Gulati, Sudipa Chauhan, Anuj Mubayi Evaluation of strategies of pesticide use and biological control through linear feedback control for controlling rapidly growing pest population Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 64	<u>PDF</u>
Nouhaila El Koufi, Amine El Koufi <u>The impact of levy jumps and white noise on the dynamics of</u> <u>a COVID-19 epidemic model: A case study of the Kingdom of</u> <u>Saudi Arabia</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 65	PDF
Eka Mala Sari Rochman, Miswanto -, Herry Suprajitno <u>Overcoming missing values using imputation methods in the</u> <u>classification of tuberculosis</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 66	<u>PDF</u>
Al Mira Khonsa Izzaty, Tjeng Wawan Cenggoro, Gregorius Natanael Elwirehardja, Bens Pardamean <u>Multiclass classification of histology on colorectal cancer</u> <u>using deep learning</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 67	PDF
Sellishi Habte, Fasil Gidaf, Habtamu Siraw, Tadesse Mergiaw, Getachew Tsegaw, Ashenafi Woldeselassie, Melaku Abera, Mahmud Kassim, Wondosen Lisanu, Belete Ayalew, Alebechew Molla, Benyam Mebrate Sensitivity and mathematical model analysis on smoking with <u>health education effect</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 68	PDF
Marouane Lafif, Issam Khaloufi, Youssef Benfatah, Jamal Bouyaghroumni, Hassan Laarabi, Mostafa Rachik <u>A mathematical SIR model on the spread of infectious</u> <u>diseases considering human immunity</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 69	PDF
Saja Dawud, Shireen Jawad <u>Stability analysis of a competitive ecological system in a polluted environment</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 70	<u>PDF</u>
Glory kawira Mutua, Cyrus Gitonga Ngari, Grace Gakii Muthuri, Dominic Makaa Kitavi <u>Mathematical modeling and simulating of Helicobacter pylori</u> <u>treatment and transmission implications on stomach cancer</u> <u>dynamics</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 71	PDF
Eric Okyere, Baba Seidu, Kwara Nantomah, Joshua Kiddy K. Asamoah <u>Fractal-fractional SIRS epidemic model with temporary</u> <u>immunity using Atangana-Baleanu derivative</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 72	PDF
Alhadi Bustamam, Mushliha -, Arry Yanuar, Prasnurzaki Anki, Adawiyah Ulfa <u>Evaluation quantitative structure-activity relationship (QSAR)</u>	<u>PDF</u>

<u>using ensemble learning methods on acetylcholinesterase</u> inhibitors for Alzheimer's disease Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 73	
Abdul Hadi N. Ebraheim, Salah M. Mohamed, Khadeejah Abdullah Muayw <u>A new regression model for Poisson Lindley distribution with application</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 74	PDF
Abayneh Kebede Fantaye, Mammo Muchie <u>Eco-epidemiological model and stability analysis of cotton</u> <u>leaf curl virus (CLCuV) transmission dynamics</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 75	<u>PDF</u>
M. Fariz Fadillah Mardianto, Suliyanto -, Elly Pusporani, Antonio Nikolas Manuel Bonar Simamora, Netha Aliffia, Ayuning Dwis Cahyasari, Chaerobby Fakhri Fauzaan Purwoko <u>Comparison of simultaneously nonparametric regression</u> <u>based on spline and Fourier series estimator related social aid</u> <u>distribution in Indonesia</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 76	PDF
R. Ramya, M.C. Maheswari, K. Krishnan <u>Modified HIV-1 infection model with delay in saturated CTL immune response</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 77	<u>PDF</u>
Sifriyani -, Idris Mandang, Fidia Deny Tisna Amijaya, Miftahus Sholihin, Andrea Tri Rian Dani <u>A spatio-temporal description of COVID-19 cases in East</u> <u>Borneo using improved geographically and temporally</u> <u>weighted regression (I-GTWR)</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 78	PDF
Cicik Alfiniyah, Agustin Khoirun Nisa, Windarto -, Nashrul Millah <u>Mathematical modelling of tumor-immune system by</u> <u>considering the regulatory T cells role</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 79	PDF
Patiene Chouop Kawe, Okelo Jeconiah Abonyo, David Malonza, Elijah Miinda Ateka <u>Stability and Hopf bifurcation analysis of a delayed eco-</u> <u>epidemiological model of IYSV disease dynamics in onion</u> <u>plants with nonlinear saturated incidence and logistic growth</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 80	PDF
Wahyudi Setiawan, Muhammad Mushlih Suhadi, Husni -, Yoga Dwitya Pramudita <u>Histopathology of lung cancer classification using</u> <u>convolutional neural network with gamma correction</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 81	PDF
Nur Chamidah, Marisa Rifada, Dita Amelia <u>A theoretical discussion on modeling the number of COVID-19</u> <u>death cases using penalized spline negative binomial</u> <u>regression approach</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 82	<u>PDF</u>
Erwin Tanur, Anang Kurnia <u>Small area estimation for autoregressive model with</u> <u>measurement error in the auxiliary variable</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 83	<u>PDF</u>
Marouane Karim, Soukaina Ben Rhila, Hamza Boutayeb, Mostafa Rachik <u>Regional optimal control approach for a spatiotemporal prey- predator model</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 84	PDF
El Mehdi Warrak, Sara Lasfar, Khalid Hattaf, Noura Yousfi <u>Mathematical analysis of an age-structured viral infection</u> <u>model with latency and general incidence rate</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 85	<u>PDF</u>
Shurowq K. Shafeeq, Murtadha M. Abdulkadhim, Ahmed A. Mohsen, Hassan F. Al-Husseiny, Anwar Zeb <u>Bifurcation analysis of a vaccination mathematical model with</u> <u>application to COVID-19 pandemic</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 86	PDF
Sara Soulaimani, Abdelilah Kaddar <u>Stability analysis of an SEIS epidemic model with nonlinear</u> incidence functional and immigration	PDF

Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 87	
Ebenezer Bonyah <u>A fractional dynamics of a potato disease model</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 88	<u>PDF</u>
Amera M. El-Masry, Ahmed H. Youssef, Mohamed R. Abonazel <u>Examining factors affecting delayed completion of adjuvant</u> <u>chemo for patients with breast cancer: Development of ridge</u> <u>logistic panel estimators</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 89	<u>PDF</u>
Zinah Khalid Mahmood, Huda Abdul Satar <u>The influence of fear on the dynamic of an eco-</u> <u>epidemiological system with predator subject to the weak</u> <u>Allee effect and harvesting</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 90	<u>PDF</u>
Marouane Lafif, Amine Ghazaoui, Mostafa Rachik, Jamal Bouyaghroumni <u>Study of an optimal control model for the panic propagation in a flying aircraft</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 91	<u>PDF</u>
Hader Muhammad Abd, Raid Kamel Naji <u>The impact of fear and harvesting on plankton-fish system</u> <u>dynamics incorporating harmful phytoplankton in the</u> <u>contaminated environment</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 92	<u>PDF</u>
D.S. Pangestu, S.T. Tresna, F. Inayaturohmat, N. Anggriani <u>COVID-19 transmission model with discrete time approach</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 93	<u>PDF</u>
Zerihun Kinfe Birhanu, Abayneh Kebede Fantaye <u>Modeling and analysis of corruption dynamics incorporating</u> <u>media coverage</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 94	<u>PDF</u>
Sijia Lin, Qianqian Li, Qun Zhu, Fengde Chen <u>Stability property of the predator-free equilibrium of a</u> <u>predator-prey-scavenger model with fear effect and quadratic</u> <u>harvesting</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 95	<u>PDF</u>
Mehdi Zahid, Maria Acim <u>Vaccination strategy and psychological effects in a fractional</u> <u>order epidemic model</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 96	<u>PDF</u>
Benyounes Bettioui, Abdelaziz El Hassani, Khalid Hattaf, Naceur Achtaich <u>Global dynamics of p-Laplacian reaction-diffusion equations</u> <u>with application to virology</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 97	<u>PDF</u>
Karli Eka Setiawan, Gregorius Natanael Elwirehardja, Bens Pardamean <u>Comparison of deep learning sequence-to-sequence models</u> <u>in predicting indoor temperature and humidity in solar dryer</u> <u>dome</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 98	PDF
Issam Khaloufi, Youssef Benfatah, Hassan Laarabi, Mostafa Rachik <u>A scenario to fight monkeypox using a mathematical model</u> Commun Math Biol Neurosci, 2022 (2022) Article ID 99	<u>PDF</u>
Restu Arisanti, Syela Norika Simbolon, Resa Septiani Pontoh <u>The extension of Moore-Penrose generalized inverse for</u> <u>extreme learning machine in forecasting USD/IDR exchange</u> <u>rate as impact of COVID-19</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 100	PDF
H. Dharmawan, B. Sartono, A. Kurnia, A. F. Hadi, E. Ramadhani <u>A study of machine learning algorithms to measure the</u> <u>feature importance in class-imbalance data of food insecurity</u> <u>cases in Indonesia</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 101	PDF
Anik Djuraidah, Zakiyah Mar'ah, Rahma Anisa <u>A Bayesian conditional autoregressive with INLA: A case study</u> <u>of tuberculosis in Java, Indonesia</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 102	<u>PDF</u>
Sirinapa Aryuyuen, Unchalee Tonggumnead	PDF

Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 103	
Soukaina Bouziane, El Mehdi Lotfi, Khalid Hattaf, Noura Yousfi Dynamics of a delayed prevenedator model with Hattaf.	
Yousfi functional response	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 104	
N.S. Rathnayaka, J.K. Wijerathna, B.G.S.A. Pradeep, P.D.N. Silva	
Stability of a delayed HIV-1 dynamics model with Beddington-	
delays	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 105	
Ahmed Sami Abdulghafour, Raid Kamel Naji	
Modeling and analysis of a prey-predator system	
incorporating fear, predator-dependent refuge, and cannibalism	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 106	
Maunah Setyawati, Nur Chamidah, Ardi Kurniawan	
Confidence interval of parameters in multiresponse	
multipredictor semiparametric regression model for	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 107	
Ismail Djakaria, Hasan S. Panigoro, Ebenezer Bonyah, Emli	
Rahmi, Wahab Musa	
Uynamics of SIS-epidemic model with competition involving fractional-order derivative with power-law kernel	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 108	
Elly Pusporani, M. Fariz Fadillah Mardianto, Sediono -	
Ameliatul 'Iffah, Aulia Rachma Firdausy, Erly Widyatama, M.	
Fatkhul Huda	
multivariate nonparametric time series analysis	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 109	
Wahyudi Setiawan. Yoga Dwitya Pramudita, Riries	
Rulaningtyas	
Modified-residual network for maize stalk rots diseases	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 110	
R. Ahmed, J. Mushtaq, S. Saher, H. M. A. Saeed	
Dynamic analysis of a predator-prey model with Holling type-	
Il functional response and prey refuge by using a NSFD scheme	
Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 111	
Mohammed Hanaki, Hassan Sfouli	
Mathematical study of an anaerobic digestion model, part 1	
Commun. Matri. Biol. Neurosci., 2022 (2022), Article ID 112	
Abdelali Kamil, Yousra Melhaoui, Khalifa Mansouri, Mostafa Rachik	
Artificial neural network and mathematical modeling of	
automatic ship berthing	
Commun. Maur. Dior. Neurosci, 2022 (2022), AHUCH ID 113	
Fatmawati -, D. C. Maulana, Windarto -, Moh. I. Utoyo, U. D. Purwati, C.W. Chukwu	
Parameter estimation and analysis on SIS-SEIS types model of	
tuberculosis transmission in East Java Indonesia Commun Math Biol, Neurosci, 2022 (2022), Article ID 114	
Marouano Karim Soukaina Ban Dhila Llamaa Dautayah	
Mostafa Rachik	
COVID-19 spatiotemporal SIR model: Regional optimal control	
<u>approacn</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 115	
Filimon Abel Mgandu, Triphonia Ngailo, Isaac Mugume, Isambi	
Mealowata, Cilaa Mirau	
MDatawata, Sitas Mirau	
Mathematical models for aflatoxin contamination in crops,	
Moatawala, Silas Milau <u>Mathematical models for aflatoxin contamination in crops,</u> <u>livestock and humans: A review</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 116	
Matawala, Silas Milau <u>Mathematical models for aflatoxin contamination in crops,</u> <u>livestock and humans: A review</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 116	
Matawala, Silas Milau <u>Mathematical models for aflatoxin contamination in crops,</u> <u>livestock and humans: A review</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 116 Nurhalis Hasan, Agus Suryanto, Trisilowati - <u>Dynamics of a fractional-order eco-epidemic model with</u>	

