Get More with SINTA Insight

Go to Insight

INDONESIAN JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY (IJCPML)

PERHIMPUNAN DOKTER SPESIALIS PATOLOGI KLINIK INDONESIA

₱ P-ISSN: 08544263 <> E-ISSN: 24774685

History Accreditation

2016 2017 2018 2019 2020 2022 2023 2025 2026

Garuda Google Scholar

<u>Immunogenicity Assessment on Clinical Trials of SARS-CoV-2 Vaccines</u>

<u>Indonesian Association of Clinical Pathologist and Medical laboratory</u> JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY Vol 28, No 2 (2022) 202-208

2022

DOI: 10.24293/ijcpml.v28i2.1975

O Accred: Sinta 2

Concordance Test of Various Erythrocyte Indices for Screening of Beta Thalassemia <u>Carrier</u>

<u>Indonesian Association of Clinical Pathologist and Medical laboratory</u> <u>INDONESIAN</u> JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY Vol 28, No 2 (2022) 137-142

DOI: 10.24293/ijcpml.v28i2.1842 **2**022 O Accred: Sinta 2

Gene Expression of SOX2, OCT4, and Nanog by Small Molecule Compound VC6TFZ on Peripheral Blood Mononuclear Cell

<u>Indonesian Association of Clinical Pathologist and Medical laboratory</u> **INDONESIAN** JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY Vol 28, No 2 (2022) 115-120

<u>2022</u> DOI: 10.24293/ijcpml.v28i2.1759 O Accred: Sinta 2

Correlation between Inflammatory Markers of Platelet Index and Vitamin D with Body Mass Index

<u>Indonesian Association of Clinical Pathologist and Medical laboratory</u> **INDONESIAN** JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY Vol 28, No 2 (2022) 161-164

2022 DOI: 10.24293/ijcpml.v28i2.1816 O Accred: Sinta 2

Pediatric Sepsis by Multi-Drugs Resistance Organism: Length of Stay, Prognosis, and **Hospitalization Cost Evaluation**

Indonesian Association of Clinical Pathologist and Medical laboratory **INDONESIAN** JOURNAL OF CLINICAL PATHOLOGY AND MEDICAL LABORATORY Vol 28, No 2 (2022) 165-169

Journ	nal By Google Sch	nolar
	All	Since 2018
Citation	644	419
h-index	11	9
i10-index	18	9

Editorial Team Editor in Chief

Yulia Nadar Indrasari

Dept of Clinical Pathology Universitas Airlangga

Expertise: Hematology Country: Indonesia

Academic Profile: Scopus

Editorial Boards

Ida Parwati

Dept of Clinical Pathology Universitas Padjajaran **Expertise: Microbiology and infectious disease**

Country: Indonesia

Academic Profile: D Scopus *

Wendy Erber

The University of Western Australia

Expertise: Hematology Country: Australia

Academic Profile: D Scopus 🔷

Hans Vrielink

Sanquin Blood Supply, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands

Expertise: Transfusion Medicine, Apheresis Medicine, Apheresis Techniques blood banking

Country: Netherlands

Academic Profile: D Scopus'

Tony Badrick

Royal College of Pathologists of Australia Quality Assurance Programs

Expertise: Quality Assurance, Quality Control quality management in healthcare

Country: Australia

Academic Profile: D Scopus *

Uleng Bahrun

Dept of Clinical Pathology Universitas Hasanuddin

Expertise: Immunology Country: Indonesia

Academic Profile: Scopus

Budi Mulyono

Dept of Clinical Pathology Universitas Gadjah Mada **Expertise: Management and Chemical Chemistry**

Country: Indonesia

Academic Profile: Scopus

AA Wiradewi Lestari

Dept of Clinical Pathology Universitas Udayana

Expertise: Chemical Chemistry

Country: Indonesia

Academic Profile: Scopus

Aryati

Dept of Clinical Pathology Universitas Airlangga **Expertise: Infectious Disease and Microbiology**

Country: Indonesia

Academic Profile: D Scopus 🔷

Tonny Loho

Dept of Clinical Pathology Universitas Kristen Krida Wacana

Expertise: Microbiology and infectious disease

Country: Indonesia

Academic Profile: D Scopus *

Dono Widiatmoko

University of Derby Kedleston Road, Derby Campus, United Kingdom

Expertise: Senior Lecturer in Epidemiology, Statistics, and Research Methods

Country: United Kingdom
Academic Profile: Scopus

Obeid Mahmoud Mohammd Ahmed (Obeid Shanab)

Department of Biochemistry, Faculty of Veterinary Medicine - South Valley University, Egypt

Expertise: Biochemistry

Country: Egypt

Academic Profile: Scopus

Associate Editors

Puspa Wardhani

Dept of Clinical Pathology Universitas Airlangga

Expertise: Infectious Disease

Country: Indonesia

Academic Profile: D Scopus 1

Munawaroh Fitriah

Dept of Clinical Pathology Universitas Airlangga

Expertise: Immunology

Country: Indonesia

Academic Profile:

