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Abstract Vaccination is the act of getting a vaccine to help the immune system develop protection from a disease. Vaccination
is a good and efficient step to protect population from epidemic. However, vaccines do not necessarily provide perfect immunity
to body because not all type of vaccines have I effectiveness. The ineffectiveness of a vaccine affects the dynamics of the
spread of an infectious disease. The dynamics of the spread of infectious diseases with vaccine ineffectiveness can be apnmc hed
by mathematical models. This paper aims to analyze the stability of STVS epidemic model with vaccine ineffectiveness. Based on
maodel analysis result, the model obtained two equilibrium points namely, the disease free-equilibrium point and endemic
equilibrium point (E1). Tn adnon. the basic reproduction number (Ro) also obtained, which determines the existence and
stability of equilibrium point. Disne free-equilibrium point (Eo) local asymptotically stable if Ro < 1, then through phase
plane simulation it conclude that endemic equilibrium point (E1) local asymptotically stable if Ro > 1. Based on numerical
simulation results, it shows that vaccine ineffectiveness affects the high spread of disease.

INTRODUCTION

Any slow prevention of infectious disease would lead to outbreak and panic attack to everyone [1]. The spread of
infectious disease can cause damage to health, economic and other sectors for a country [2, 3]. As example, when
cholera became plague in Peru (1991) that cause lost to 770 million dollar; it is impact of a decrease in tourist
numbers and an embargo on food trade. Then, on 2006 Somalia lost of 300 million dollar because Rift Valley Fever
became epidemic on that country. Furthermore, Mexico lost 2.8 million dollar in tourism sector (2009), that is the
impact of influenza HIN1 epidemic [3]. That several cases show that the spread of infectious disease is a serious
problem.

Vaccination becomes innovation to prevent the spread of infectious disease. Vaccination help the immune
system develop protection from a disease [4, 5]. Vaccination has a significant positive impact in the health sector.
However according to [6], valccinm() not necessarily provide perfect immunity to body because not all type of
vaccines have 100% effectiveness. The vaccine-based protection is dependent on the immune status of the recipient
[7, 8]. As example, varicella vaccine is effective in preventing chickenpox by 85%, people who receive this vaccine
remain at risk of developing chickenpox by 15% [9]. Also, diphtheria vaccine research in North Sumatra shows that
giving vaccines to children aged 6-14 years has an effectiveness of 89.5% which means they still have the potential
to be infected with diphtheria by 9.5% [10].

There are some works on SIVS epidemic model in which a vaccination program has been included [11, 12, 13,
14]. In previous research, the development of epidemic model is assumed that vaccine 100% effective, so that, the
vaccinated individuals could not get infected. Vaccine ineffectiveness has not count as factor of infectious diseases
spread.
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Research on the spread of infectious diseases in the presence of vaccination can also be done through
mathematical models. Mathematical models are representations of real-world problems into mathematical formulas
[15]. The susceplible-illi()us-velccinelled-susceplible (SIVS) model is a mathematical model consisting of three
compartments, namely the population of susceptible individuals (S), populations of infected individuals (T), and
populations of vaccinated individuals (V) [16]. The SIVS model can be applied to diseases that have been found in
vaccines such as chickenpox, polio, and measles [17]. Vaccination in the SIVS model plays a role in providing
immunity for vulnerable individuals 7
a There are several researchers who have developed models of the spread of infectious diseases by vaccination.
Gumel and Moghadas [12] present a mathematical model of the spread of infectious diseases with the assumption
that vaccinated individuals do not experience a decrease in vaccine effectiveness so they cannot return to being
vulnerable. Yang, et al [6] developed the Susceptible-Infectious-Recovered-Vaccination (SIRV) model with
vaccination carried out in susceptible individuals. Sun et al [14] present a model for the spread of cholera by
vaccination carried out in susceptible individuals. Then, Farnoosh and Parsamanesh [11] developed the Susceptible-
Infectious-Susceptible (SIS) model with the assumption that the vaccine is 100% effective so that vaccinated
individuals cannot be infected. Then, Parsamanesh and Erfanian [13] developed a model of the spread of infectious
diseases and assumed that no vaccinated individual could be infected because the vaccine was considered to be very
effective.