Renaldy Fredyan, Gede Putra Kusuma <u>Spatiotemporal convolutional LSTM with attention</u> <u>mechanism for monthly rainfall prediction</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 118	<u>PDF</u>
Mly Ismail El Karimi, Khalid Hattaf, Noura Yousfi Dynamics of an immunological viral infection model with lytic and non-lytic immune response in presence of cell-to-cell transmission and cure of infected cells Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 119	PDF
Issam Khaloufi, Youssef Benfatah, Hajar Moutamanni, Hamza Boutayeb, Mostafa Rachik <u>A discrete mathematical model SEIR with the evolution of the</u> <u>regions</u> Commun. Math. Biol. Neurosci., 2022 (2022), Article ID 120	PDF
Commun. Math. Biol. Neurosci.	
ISSN 2052-2541	
Editorial Office: office@scik.org	
Copyright ©2022 CMBN	

Available online at http://scik.org Commun. Math. Biol. Neurosci. 2022, 2022:114 https://doi.org/10.28919/cmbn/7739 ISSN: 2052-2541

PARAMETER ESTIMATION AND ANALYSIS ON *SIS-SEIS* TYPES MODEL OF TUBERCULOSIS TRANSMISSION IN EAST JAVA INDONESIA

FATMAWATI^{1,*}, D. C. MAULANA¹, WINDARTO¹, MOH. I. UTOYO, U. D. PURWATI¹, C.W. CHUKWU²

¹Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

²Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, USA

Copyright © 2022 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In this work, the parameter estimation of the *SIS-SEIS* types of Tuberculosis (TB) model is considered based on the data of TB-infected cases in East Java Province, Indonesia. We utilize the combination of the performance index approach in the optimal control theory and genetic algorithm to estimate the TB model parameters. Two basic reproduction numbers were also determined as well. The sensitivity analysis is performed to establish the most significant parameters on the TB model transmission dynamics. Based on the parameter estimation results of the *SIS-SEIS* types TB models, the basic reproduction numbers for both models are greater than one which means that, TB disease will persist in the province. Furthermore, the simulation of the TB model is carried out using the parameter estimation results which confirms that the spread of TB is ongoing in East Java Indonesia, and is yet to reach its endemicity.

Keywords: tuberculosis; model; parameter estimation; optimal control theory; genetic algorithm.

2010 AMS Subject Classification: 34A34, 37N25, 93D20.

E-mail address: fatmawati@fst.unair.ac.id

^{*}Corresponding author

Received September 16, 2022

1. INTRODUCTION

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis in the form of bacilli or rods. Mycobacterium tuberculosis usually only affects the lungs (pulmonary TB), but it is possible that the bacteria also affect other parts of the body such as the brain, spine, and central nervous system (extrapulmonary TB). TB disease can be transmitted directly by an infected human to healthy human through the air when a person infected with TB coughs, spits, sneezes, or talks [1]. According to WHO, in the late 1800s, the main cause of death was induced by TB occurred in several countries in Europe such as the Netherlands and Russia. In 2000, global TB cases were 10 million people infected with TB. TB sufferers are mostly male and more adults than children. In 2017, as many as 10 million people contracted TB, among TB sufferers 1.6 million people died and 0.3 million people contracted HIV. In 2017, the TB cases in Indonesia is reported about 425,089 and 442,172 new TB cases with recurring diseases which put Indonesia in the third position in the world from the original fifth region in the world infected TB countries [1].

Mathematical modeling is needed to determine, understand, and control the spread of a disease in a population, including TB disease. Castillo-Chavez and Song analyzed a mathematical model of TB spread which focuses on TB control strategies with treatment and vaccination [2]. The model of TB spread taking into account the latent period and active infection by age-dependent have been studied in Xu et al. paper [3]. The TB model by incorporate the cases of the treatment in homes and hospitals can be found in Yıldız & Karaoğlu article [4]. The compartment model of the TB infection with imperfect vaccines is presented in Egonmwan & Okuonghae work [5]. Ahmadin and Fatmawati developed the mathematical modeling of drug resistance in TB transmission by incorporate the optimal control [6]. Recently, the optimal control strategies of the TB model based on the discrete age-structured were explored by Fatmawati et al. [7].

Several researchers have carried out the implementation of the TB model on the real cases in the population. Zhang et al. have estimated parameters of the TB model with attention to hospital care using the Chi-Square test method based on data from China [8]. Kim et al. [9] applied the TB data in the Philippines to estimate the parameters of the TB model through the SEIL (Susceptible

- High-Risk Latent - Infected - Low-Risk Latent) type using the least-squares method. Ullah et al. [10] investigated the dynamic of TB infection using the TB confirmed notified cases in the city of Khyber Pakhtunkhwa, Pakistan. Khan et al. [11] developed a mathematical model with the standard incidence rate of the TB transmission and applied the least-squares method to estimate the model based on data in the city of Khyber Pakhtunkhwa, Pakistan.