Yessy Puspitasari

Dept of Clinical Pathology Universitas Airlangga

Expertise: Chemical Chemistry

Country: Indonesia

Academic Profile:


Editorial Assistant

Dian Wahyu Utami

Indonesian Journal of Clinical Pathology and Medical Laboratory

Accreditation Certificate

ISSN

e-ISSN: 2477-4685

Focus and Scope Peer Review Process Publication Frequency Open Access Policy Publication Ethics Ethical Guideline Publication decisions Conflicts of Interest Duties of Reviewers Article Processing Charge Copyright

Instruction for Author

Guide for Authors Online Submission

Templates Link

- 1. Template
- 2. Statement Letter of Author

Our Editorial Team

Yulia Nadar Indrasari Editor-In-chief Dept of Clinical Pathology mmzrZKMAAAAJ&hl

Ida ParwatiEditorial Boards
Dept of Clinical Pathology
Nkb4ZgMAAAAJ&hl

Dono Widiatmoko Editorial Boards University of Derby 4g4O6sAAAAJ

Read More

Google Scholar Citation

Updated weekly Scholar			
	All	Since 2018	
Citations	644	418	
<u>h-index</u>	11	9	
<u>i10-index</u>	18	9	

0

90 45

2005200620072008200920102011201220132014201520162017201820192020202120222023

Statistics

Keywords

COVID-19 Hb A1 cprocal citon in Sepsis sepsis CRP he modialy sis NLRNSTEMI chronic hepatitis Bmortality HIVCD4 creatinine RDW ferritino be sit yvitamin D specificity Stroke STEMI

Information

- For Readers
- For Authors
- For Librarians

Address:

Laboratorium Patologi Klinik RSUD Dr. Soetomo (Gedung Diagnostik Center, Lantai IV)

Jl. Mayjend. Prof. Dr. Moestopo 6-8 Surabaya, Indonesia

Telp/Fax (031-5042113, 085733220600

Principal Contact:

Yulia Nadar Indrasari

Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga

Phone: 085733220600 majalah.ijcp@yahoo.com

Support Contact:

Dian Wahyu Utami Phone: 085733220600 majalah.ijcp@yahoo.com

© 2022 Community Acquired Infection. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

00589738

1. Archives /

2. Vol. 26 No. 2 (2020)

Vol. 26 No. 2 (2020) Published: 2019-11-22

Articles

• <u>Comparison of Hepcidin Levels in Children with and without Soil-Transmitted Helminths</u> Infection

<u>Dewi Saputri</u>, <u>Yunilda Andriyani</u>, <u>Almaycano Ginting</u> 129-133

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1471

Abstract View: 16

PDF downloads: 16

 Human Sperm Cells After Purification Using SCLB Can Be Stored at 40, -200, or -80oC Before Small RNA Isolation

<u>Berliana Hamidah</u>, <u>Ashon Sa'adi</u>, <u>Rina Yudiwati</u> 134-137

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1530

Abstract View: 2

PDF downloads: 5

• <u>Diagnostic Value of Encode TB IgG and IgM Rapid Test to Support Pulmonary Tuberculosis</u> Diagnosis

Notrisia Rachmayanti , Aryati Aryati , Tutik Kusmiati 138-141

PDF

DOI: 10.242<u>93/ijcpml.v26i2.1524</u>

Abstract View: 33

PDF downloads: 26

• <u>Diagnostic Test of PIVKA-II as A Tumor Marker for Hepatocellular Carcinoma</u>

<u>Dwi Priyadi Djatmiko</u>, <u>I Putu Adi Santosa</u>, <u>Elvin Richela Lawanto</u>, <u>Bogi Pratomo</u>, <u>Hani Susianti</u>

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1436

Abstract View: 218

PDF downloads: 29

• <u>Correlation of Serum Interleukin-6, TNF-α, Procalcitonin and Leukocyte Count in Patients</u> with Suspected Sepsis

Erfina Lim, Jusak Nugraha 146-150

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1463

Abstract View: 3

PDF downloads: 5

• Evaluation of the Progressivity Parameters of Chronic Kidney Disease after Branched-Chain Amino Acid Supplementation in Children

Esthy Poespitaningtyas, Roedi Irawan, Ninik Asmaningsih Soemyarso, Jusak Nugraha 151-157

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1467

Abstract View: 10

PDF downloads: 13

• Analysis of Liver Fibrosis Degree with APRI Score and FIB-4 Index on Patients with Non-Alcoholic Fatty Liver Disease

<u>Gillian Elvira Seipalla</u>, <u>Nurahmi Nurahmi</u>, <u>Ibrahim Abd Samad</u> 158-161

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1414

Abstract View: 20

PDF downloads: 10

• Comparison of the Profile and TSH Levels from Several Types of Blood Collection Tubes

<u>Gunawan Eka Putra</u>, <u>Ninik Sukartini</u>, <u>Suzanna Immanuel</u>, <u>Fify Henrika</u>, <u>Nuri Dyah Indrasari</u> 162-167

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1475

Abstract View: 15

PDF downloads: 8

• <u>Correlation between Plasma Osteopontin and Alkaline Phosphatase in Type 2 Diabetes</u> Mellitus Patients