Based on the description above, we are interested in studying the model of the spread of infectious diseases with
assumption that vaccine is not 100% effective so the vaccinated individual can become infected. The basic model
usem this paper refers to [ 13].

The paper 1s organized as f()lefs: the mathematical model of SVIS is presented in second section. The stability
analysis is given in third section, then we conduct a numerical exploration of both types model in fourth section. We
conclude by discussing our finding and suggesting future work in the last section.

MATHEMATICAL MODEL

The mathematical model in lh'eseeu‘ch 1s development of the model used in journal written by [13] which
consists of 3 compartment that is, population of susceptible individuals at time t notated with §(z) , population of

infected individuals at time t notated with [I(r) . population of vaccinated individuals at time t notated with V(1) .

The model's transmission diagram can be seen in Fig. 1. The following is assumption that used on SIVS epidemic

model with vaccine ineffectiveness:

1. Vaccination is given to new individuals and susceptible individuals.

2. Notevery new individual receive vaccine, then the new individuals who do not receive vaccine become
susceptible.

3. Vaccination has temporary immunity that will lose as time pass, vaccinated individuals have potential to become
susceptible again.

4. Vaccine does not 100% effective, consequently vaccinated individuals can get infected.
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FIGURE 1. Transmission Diagram of SIVS Epidemic Model with Vaccine Ineffectiveness
Based on previous assumption, then the SIVS epidemic model with vaccine ineffectiveness can be formed as
follows:

C=U-A+yI+e B —u+p)s (1)
ar _ psi , opvi _

dE_ n T Aty +adl @
—V—qA+pS+sV—g'Gﬂ—(.u+E)V (3)

dt N
where assumptions are the parameter values A,ﬁ,)ma,s >0,and 0=p=10=g=10=<0=1 The
definition of variables and parameters are presented in Table 1 and Table 2 as follow,

TABLE 1. Variable in SIVS epidemic model with vaccine ineffectiveness

Variable Description Unit
S(1) Population of susceptible individuals at time ¢ Individual
Vi Population of vaccinated individuals at time ¢ Individual
1(1) Population of infd individuals at time ¢ Individual
N(1) Total population at time ¢ Individual

TABLE 2. Parameter in SIVS epidemic model with vaccine ineffectiveness

Peameter Description Unit
A Number of new individuals input to the population per unit time Individual/unit time
q Proportion of new individuals who are vaccinated -
B Rate of disease transmission 1/unit time
4 Rate of recovery 1/unit time
u Rate of natural death 1/unit time
a Rate of disease-related death 1/unit time
P Rate of susceptible individuals who are vaccinated 1/unit time
£ Rate of losing vaccine immunity 1/unit time
(=2 Vaccine ineffectiveness -
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From equation (1)-(3), it is clear that rate of total population is not constant and fulfill the following equation,

an A N |

A= —a
dt .
Substituting §= N - I - Vinto (1)-(3), and we get the following system,

% - [5(N—I—V+JV) —(u+y+a )] )

dav I
T=qA+p(N =D —[u+p+e+Z]v (5)
i—f:A—pN—aJ. (6)

Furthermore, an analysis is performed on (4)-(6).