The implementation of the real problem of the spread of TB in Indonesia is not widely discussed. Damayanti et al. [12] explored the identification of the nonlinear dynamics of the TB transmission and estimated the parameters model using the genetic algorithm multilayer perceptron-based data on TB patients in East Java, Indonesia. Fatmawati et al. [13] presented the mathematical model of TB transmission in Indonesia and parameterized the model via the least-squares method based on the cumulative TB case data per 100,000 population in Indonesia from 2008 to 2017.

In this study, we consider the parameter estimation of the TB model on Susceptible - Infectious – Susceptible (SIS) and Susceptible - Exposed - Infectious – Susceptible (SEIS) types TB model using the performance index approach in the optimal control theory with the optimization approach. The estimation parameters using the maximum Pontryagin principle by utilizing the existing performance index in the optimal control theory have been proposed by Götz et al. [14] and applied the approach for dengue cases in Semarang city, Indonesia. In this study, we used the genetic algorithm method to minimize the performance index of the TB infected on the model and then observed TB data in East Java Indonesia.

2. THE SIS TYPE MODEL OF TB TRANSMISSION

In this section, we discuss the *SIS* type of the mathematical model of TB transmission. The total human population (N) is divided into two populations, namely the susceptible (S) and the infected (I) human population. We assume that the rate of recruitment of the susceptible population is proportional to the total number of the populations. The human birth rate is assumed the same as the natural human death rate and the infected population can return to being susceptible due to the

temporary immunity. The explanation of the variables and parameters used in the *SIS* type for TB is given by Table 1 and Table 2, respectively.

Variable	Explanation
S(t)	The susceptible population at time t
I(t)	The TB infected at time t
N(t)	The total population at time t

Table 1. The definition of the variables on the SIS TB model

Table 2 The definition of the parameters on SIS TB model

Parameter	Explanation	Unit
μ	The natural death rate	People time
β	The transmission rate	People time
γ	The recovered rate	People time

Biologically, the variables used in the model represent the population at a certain time t, so that all variables are non-negative. In addition, in order to have biological meaningful region, all parameters are also assumed to be positive. Based on these assumptions, the *SIS* type model of the TB transmission can be represented as follows.

(1)
$$\frac{dS}{dt} = \mu N - \frac{\beta SI}{N} - \mu S + \gamma I,$$

(2)
$$\frac{dI}{dt} = \frac{\beta SI}{N} - \mu I - \gamma I,$$

where N = S + I and the initial condition of the model are non-negative, $S(0) = S_0 > 0$, $I(0) = I_0 \ge 0$.

3. THE SEIS MODEL OF THE TB TRANSMISSION

This section discusses the *SEIS* (Susceptible - Exposed - Infectious - Susceptible) type on the dynamical model of the TB transmission. The total human population (N) is divided into three populations, namely the susceptible (S), the exposed (E), and the infected (I) human populations.

The following are the assumptions used in the *SEIS* mathematical model for the spread of TB. The exposed population consists of individuals infected by TB disease, but without an infectious status. We assume that the recruitment rate of the susceptible population is proportional to the total number of the populations. The human birth rate is the same as the natural human death rate. The TB infected population can return to being susceptible because of temporary immunity. The description of the variables and parameters for the *SEIS* type for TB is depicted in Table 3 and Table 4, respectively.

Variable	Description
S(t)	The susceptible population at time t
E(t)	The exposed TB disease at time t
I(t)	The TB infected at time t
N(t)	The total population at time t

Table 3 The description of the variables on the SEIS TB model.

Table 4 The description of the parameters on the SEIS TB model.

Parameter	Description	Unit
μ	The natural death rate	People time
β	The rate of transmission	People time
γ	The rate of recovered	People time
α	The progression rate from E to I	People Year

Similarly, all parameters are assumed to be positive. The model equation describing the *SIS* type transmission model for TB dynamics is therefore given by

(3)
$$\frac{dS}{dt} = \mu N - \frac{\beta SI}{N} - \mu S + \gamma I,$$

(4)
$$\frac{dE}{dt} = \frac{\beta SI}{N} - (\mu + \alpha)E,$$

(5)
$$\frac{dI}{dt} = \alpha E - (\mu + \gamma)I,$$

where N = S + E + I. The initial conditions are $S(0) = S_0 > 0$, $E(0) = E_0 \ge 0$, and $I(0) = I_0 \ge 0$.