<u>Josua TH Sinambela</u>, <u>M.I Diah Pramudianti</u>, <u>Dian Ariningrum</u> 168-174

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1468

Abstract View: 5

PDF downloads: 6

• Infection of Cytomegalovirus in Cholestasis Infant with Biliary Atresia

<u>Lasmauli Situmorang</u>, <u>Bagus Setyoboedi</u>, <u>Sjamsul Arief</u>, <u>Gondo Mastutik</u> 175-181

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1496

Abstract View: 27

PDF downloads: 18

• Seropositivity of Anti-Rubella Antibodies as A Marker for Rubella Infection in Infants at High Risk of Congenital Deafness

Nyilo Purnami , Risa Etika , Martono Martono , Puspa Wardhani 182-186

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1479

Abstract View: 1

PDF downloads: 7

• Soluble Suppression of Tumorigenicity-2 Levels As Prognostic Marker in Non-ST-segment Elevation Myocardial Infarction

<u>Sherly Purnamawaty</u>, <u>Tenri Esa</u>, <u>Ibrahim Abd Samad</u> 187-192

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1533

Abstract View: 1

PDF downloads: 1

• Description of Fecal Culture Results in Diarrhea Patients Due To Antibiotic Use

Suci Tresna, I.G.A.A Putri Sri Rejeki, Puspa Wardhani

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1448

Abstract View: 33

PDF downloads: 15

• Analysis of D-dimer Levels in Deep Vein Thrombosis Patients

<u>Anton Triyadi</u>, <u>Rachmawati A. Muhiddin</u>, <u>Agus Alim Abdullah</u> 198-202

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1531

Abstract View: 29

PDF downloads: 23

• The Relation of 25-Hydroxyvitamin D Level with Metabolic Syndrome in Type 2 Diabetes Mellitus Patients

M.I. Diah Pramudianti , Dian Ariningrum , Medityas Winda Krissinta 203-209

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1469

Abstract View: 11

PDF downloads: 8

• Diagnostic Value of Plasmotec Malaria-3 Antigen Detection on Gold Standard Microscopy

<u>Trieva Verawaty Butarbutar</u>, <u>Puspa Wardhani</u>, <u>Aryati Aryati</u> 210-216

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1529

Abstract View: 18

PDF downloads: 4

• <u>Differences of Bone Marrow Features and BCR-ABL Variants in Chronic Granulocytic</u> Leukemia Post Tyrosine Kinase Inhibitor Therapy

<u>Wivina Riza Devi</u>, <u>M Darwin Prenggono</u>, <u>Purwanto AP</u>, <u>Imam B</u> 217-222

o PDF

DOI: 10.24293/ijcpml.v26i2.1457

Abstract View: 15

PDF downloads: 28

• Profile of Rapid Molecular Test of Tuberculosis Using Xpert MTB/RIF

<u>Faigah Aprilia Sy Faraid</u>, <u>Irda Handayani</u>, <u>Tenri Esa</u> 223-228

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1425

Abstract View: 83

PDF downloads: 33

• Analysis of Hematologic Parameters and Serum Bilirubin Levels in Complicated and Uncomplicated Acute Appendicitis Patients

Rini Rahman, Ani Kartini, Yuyun Widaningsih, Agus Alim Abdullah

229-234

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1536

Abstract View: 9

PDF downloads: 6

Literature Review

• Mean Platelet Volume as A Marker of Thrombosis Event in Antiphospholipid Syndrome Patients

Michael Dwinata, Jonathan H. Haposan, Inolyn Pandjaitan

235-240

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1426

Abstract View: 18

PDF downloads: 7

Case Report

• Gestational Trophoblastic Neoplasia with Hyperthyroidism

Devi Rahmadhona, Betty Agustina Tambunan

241-248

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1428

Abstract View: 26

PDF downloads: 17

• A 24-Year-Old Male with Gigantism, Growth Hormone Deficiency, Suspected Clivus Chordoma, Primary Hypothyroidism, Hypogonadism and Pancytopenia

W.A. Arsana, M.I. Diah Pramudianti

249-256

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1478

Abstract View: 20

PDF downloads: 142

Front Matter

• <u>Cover</u>

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1653

Abstract View: 0

PDF downloads: 3

• Contents

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1655

Abstract View: 1

PDF downloads: 2

Back Matter

• Guidelines for Author and Subcribes Form

o <u>PDF</u>

DOI: 10.24293/ijcpml.v26i2.1656

Abstract View: 0

PDF downloads: 1

Accreditation Certificate

ISSN N. 2477 4

e-ISSN: 2477-4685

Focus and Scope Peer Review Process <u>Publication Frequency Open Access Policy Publication Ethics</u> Ethical Guideline <u>Publication decisions</u> Conflicts of Interest Duties of Reviewers Article Processing Charge Copyright