STABILITY OF EQUILIBRIUM
The SIVS epidemic model with vaccine ineffectiveness have two equilbrium points namely, the disease free-
endemic equilibrium point (Eo) and endemic equilibrium point (E1). Then, stability of equilibrium point will be
analyzed.
Equilibrium Points
1
Lol av dN @ . — : c
By assuming T O‘I = 0 and o 0, the model obtain two equilibrium points namely, the disease free-
endemic equilibrium point (E;) and endemic equilibrium point (E;). Equilibrium point E, show as follows.
g = (0 A(uq +p) f)
C\p(utp+e) p

Then, the basic reproduction number (Ro) are obtained to determine the level of the spread of infectious disease
in a population with Next-Generation Matrix (NGM) method through the [18] approach. Equation (4) can be written
as follows,

di =F({ Z(1
= =F() ~Z(D)
with
F() = pIN —1-V) ;VI =V, '8%)
ZM) =(u+y+a)l
So that

dl BIIN—-1-V) BIV
—=|—+— |- (ut+y+a)l
T ( N y | Wty +a
Let F and Z is Jacobian matrix of F(I) and Z (1) respectively so that obtained,

IN=I-V v
e (BO=1-1) vy

N N
Z=p+y+aand
1

-1 .
uty+a
Suppose L = FZ™!, Ro are obtained by determining the biggest eigenvalue of the matrix L, so that it can be
obtained,
I BIIN—-1-V) BIV 1

- N N Juty+a

Subtituting disease-free equilibrium Ey = (O,M ,f) to matrix L so that,
= plptpte) " p

_Br—-qtog topte)
w+pte)utyta

Then determining the eigenvalue of matrix L,
det(Al —L) = 0.
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_Bw-q+og)+ap+te)
(+p+etyta

Ro are the biggest eigenvalue of matrix £, then Ro are obtained as follows,
_Bu—gtog)topte)
(tpteutyta

B - ( LA-al)(ugA +p(A—al* —pul’) A- al‘)
U (A= o)t e +p) +popl’) T \mu )

0
and E1 show as follows.

Endemic equilibrium point E1 exists if,
i. A>A—-ul’ >al’,
Blu(1-q+oq)top+e)
PO >1lorRy =1,
i _MoBalu+y+o)+aplaty)(ute+p)+opap(p+a)

- Bruc(a+w + a?(w+e+p)+ w+y+a)+afp(u+a)

Stability Analysis of the Equilibrium Points
Tn analyzing the model localy asymptotically stable is by linearization using Jacobian matrix. The Jacobian
matrix of equation (4)-(6) is,

G —(u+y+a) Gy Gy
afiv 0,8[) aBIV

= - b B ke 7
] (p+ N) (p+p+£+ ) Pty Q)]

—a 0 —u

where

G BIN—1-V4aV) = _0G_BIN-1-V+aV) I
- N T ar N N

G aG BI + offl BI (I +V- G'V)
“evT NN YT B N '

Stability analysis of disease free-equilbrium point is done by substituting the disease free-equilibrium point to (7).
The eigenvalues can be obtained from the Jacobian matrix, as follows.

Bu(l—q+aq)+ap+e)

- 0 0
Tpte (uty+a
J(Eo) = af(uq +p) ( Gﬁf) : (8)
p Wtpte ptpt+e+ N P
—a 0 —u
From the equation 8, then can be obtained the eigenvalue of matrix J(Eo),
det(AI—J)=0
It obtained the following characteristic equation,
A =b)A+w@A+b)=0 (9
in which,
Bu(l—qg+aq)+op+e
by = - )
1 Wtp+e u+y+a
bz =u+p+e
and the eigenvalues are obtained,
Bu(l—g+oq) +op+e
Ay = - )
1 wtpte (pty+a
Ay =,

Ag=—(u+p+e).
It is clear A2, A5 because every parameter value is positive. Then the conditions for A1 will be determined so that the
system (4)-(6) is stable. Suppose 41 < 0 if,
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Blu(i-q+oq)top+e)
© e (u+y+a) <0

B(u(l—q+aq)+op+e)
(pt+p+e)u+y+a

= Ry < L

Based on description above, the disease free-equilbirum point E, = (O,M f) 1s locally asymptotically stable 1f

plptpte) 'p
Ry <1
The similar steps are also applied to determine the stability of the endemic equilibrium point. The initial step 1s
determining the characteristic equation of the second equilibrium point by determining the formula,