4. PARAMETER ESTIMATION

Here, the optimal parameter values are sought from the mathematical models of *SIS* and *SEIS* for the TB transmission. The estimation is carried out using genetic algorithms with the aim of minimizing the performance index in the optimal control theory with the parameters contained in the model being constant and the parameter values ranging from 0 to 1.

The performance index of the SIS and SEIS types of the TB model are thus defined

(6)
$$\min J_{s} = \frac{1}{2} \int_{0}^{t_{f}} \left(I(t) - I_{\sim}^{data}(t) \right)^{2} + \beta^{2} + \gamma^{2} dt$$

(7)
$$\min J_{-}e = \frac{1}{2} \int_{0}^{t_{f}} \left(I(t) - I_{\sim}^{data}(t) \right)^{2} + \beta^{2} + \gamma^{2} + \alpha^{2} dt$$

respectively, with $t_f = 1$ (t_f being a final time). To obtain the optimal parameter values, it is necessary to minimize the values of J_s and J_e which are at the same time to obtain the difference between the I estimate of the TB model and the I_{\sim}^{data} . Here, I_{\sim}^{data} represent the confirm of TB infected data. We use the TB infected cases reported from the year 2002 to 2017 in East Java, Indonesia. In this study, the parameter of natural death rate (μ) is obtained from the demographic conditions of the East Java province population. The parameter μ is calculated as the inverse of the life expectancy of the East Java Province in year 2017. According to [15], the life expectancy of the East Java in year 2017 is 70.80 years. Hence, the value of μ is calculated

to be
$$\mu = \frac{1}{70.80}$$

The steps to perform parameter estimation are as follows:

- i. Enter the number of population
- ii. Input the crossover rate value
- iii. Input mutation rate value

TUBERCULOSIS TRANSMISSION IN EAST JAVA INDONESIA

- iv. Determine the number of iterations
- v. Generating random population data
- vi. Entering real data and parameter initiation
- vii. Specifies the upper and lower limits with values between 0 to 1
- viii. Calculating the fitness value by performing the Runge-Kutta process of order 4 by minimizing the value of the performance index
- ix. Calculating relative fitness to determine prospective bloodstocks to determine bloodstocks that will carry out the crossover process
- x. Carry out the crossover process and calculate fitness to enter the mutation process
- xi. Then calculate the best fitness to determine the next iteration process
- xii. The iteration will stop after reaching the number of iterations specified at the beginning and calculating the MMRE (Mean Magnitude Relative Error) to carry out the process of fitting the estimated data with real data.

The estimation results of the *SIS* and *SEIS* types of the TB model can be seen in the Table 5 and Table 6, respectively. Furthermore, a comparison simulation between solution of the *SIS* and *SEIS* types for the TB model and the real data from East Java Province is depicted in Figure 1 and Figure 2, respectively.

Parameter	Parameter Value	Unit	Source
β	0.9546	People Year	Estimation Results
γ	0.8782	People Year	Estimation Results
μ	$\frac{1}{70.80}$	People Year	[15]

Table 5 Parameter values of the SIS type model.

Parameter	Parameter Value	Unit	Source
β	0.1211	People Year	Estimation Results
γ	0.0124	People Year	Estimation Results
α	0.9024	People Year	Estimation Results
μ	$\frac{1}{70.80}$	People Year	[15]

Figure 1. Fitted curve between the TB data and *SIS*-type model

Figure 2. Fitted curve between the TB data and SEIS-type model

Figure 1 and Figure 2 show that the real TB data and the estimated data on TB patients in East Java Province are a good fit. It is increasing every year, per the real-life scenario of TB infection dynamics presently in East Java Province of Indonesia.