Instruction for Author

Guide for Authors Online Submission

Templates Link

1. Template

2. Statement Letter of Author

Our Editorial Team

Yulia Nadar Indrasari Editor-In-chief Dept of Clinical Pathology

2020 March; 26(2): 175-181 p-ISSN 0854-4263 e-ISSN 2477-4685 Available at www.indonesianjournalofclinicalpathology.org

Infection of Cytomegalovirus in Cholestasis Infant with Biliary Atresia

Lasmauli Situmorang, ¹ Bagus Setyoboedi, ¹ Gondo Mastutik, ² Sjamsul Arief¹

- ¹ Division of Hepatology, Department of Child Health, Faculty of Medicine, Airlangga University/Dr. Soetomo Hospital, Surabaya, Indonesia. E-mail: baguzze@gmail.com
- ² Department of Anatomic Pathology, Faculty of Medicine, Airlangga University/Dr. Soetomo Hospital, Surabaya, Indonesia

ABSTRACT

Biliary Atresia (BA) is extrahepatic cholestasis that results in death within the first two years if the diagnosis and intervention are delayed. The etiology and pathogenesis of BA are still undetermined. Viral infections, including Cytomegalovirus (CMV), are presumed to be one of the causes. Cytomegalovirus infection is more common in intrahepatic than extrahepatic cholestasis such as BA. There are limited data about Cytomegalovirus infection in cholestatic infants with BA. This study compared the incidence of CMV infection in cholestatic infants with biliary atresia and non-biliary atresia. A cross-sectional study was performed in December 2017 - August 2018 in cholestatic infants aged 1-6 months. Liver biopsy, histopathological examination followed by PCR CMV examination were performed on cholestatic infants. The results of the PCR examination were compared between BA and non-BA infants. Statistical analysis of Chi-Square, t-test independent and Mann-Whitney U resulting in p<0.05 were stated as significant. Thirty-seven children were obtained during the study period, consisting of sixteen children with BA and twenty-one children with non-BA. Biliary atresia was predominantly found in female than male children, despite no differences were found between the groups (p=0.163). There were differences in body weight (p=0.002) age (p=0.009), birth weight (p=0.02) and gestational age (p=0.03) between children with BA and non-BA. There was no significant difference in the incidence of CMV infection in cholestatic infants.

Keywords: Biliary atresia, cholestasis, cytomegalovirus, polymerase chain reaction

INTRODUCTION

Biliary Atresia (BA) remains a great challenge for clinicians because it has poor clinical outcomes if not early diagnosed and intervened. Biliary atresia is a type of extrahepatic cholestasis which is frequently found in infants. However; the etiology and pathogenesis of BA are still undetermined. Particular viruses have been suggested to play a role in pathogenesis BA, including group C Rotavirus, Reovirus and Cytomegalovirus (CMV).

Cytomegalovirus infection is often found in intrahepatic cholestasis; however, currently, there are several studies which showed CMV infection in extrahepatic cholestasis, including BA.^{4,5} Cholestasis is classified as intrahepatic and extrahepatic cholestasis, and there are several methods for diagnosing CMV infection, including Polymerase Chain Reaction (PCR). There is no single examination that is 100% accurate in diagnosing CMV infection. Polymerase Chain Reaction examination can use blood, urine and tissue specimens, which are ideally carried out at the age of three weeks after birth.⁶ The PCR examination cannot be performed at the age of

three weeks because most cases of CMV infection are asymptomatic and high in cost; however, PCR can detect viral DNA with low amounts of sample and time-efficient.⁷

The gold standard of diagnosis of BA is intraoperative cholangiography; however, liver biopsy and following histopathological examination have quite high sensitivity of approximately 96.9%. Several studies showed positive CMV results in PCR examination of liver biopsies of patients with AB. However, there is no data on the incidence of CMV infection in cholestatic infants with BA in Dr. Soetomo Hospital, Surabaya. Therefore, a preliminary study is needed to determine the incidence of CMV infection in cholestatic patients with BA and without BA by using PCR in liver tissue in Dr. Soetomo Hospital, Surabaya.

METHODS

A cross-sectional study was performed from December 2017 to August 2018. Cholestasis infants aged 1-6 months old who were treated at Hepatology division were included. Cholestasis infants associated with severe infections (sepsis) or severe multi-organ abnormalities, a history of ganciclovir treatment, and immunodeficient patients were excluded. Each subject underwent a laboratory test (complete blood count, total bilirubin, direct bilirubin, AST, ALT, albumin) and liver tissue biopsy conducted by the Pediatric Hepatology consultant. Biopsy of liver tissue was stored in a tube then sent to the Pathology Department of Dr. Soetomo Hospital Surabaya and Tropical Disease Airlangga University. The study protocol was approved by the Ethical Commission of Health Research of Dr. Soetomo Hospital with number No.729/Panke.KKE/XII/2017.

Polymerase chain reaction examination was carried out by extracting DNA using QIAampDNA Mini Kit (Qiagen) from a liver biopsy and based on manual according to the kit. Beta-globin genes were identified using PC03 + and PC04 + primers with the ability to produce 110 bp products with certain sequences (Table 1). Cytomegalovirus was identified by nested PCR with primer MIE4 and MIE5 for first-cycle which produced 435bp; while IE1 and IE2 products were used for the second cycle which produced 161bp.