Gi—(u+y+a) Gy Gy
afVv* affl* afI'v*
E)=| - —
J(Ey) (p+ N*) (,u+p+£+ N*) P+
—a 0 —u
det(AI —])=0.
It is obtained the following characteristic equation,
AB+eA2+cd+e;=0 (10)
where
afl*  BI*
=2 —_—,
Cy H+p+e+ N- +N*

c=pulu+p+e)+

=

BI'[ apl’ a?pv: afV°  alp+y+a)
N pNx+p+p+£+o‘p+ N ta—|p+ N + B ,
aBV* oafaV I® ol

ofI”
pr(p+p+£)+p%+cr(pp+ap)+a(p?+T)+a(p+p+s+—‘)

R N
ofV®  afaV’l’ alp+y+a afil”
—(pp+ap+p i + 2 + iy )(p+p+£+ﬁ—))

NgZ ﬁ N*

Because every ¢, ¢, , ¢, contain parameters that are difficult to simplify so it is difficult to determine the root of
characteristic equation analytically. Then a phase plane simulation is performed to analyze the stability of endemic
equilibrium point E1.

This simulation is carried out on equations (4.4)-(4.6) by giving three different initial values for
(1 (0).V(0),N (0)) and parameter values, which are presented inTable 3 and Table 4 respectively. Ttaims to
determine the convergence of the solution of each initial value and given parameters.

TABLE 3. Initial Values of Endemic Equilibrium Phase Plane

Initial Value 1(0) v(0) N(0)
1 100 80 2800
2 70 50 2600
3 40 30 2400
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TABLE 4. Parameter values of Endemic Equilibrium Point E; Phase Plane

Parameter Parameter Values Source
A 10 [13]
q 0.1 [13]
B 0.8 [13]
¥ 001 Assumed
M 02 [13]
24 0.02 Assumed
p 0.1 [13]
£ 02 [13]
(=2 04 Assumed

The following is an endemic equilibrium point E1 phase plane.

300
o o e 1st Initial Value
2nd Initial Value
250 ——— 3rd Initial Value
\
200 X
\
\
> 150 '|]
100 /
/
//
50 + -
0

Phase Plane

0 50 100 150 200
|

250 300 350 400 450

FIGURE 2. Phase Plane Graphic of Infected Individual Population (/) and Vaccinated Individual Population (V')

Based on Fig. 2 shows that the greater ¢ , values of [ and V tend to go to the same point respectively 33 and 3.
This means that the dynamics of each population of STVS epidemic model with vaccine ineffectiveness overall will
towards to endemic equilbrium)inl E,=(I.V,N)=(33,3,49) . Then, it is also obtained that Ry = 2.97 > 1.

Then it can be concluded if the endemic equilibrium point tend to asymptotically stable if R,> 1. This means

the population of infected individuals can transmit disease to susceptible (vaccinated) individuals so that there will
be a spread of infectious disease in the population.

SENSITIVITY ANALYSIS OF PARAMETER

Parameter sensitivity analysis aims to determine which parameters have the most affect to R,. According to [19],
sensitivity index of parameters can be formulated as follows
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3R0 m
e = e——
™ AmR,
where,
m =parameters to be analyzed
e, = sensitivity index of parameter m.

The basic reproduction number that used on this research is below,
_Bw-q+oag) +op+e)
(w+p+e)utyta)

From R, there are 8 parameters to which the sensitivity index will determined, including, Bo,q,p,o, 8y, a.As

1]

example, the following is the calculation of the sensitivity index for parameter.
oo B _(WA-—gqtog)topte) flutpte)utyta) _
FT0p R, (utptotyta) pu-q+oq) +op+e)

) (wu+p+y)pu+y+a) ,J(,u(l—q+ g)+ p B )
Then, Table 5 is the result of sensitivity index of parameters on the model. Furthermore, the affect of parameters

value changes to R, changes is presented in Table 6.