5. SENSITIVITY ANALYSIS OF THE PARAMETER

To determine the sensitivity analysis of the model parameters, we begin by calculating the basic reproduction number of the *SIS* and *SEIS* type model using NGM (Next-Generation Matrix). The basic reproduction number is the expected number of secondary cases per primary case in a susceptible population [16]. The model *SIS* have a disease-free equilibrium (DFE) $E_0 = (N, 0)$, while the DFE of *SEIS* model is given by $E^0 = (N, 0, 0)$. By using NGM approach, the basic reproduction numbers R_{0s} and R_{0e} of the *SIS*, and *SEIS* model, respectively as follows:

$$R_{0s} = \frac{\beta}{\mu + \gamma}$$
 and $R_{0e} = \frac{\beta \alpha}{(\mu + \alpha)(\mu + \gamma)}$.

Based on the results of parameter estimation are presented in Tables 5 and 6, the value of the basic reproduction numbers for the *SIS* and *SEIS* models are R_{0s} = 1.0698 and R_{0e} = 4.4953, respectively. Hence, the basic reproduction number for both models are greater than one, which means that the spread of TB disease in East Java will continue to exist in the population. Therefore,

it is necessary to carry out various kinds of interventions by the government and public awareness in order to control TB disease in East Java province, Indonesia.

Next, the sensitivity analysis was performed on the basic reproduction numbers (R_{0s} and R_{0e}) to determine the most influential parameters in the spread of TB. The sensitivity analysis is calculated using the following formulation as stated in [17]

(8)
$$e_m = \left(\frac{\partial R_0}{\partial m}\right) \times \frac{m}{R_0}$$

where *m* depicts the related parameter, e_m represents the sensitivity index of each parameter, and R_0 describes the basic reproduction number. The sensitivity indices of R_{0s} and R_{0e} associated with the parameters can be computed in a similar way as in (8). Based on the parameter values in Table 5 and 6, the sensitivity indices of our model parameters are set in Table 7 and Table 8, respectively.

Parameter	Sensitivity Index (R_{0s})
β	1
μ	-0.01583
γ	-0.98417

 Table 7 Sensitivity index of the parameter for SIS type model.

Table 8 Sensitivity index of the parameter for <i>SEIS</i> type mode

Parameter	Sensitivity Index (R_{0e})
β	1
α	0.01541
μ	-0.54791
γ	-0.46749

It can be seen observed in Tables 7 and 8, that the transmission rate due to the interaction between the human population susceptible to TB and the human population infected with TB (β) is the most influential parameter and the rate of transmission because there is temporary immunity

(γ) occupies the second position after the parameter β .

Figure 3. The behavior of R_{0s} to the parameters β and γ for the SIS type model.

Figure 4. The behavior of R_{0e} to the parameters β and γ for the SEIS type model.

Based on contour plot in Figure 3 and Figure 4, it is found that the basic reproduction numbers $(R_{0s} \text{ and } R_{0e})$ will increase in proportion to the results of the sensitivity analysis in Table 7 and Table 8, respectively. The parameter β has a positive relation and will decrease in proportion to the parameter γ which has a negative relation.

5. NUMERICAL SIMULATION

In this section, we examine the numerical simulation of the TB spread using the *SIS* and *SEIS* types of models. We employ the parameters displayed in Tables 5 and 6, respectively. According to the Indonesia Bureau of Statistics, the population of East Java province in the 2002 census is estimated as 35,301,796 [18]. We take the total initial population as N(0) = 35,301,796. The initial infected as supplied in the TB data is I(0) = 21918. Hence, the initial values of the *SIS* type model are (S(0), I(0)) = (35279878; 21918). For the *SEIS* type model, we assume that the initial of exposed population E(0) = 40000. Further, the initial conditions of *SEIS* type model is given by (S(0), E(0), I(0)) = (35239878; 40000; 21918). The dynamical behavior of the *SIS* and *SEIS* type models are displayed in Figures 5 and 6, respectively. Figures 5 and 6, shows that the number of infectious humans tends to decrease as the parameter β decreases. However, when the value of the parameter β increases, the number of infectious human populations will also increase.

Figure 5. Dynamic of infected population for different values of β using SIS type model.

Figure 6. Dynamic of infected population for different values of β using SEIS type model.

7. CONCLUSION

This study presented the parameter estimation using the performance index approach in the optimal control theory and genetic algorithm of *SIS* and *SEIS* types on the dynamic of TB transmission. We used the TB data from the year 2002 to 2017 in East Java, Indonesia. Furthermore, from the parameter estimation results for the two TB models, the values of the basic reproduction numbers are greater than unity, which means that there is an endemic condition for the spread of TB in East Java Province. The sensitivity analyzes of the basic reproduction numbers were performed and sensitivity indices of various model parameters were obtained. The result of the sensitivity model shows that the most sensitive parameter is the transmission rate β . Hence, to control and reduce TB infection, it is prominent to minimize contact with TB-infected individuals by decreasing the value of β .