Polymerization chain reaction mixtures required for β globin were mastermix (Promega): $10\mu L/reaction,$ FWD primer (PCO3 +) 10pmol: $1\mu L/reaction,$ primary REV (PCO4 +) 10pmol: $1\mu L/reaction,$ ddH2O (water): $5\mu L/reaction,$ DNA template: $3\mu L/reaction,$ with PCR conditions as follows: initial denaturation at 94°C for 5 minutes, denaturation at 94°C for 30 sec, annealing at 55°C for 30 seconds, elongation at 72°C for 45 seconds, final elongation at 72°C for 7 minutes. All of this process was performed 40 cycles.

Four microliters were taken from first-cycle products for second-cycle PCR. Polymerase chain reaction mixture in second-cycle was the same as first-cycle, the differences were only in the product used. The PCR product was visualized by electrophoresis in 2% agarose gel, stained with ethidium bromide, and viewed under ultraviolet light.

Data were collected and presented as a written

explanation, tabulation, and diagrams. Descriptive analysis was used to calculate the number of BA and non-BA cases, the number of CMV infection in BA and non-BA cholestatic infants, and compare the number of CMV infection between BA and BA patients with the Chi-Square test.

RESULTS AND DISCUSSION

There were 37 cholestasis infants involved in this study, dominated by 21 male infants an average age of 2.9 (SD 1.28) months and an average body weight of 4632 (SD 1070) gram. Most patients live outside of Surabaya. Table 2 showed the basic characteristics of pediatric patients with cholestasis. It can be seen that the number of cholestatic infants with BA was smaller (43.2%) compared to without BA (56.8%).

Table 2. Baseline characteristic of cholestasis infant

Characteristic	
Age, mean (± SD)	2.9 (± 1.28)
Age, n (%)	
1 month	4 (10.8)
2 month	14 (37.9)
3 month	7 (18.9)
4 month	6 (16.2)
5 month	6 (16.2)
6 month	0 (0)
Birth weight, mean (± SD)	4632,4 (± 1070,06)
Gender (%)	
Girl	16 (43.2)
Boy	21(56.8)
Gestationalage, n (%)	
Aterm	25 (67.62)
Preterm	12 (32.4)
Type of cholestasis, n (%)	
Biliary atresia	16 (43.2)
Non-biliary atresia	21 (56.8)
Residence, n (%)	
Surabaya	11 (29.7)
Outside of Surabaya	26 (70.3)

Table 1. The primer used with the sequence and its product

Primer	Sequence	Product
MIE4	5'-CCA AGC GGC CTC TGA TAA CCA AGC C-3'	435bp
MIE5	5'-CAG CAC CAT CCT CCT CTT CCT CTG G-3'	435bp
IE1	5'- CCA CCC GTG GTG CCA GCT CC-3'	161bp
IE2	5'-CCC GCT CCT CCT GAG GAC CC-3'	161bp
PC03+	5'-CCT CTG ACA CAA CTG TGT TCA CTA GC-3'	110bp
PC04+	5'-TCA CCA CCA ACT TCA TCC ACG TTC ACC-3'	110bp

This study aimed to compare the incidence of CMV infection in BA and non-BA cholestatic infants. In addition to clinical manifestation, histopathological examination of liver tissue biopsy was used to distinguish between BA and non-BA cholestatic infants.¹¹ Biliary atresia is typically characterized by biliary duct proliferation, bile plugs, and portal tract edema/fibrosis in biopsy liver. A study showed that liver biopsy had a sensitivity, specificity, and accuracy of 88.2%. 12 Similar to study by Lee and Looi, biliary duct proliferation in BA showed 95% sensitivity and 88% specificity, while bile plugs showed 68% sensitivity and 86 % specificity.¹³ Russo et al. found significant differences between BA and non-BA, indicated by more severe biliary duct proliferation, bile plugs in the ductus and canaliculi and portal fibrosis in BA cases.¹⁴

In this study, BA cases were predominantly found in female infants compared to male infants. Contrastingly, non-BA cases in male infants were higher compared to female infants. There were significant differences in body weight, age, birth weight and gestational age (Table 3).

The study by Bellomo-Brandao *et al.* found that from 165 infants, intrahepatic cholestasis was found in 62.64% male infants, while extrahepatic cholestasis was found in 55.25% female infants with p-value = 0.026.15 This finding was similar to this study; despite no significant differences were found, this study showed that BA or extrahepatic cholestasis was commonly found in female infants.