TABLE 5. Sensitivity Index of Parameters

Parameter Nilai Sensitivity Index
q 0.1 -0.028
B 0.8 1
0.1 -0.25
02 -046
0.1 -0.25
p 0.1 -0.10
£ 02 0.06
(=2 04 0.11

TABLE 6. The Affect of Parameters Value Changes to R,Changes

Parameter Ro
(p) Nilai p-10% p-15% p+10% p+15%
q 0.1 1.716 1.719 1.707 1.671
B 0.8 1.540 1.455 1.883 1.968
4 0.1 1.755 1.778 1.670 1411
H 0.2 1.794 1.839 1.636 1.601
o 0.1 1.712 1.733 1.670 1411
P 0.1 1.688 1.697 1.694 1.579
£ 0.2 1526 1.518 1.554 1.560
(=3 04 1.692 1.683 1.731 1.740

Based on Table 6, a positive sensitivity index indicates that m]e value of a parameter increases, the R, value

will increase. Conversely, if the sensitivity index is negative, it indicates that if the value of a parameter increases, it
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will cause R to decrease. For example, when () increases by 10%, that is 0.88, the R, value will increase by 10%

from the initial R, valueto 1.883 and vice versa. The analysis also applies to the parameters

£ and . However, when P increases by 10%, namely 0.11, the Ro value will decrease by 0.01% from the initial R,

value to become 1,694 and vice versa. The analysis will also apply to the parameters g, u,y, «. Based on this
description, it can be concluded that the parameters that have a significant influence on the model are

Bwa,py,a.

Next, we will simulate the sensitivity of the parameters f and o to Ry, which are the rate of disease transmission
and vaccine ineffectiveness, respectively. In this simulation, three different o values were selected, namely o =
0.004,0 = 0.04, and o = 0.4, while £ is in the 0 < <1 interval. The following Fig. 3 shows the simulation
results of the graph of sensitivity f§ to R,.

Sensitivity Analysis of Fto R,
8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
¥}

FIGURE 3. Sensitivity Analysis of to Ro

In the calculation of the sensitivity index for the parameters B and @ it can be seen that each of them is
positive, so from Fig. 3 it shows that when B =() causes the value ()f'Ru< 1 , while when B | causes the value of
R,> 1. Then it can also be noted in the initial conditions, when the value of o = 0004 causes the value of
R,=0.60, while when ¢ = 0.4 causes the value of R,=0.72.

Based on the explanation above, it can be concluded that the greater the rate of disease transmission () and the
ineffectiveness of the vaccine (g), the greater the R, value, which means that the disease has the potential to

become endemic.

NUMERICAL SIMULATION
Model (1)-(3) simulations are carried out in two conditions namely disease free and endemic conditions, with
initial values for each condition are same, (S 0),1(0),V (0)) = (500, 300, 50). The model solved by Runge-Kutta
method.
Disease free conditions occur when there is no spread of infectious diseases, so the population of infected
individuals is zero J =0. With = 0 to ¢ = 50 year and the values parameter are presented in Table 7.
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TABLE 7. Parameter Value for Simulation of Disease-Free Conditions

Parameter Parameter Values Source
A 10 [13]
q 0.1 [13]
03 [6]
¥ 03 Assumed
# 0.01 Assumed
o 0.1 [13]
0.05 Assumed
£ 02 [13]
o 0.01 [6]

Based on the parameter values given,

conditions,

R,=0.58<1. The following are simulation results for disease free

Simulation of Non-endemic Condition

700

8 &
=] =}

g

The Population

200} "\

g
<

T o =S

5 10 15 20 25 30 35 40 45 50

Time (1)

FIGURE 4. The Dynamics of Spread Infectious Disease when R < 1.

Based on Fig. 4 it shows that susceptible individual population (S) is increased.
population (V) keep increasing. Meanwhile, infected individuals population (I) is decreased then at t = 25 tends to be

constant towards zero.