ACKNOWLEDGEMENTS

This research is financially support by the Ministry of Research and Higher Education, Republic of Indonesia, trough PDUPT 2020.

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interests.

REFERENCES

- WHO, Global tuberculosis report, 2018, https://www.who.int/tb/publications/global_report/en/. [Accessed on 8th June, 2022].
- [2] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361.
- [3] R. Xu, N. Bai, X. Tian, Global dynamics of a mathematical model of tuberculosis with age-dependent latency and active infection, J. Biol. Syst. 27 (2019), 503–530. https://doi.org/10.1142/s0218339019500207.
- [4] T. Akman Yıldız, E. Karaoğlu, Optimal control strategies for tuberculosis dynamics with exogenous reinfections in case of treatment at home and treatment in hospital, Nonlinear Dyn. 97 (2019), 2643–2659. https://doi.org/10.1007/s11071-019-05153-9.
- [5] A.O. Egonmwan, D. Okuonghae, Mathematical analysis of a tuberculosis model with imperfect vaccine, Int. J. Biomath. 12 (2019), 1950073. https://doi.org/10.1142/s1793524519500736.
- [6] Ahmadin, Fatmawati, Mathematical modeling of drug resistance in tuberculosis transmission and optimal control treatment, Appl. Math. Sci. 8 (2014), 4547–4559. https://doi.org/10.12988/ams.2014.46492.
- [7] Fatmawati, U. Dyah Purwati, F. Riyudha, et al. Optimal control of a discrete age-structured model for tuberculosis transmission, Heliyon. 6 (2020), e03030. https://doi.org/10.1016/j.heliyon.2019.e03030.
- [8] J. Zhang, Y. Li, X. Zhang, Mathematical modeling of tuberculosis data of China, J. Theor. Biol. 365 (2015), 159–163. https://doi.org/10.1016/j.jtbi.2014.10.019.
- [9] S. Kim, A.A. de los Reyes V., E. Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, J. Theor. Biol. 443 (2018), 100–112. https://doi.org/10.1016/j.jtbi.2018.01.026.
- [10] S. Ullah, M.A. Khan, M. Farooq, et al. Modeling and analysis of Tuberculosis (TB) in Khyber Pakhtunkhwa, Pakistan, Math. Computers Simul. 165 (2019), 181–199. https://doi.org/10.1016/j.matcom.2019.03.012.
- [11] M.A. Khan, M. Ahmad, S. Ullah, et al. Modeling the transmission dynamics of tuberculosis in Khyber Pakhtunkhwa Pakistan, Adv. Mech. Eng. 11 (2019), 1–13. https://doi.org/10.1177/1687814019854835.

- [12] A. Damayanti, P. Subiyanto, A.B. Pratiwi, Nonlinear system identification model of the spread of TB disease using the genetic algorithm and multilayer perceptron, J. Phys.: Conf. Ser. 1306 (2019), 012019. https://doi.org/10.1088/1742-6596/1306/1/012019.
- [13] Fatmawati, U.D. Purwati, M.I. Utoyo, et al. The dynamics of tuberculosis transmission with optimal control analysis in Indonesia, Commun. Math. Biol. Neurosci. 2020 (2020), 25. https://doi.org/10.28919/cmbn/4605.
- [14] T. Götz, N. Altmeier, W. Bock, et al. Modeling dengue data from Semarang, Indonesia, Ecol. Complex. 30 (2017), 57–62. https://doi.org/10.1016/j.ecocom.2016.12.010.
- [15]Indonesia Central Bureau of Statistics, Life expectancy of Indonesia 2017, (2017).
 https://www.bps.go.id/dynamictable/2018/04/16/1298/angka-harapan-hidup-saat-lahir-menurutprovinsi-2010-2017.html, [Accessed on 10th June, 2022].
- [16] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6.
- [17] N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0.
- [18] Indonesia Central Bureau of Statistics, Indonesia, Total Population by Gender and Regency/City of East Java Province, 2001-2002, https://jatim.bps.go.id/indicator/12/375/8/jumlah-penduduk-menurut-jenis-kelamin-dankabupaten-kota-provinsi-jawa-timur.html, [Accessed on 4th September, 2022].