This study showed significant differences in birth weight between BA and non-BAcholestatic infants. The birth weight of BA infants was greater than non-BA infants, indicated by birth weight > 2500 grams was more commonly found in BA infants. This finding was similar to previous research suggesting that higher body weight and greater length at birth were found in children with extrahepatic cholestasis.¹⁵ A study by Fischler *et al.*

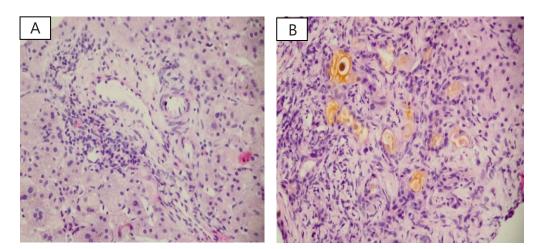
Table 3. Characteristics of BA and non-BA infants

Characteristic	Biliary Atresia (BA) (n=16)	Non-Biliary Atresia (Non-BA) (n=21)	Р
Age, n (%)			
Воу	7 (33.3)	14(66.7)	0
Girl	9 (56.3)	7 (33.7)	0.163*
Birth weight, mean (± SD)	5218.7 (±926.08)	4185(±966.07)	
Age (month), mean (± SD)	3.5 (±1.15)	2.43 (±1.21)	0.002**
Age (month), n (%)			
One	0 (0)	4 (100.0)	0.009***
Two	4 (28.6)	10 (71.4)	
Three	4 (57.1)	3 (42.9)	
Four	4 (66.7)	2 (33.3)	
Five	4 (66.7)	2 (33.3)	0.111*
Gestational age, n (%)			
Aterm	15 (60.0)	10(40.0)	
Preterm	1 (8.3)	11 (91.7)	0.003*
Birth weight,	2953.1	2542.4	
Mean (± SD)	(±295.22)	(±684.16)	0.020**
Birth weight, n (%)			
< 2500	1 (9.1)	10 (90.9)	
>2500	15 (57.7)	11 (42.3)	0.006*
IgM CMV n (%)			
Positive	9 (69.2)	4 (30.8)	0
Negative	7 (29.2)	17 (70.8)	.019*
IgG CMV n (%)			
Positive	15 (45.5)	18 (54.5)	0.435*
Negative	1 (25.0)	3 (75)	

SD= Standard Deviation *Chi-Square, ** independent t-test, *** Mann-Whitney U

found that preterm birth was superior in children with BA 3/30 (10%) compared to those without BA 5/55 (9%). However, this difference was not significant. Also, this study found that preterm birth was more frequently found in non-BA infants.¹⁶

The older age was found in BA infants compared to non-BA infants when patients were admitted to the hospital. This was different from the previous study which found that older infants were found in cholestatic patients without BA, supported by other studies which found that there were no significant differences between both groups.^{15,16}


There were nostatistically significant differences in the onset of jaundice between cholestatic infants with BA and without BA, the onset of the yellow appearance of BA infants was longer than non-BA infants (Table 4). This was a contrast to previous

studies which found the remarkably quick onset of jaundice in patients with BA.¹⁷ The difference of the onset of jaundice in these two groups could have been different based on parents' perspective and knowledge. Parents/families sometimes do not know that the children have pathologic icteric and patients with BA still show good nutritional status at the onset of the disease.

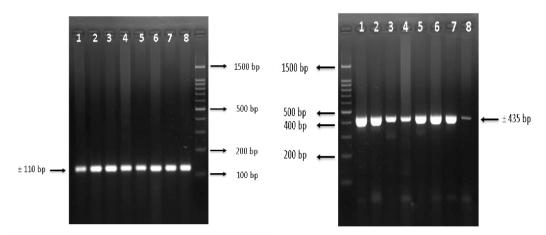

On laboratory examination, significant differences in leukocytes count were found between the two groups (Table 4); whereas there were no significant differences in laboratory results, such as complete blood count (hemoglobin, platelets), liver function (ALT/AST), albumin, direct bilirubin, and total bilirubin levels. Higher leukocyte count was found in patients with BA and in accordance with these findings, Wibowo reported comparable

Table 4. Clinical manifestation of BA and non-BA infants

Clinical manifestation	Mean	Mean (±SD)	
	Biliary atresia	Non-biliary atresia	р
Onset of jaundice	3.4 (±0.44)	3.7 (±0.39)	0.259**
Direct bilirubin	$31.4(\pm 26.62)$	25.1(±29.29)	0.646*
Total bilirubin	9.1 (±4.59)	9.6 (±4.86)	0.968**
Hemoglobin	8.4 (±6.2)	8.5 (±6.11)	0.963**
Leukocyte	10.5 (±2.07)	11.2 (±2.88)	0.034**
Platelet	14640 (±5844)	10469 (3682)	0.304*
AST	355.583(±145.052)	371.444 (156.949)	0.63**
ALT	246.2 (±95.39)	215.8 (±161.66)	0.101**
Albumin	213.9 (±133.73)	164.9(±114.27)	0.063*

Figure 1. Histopathological features of liver tissue biopsy with a 400x magnification of a microscope. **Figure A** shows a picture of the portal track of intrahepatic cholestasis as indicated by the presence of giant cell hepatitis (red arrow) and no bile duct proliferation. **Figure B** shows a picture of BA (extrahepatic cholestasis) as biliary ducts proliferation that contains a bile plug (blue arrow) in the portal tract.