Vaccinated individuals

Endemic  conditions ()ccumnen there is a spread of infectious diseases, so there is a population of infected
individuals (I # 0) , susceptible individuals (S # 0) , and vaccinated individuals (V # 0) with t =0 to t = 50 year.

The parameter values are presented in Table 8.
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TABLE 8. Parameter Value for Simulation of Endemic Conditions

Parameter Parameter Value Source

A 10 [13]

q 0.1 [13]

) 08 [13]

¥ 0.1 [13]

H 0.01 Assumed
a 0001 Assumed
P 0.1 [13]

£ 0.2 [13]

g 04 Assumed

Based on the parameter values given,

conditions,

R,=5.7>1.The following are simul

Simulation of Endemic Condition

800

The Population

ation results for disease free

25
Time (t)

FIGURE 5. The Dynamics of Spread Tnlectious Diseasi when R > 1.

Based on Fig. 5, it shows that at

t =0 , susceptible individuals population

(§) is decreased and tends to be

constant at = 0 onwards. Vaccinated individuals population (V) is increased then decreased and become constant

at =10 onwards. Meanwhile, infected individuals population (1)

onwards.

is increased and tends to be constant at ¢ = 40

Next, observing vaccine ineffectiveness can be done by simulation of endemic condition of V and [ with
different value of @. The following is simulation of V and time with intial value (V(0) = 50) .
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Vaccine Ineffectiveness

10 ——

o=0.01

Total Population of V

0 5 10 15 20 25 B B 40 45 50
Time (t)

FIGURE 6. Simulation of / totime when ¢ =0.1, o=04, o0=09.

Based on Fig. 6 it shows that number of vaccinated individuals has increased then tends to decreases, when
o =0.9 vaccinated individual population decreases with the lowestpopulationnumber compared towhen o =0.4
or og=0.1.
The following is simulation of [ and time with intial value (7 (0) = 300) ,

Vaccine Ineffi

800

750

700

g

3
=1

Total Population of |
g &
(=] (=]

e
(]
(=]

.
=]
=]

g

300 ;
] 5 10 15 20 25 30 35 40 45 50

Time (t)

FIGURE 7. Simulation of [ to time when o=0.1, o=04. ¢=09.

Based onFig. 7 itshows when =0.9 population of infected individual decreases then tends to be constant with
the highest number of population, than compared to when g =040r o=0.1.

From explanation above, it conclude that vaccine ineffectiveness (o) affects the high spread of disease, as vaccine
more ineffective then number of infected individuals population () become higher.

CONCLUSION
Based on model analysis result, the model obtained two equilibrium points namely, the disease free-equilibrium
point (E,) and endemic equilibrium point (£, ). In addition, the basic reproduction number (R, ) also obtained,
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local

which determines the existence and stability of equilibrium point. disease liec-equilitnm point (E)

asymptotically stable if R, < 1, then through phase plane simulation it conclude that endemic equilibrium point
) local asymptotically stable if R, > 1.

Based on the sensitivity analysis of parameter, it can be concluded that the parameters that have a significant influence
on the model are f, 4, 0, p,y, «. Also, it can be concluded that the greater the rate of 7,0 the greater the Ro value.
Conversely, the greater the rate of |, p, ¥, @ a, then the lower the Ro value. So, the less the rate of disease transmission
() and the more effective a vaccine then the lower the spread of infectious disa;es (R,< 1). This applies to the more

vaccinated individuals (p) and the more recovery individuals (y), ﬂ lower the spread of infectious diseases. The
opposite applies. This means that the peu‘em‘ﬂtrs that cause the high spread of infectious diseases must be suppressed,
thus the parameters that cause the decrease in the spread of infectious diseases must be increased. Furthermore, based
on numerical simulation result, it shows that vaccine ineffectiveness affects the high spread of disease.

On this research, we only discuss about the stability of STVS epidemic model with vaccine ineffectiveness.

Then, there is chance for the next researchers to add optimal control on STVS epidemic model with vaccine

ineffectiveness.
5
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