Figure 2. (A) Electrophoresis of βglobin PCR gene using PCO3 and PCO4 primers (in 8 samples) which produced 110bp products followed by (B) electrophoresis PCR results using primers MIE4 and MIE5 which produced 435 bp

Table 5. Comparison of CMV infection in cholestatic infants with BA and without BA based on the results of PCR in liver tissue

Liver Biopsy PCR CMV, n (%)	Biliary Atresia	Non-Biliary Atresia	р
Positive	9 (37.5)	15(62.5)	0.338*
Negative	7 (53.8)	6 (46.2)	

results, although the increase in leukocytes in BA remained unexplained.¹⁸

The diagnosis of BA was based on clinical manifestations (yellowing of the eyes and whole body, a cholic stool) and anatomical pathology examination (histopathological features such as bile plug, ductular proliferation, and portal edema with and/or fibrosis of liver biopsy tissue (Figure 1).

Biopsy samples were taken and extracted from liver tissue, then PCR was carried out with β globin using PCO3 primers to determine the quality of the samples. If a positive result (yielding a product of 100-200 bp) is obtained, the examination must be continued by PCR examination using primers MIE4 and MIE5. A positive result is reported if the product produces 400-500bp. In this study, positive results were obtained for all β globin effects; therefore, PCR was performed (Figures 2).

The detection of CMV by PCR showed positive results in 24 infants and negative results in 13 patients. The incidence of CMV infection in cholestatic infants with BA and without BA was 56.2% and 71.4%, respectively. The polymerase chain reaction is a diagnostic instrument that has high sensitivity and ability to detect the presence of CMV, despite low specificity and low CMV infection.¹⁹

Cytomegalovirus infection is initially more common in intrahepatic cholestasis (without BA);

however, several studies have shown that CMV infection can be found in extrahepatic cholestasis (BA). The study found that viruses including CMV can be a trigger leading to dysregulation of immune mechanisms with genetic influences and eventually cause BA.²⁰ Cytomegalovirus infection has the ability to replicate both in hepatocytes and cholangiocytes. This virus can directly induce damage to the liver and biliary duct system and induce damage to the immune system in infected cells, leading to the formation of inclusion of bodies in hepatocyte and vascular cells of epithelial cells, especially along with biliary duct epithelial cells.²¹

There were no significant differences between BA and non-BA cholestatic infants based on the PCR of CMV in liver tissue (Table 5). This study showed that positive PCR results of CMV were only found in 9 (37.5%) BA patients. The study about PCR CMV was begun by conducting several studies on animals, and subsequently was carried out on humans. ²²⁻²⁵ In this study, there were no significant differences in the number of CMV infection in infants with BA and without BA. This was because BA could be caused by other viruses such as Rotavirus, Reovirus, Ebstein-Barr Virus (3.5%) and Adenovirus (5.8%). ^{26,27,9} Presumed role of Rotavirus and Reovirus in BA have also been studied for a long time.

Fjaer et al. found 4 cases of CMV infection from a

total of 9 cholestatic patients. However, positive PCR of CMV from liver tissue was only found in 2 patients from 4 cases of CMV infection. Cytomegalovirus infection in the other 2 patients was caused by Ebstein-Barr Virus.²⁸ The presence of the Human Herpes virus 6 in liver tissue was also demonstrated by Domiati *et al.* in their study about Human Herpes six virus in BA patients. Cytomegalovirus infection; however, was not found in the study subjects or controls.²⁹

CONCLUSION AND SUGGESTION

Cytomegalovirus infection is found in intrahepatic and extrahepatic cholestatic infants like BA. In this study, the lower incidence of CMV infection in cholestatic infants with BA was found compared to non-BA. However, there was no significant difference in the incidence of CMV infection in cholestatic infants with BA or without BA. Future research with longer research time and PCR was needed to determine the causal virus of BA.

REFERENCES

- 1. Santos JL, Carvalho E, Bezerra JA. Advances in biliary atresia: From patient care to research. Braz. J. Med. Biol, Res. 2010; 43(6): 522-527.
- 2. Bassett MD, Murray KF. Biliary atresia: Recent progress. J. Clin. Gastroenterol, 2008; 42(6): 720-729.
- 3. Moreira RK, Cabral R, Cowles RA, Lobritto SJ. Biliary atresia: A multi disciplinary approach to diagnosis and management. Arch. Pathol. Lab. Med, 2012; 136(7): 746-760.
- 4. Sira MM, Salem TAH, Sira AM. Biliary atresia: A challenging diagnosis. Global Journal of Gastroenterology, 2013; 1: 24-35.
- 5. Oliveira NL, Kanawaty FR, Costa SC, Hessel G. Infection by Cytomegalovirus in patients with neonatal cholestasis. Arq. Gastroenterol, 2002; 39(2): 132-136.
- Buonsenso D, Serranti D, Gargiullo L, Ceccarelli M, Ranno O, Valentini P. Congenital Cytomegalovirus infection: Current strategies and future perspectives. Eur Rev Med Pharmacol Sci, 2012; 16(17): 919-935.
- Caliendo AM, Schuurman R, Yen-Lieberman B, Spector SA, Andersen J, et al. Comparison of quantitative and qualitative PCR assays for Cytomegalovirus DNA in plasma. J Clin Microbiol, 2001; 39(4): 1334-1338.
- 8. Mack CL, RJ Sokol. Unraveling the pathogenesis and etiology of biliary atresia. Pediatr Res, 2005; 57: 87-94.
- 9. XuY, YuJ, ZhangR, Yin Y, Ye J, *et al.* The perinatal infection of Cytomegalovirus is an important etiology for biliary atresia in China. Clin. Pediatr (Phila), 2012; 51(2):109-113.
- 10. Rauschenfels S, Krassmann M, Al-Masri AN, Verhagen W, Leonhardt J, *et al.* Incidence of hepatotropic

- viruses in biliary atresia. Eur.J. Pediatr, 2009; 168(4): 469-476.
- 11. Rashed YK, Saber MA, Tawfik M, Mourad WS. Histopathological features and accuracy for diagnosing biliary atresia by prelaparotomy liver biopsy in Egypt. Egyptian. Pediatric Association Gazette, 2013; 61: 42-45.
- 12. Rastogi AN, Krishnani K, Yachha V, Khanna U, Poddar, et al. Histopathological features and accuracy for diagnosing biliary atresia by prelaparotomy liver biopsy in developing countries. J. Gastroenterol Hepatol, 2009; 24(1): 97-102.
- 13. Lee WS, Looi LM. Usefulness of a scoring system in the interpretation of histology in neonatal cholestasis. World J.Gastroenterol, 2009; 15(42): 5326-5333.
- Russo P, Magee JC, Boitnott J, Bove KE, Raghunathan T, et al. Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clinical Gastroenterology and Hepatology: American Gastroenterological Association, 2011; 9(4): 357-362.
- Bellomo-Brandao MA, Arnaut LT, Tommaso AM, Hessel G. Differential diagnosis of neonatal cholestasis: Clinical and laboratory parameters. J. Pediatr, 2010; 86(1): 40-44.
- Fischler B, Woxenius S, Nemeth A, Papadogiannakis N. Immunoglobulin deposits in liver tissue from infants with biliary atresia and the correlation to cytomegalovirus infection. J. Pediatr. Surg, 2005; 40(3):541-546.
- 17. Bazlul Karim AS, Kamal M. Cholestasis jaundice during infancy: experience at a tertiary-care center in Bangladesh. Indian. J. Gastroenterol, 2005; 24(2): 52-54.
- Wibowo S, Santoso NB. Karakteristik klinik dan laboratorik kolestasis intrahepatal dan ekstrahepatal di bangsal perawatan anak RSU Dr. Saiful Anwar Malang. M. Med. Indones, 2012; 46(2): 108-114.
- Jahan M. Laboratory diagnosis of CMV infection: A review. Bangladesh J. Med. Microbiol, 2010; 4(2): 39-44.
- 20. Mack CL. The pathogenesis of biliary atresia: Evidence for a virus-induced autoimmune disease. Semin. Liver Dis, 2007; 27(3): 233-242.
- Lazim HH, Kadhim HS, Arif H, Al Khafaji KR. The association between biliary atresia and Cytomegalovirus hepatitis. J.Nepal Paediatr. Soc, 2015; 35(3): 269-274.
- 22. Wang W, Zheng S, Shong Z, Zhao R. Developmental of a guinea pig model of perinatal Cytomegalovirus induced hepatobiliary injury. Fetal. Pediatr. Pathol, 2011; 30(5): 301-311.
- 23. Wang W, Donnelly B, Bondoc A. The rhesus rotavirus gene encoding VP4 is a major determinant in the pathogenesis of biliary atresia in newborn mice. J. Virol, 2011; 85(17): 9069-9077.
- 24. Soomro GB, Abbas Z, Hassan M, Luck N, Memon Y, Khan AW. Is there any association of extrahepatic biliary atresia with cytomegalovirus or other

- infections?. J. Pak. Med. Assoc, 2011; 61(3): 281-283.
- 25. Yaghobi R, Didari M, Gramizadeh B. Study of viral infections in infants with biliary atresia. Indian J. Pediatr, 2011; 78(4): 478-481.
- 26. Von Sochaczewski CO, Pintelon I, Brouns I, Dreier A, Klemann C, *et al.* Rotavirus particles in the extrahepatic bile duct in experimental biliary atresia. J. Pediatr. Surg, 2014; 49(4): 520-524.
- 27. Tyler KL, RJ Sokol, SM Oberhaus. Detection of reovirus RNA in hepatobiliary tissues from patients with
- extrahepatic biliary atresia and choledochal cysts. Hepatology, 1998; 27(6): 1475-1482.
- 28. Fjaer RB, Bruu AL, Nordbo. Extrahepatic bile duct atresia and viral involvement. Pediatr. Transplant, 2005; 9(1): 68-73.
- 29. Domiati-Saad R, Dawson DB, Margraf LR. Cytomegalovirus and human herpesvirus 6, but not human papillomavirus, are present in neonatal giant cell hepatitis and extrahepatic biliary atresia. Pediatr. Dev. Pathol, 2000; 3(4): 367-373.