BUKTI CORRESPONDING

- Judul : The MAGE A1-A10 Expression associated with Histopathological Findings of Malignant or Non-Malignant Cells in Peripheral Lung Tumors
- Penulis : Gondo Mastutik, Rahniayu A, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika

Bukti koresponding	1
- Email bukti submit (17 Januari 2023)	1
- Email "need revise notification" (15 Mei 2023)	2
- Email bukti accepted (22 Mei 2023)	5
- Email the galley proof (3 Juli 2023)	8
Bukti acceptance letter (13 Juni 2023)	11
Comment reviewer from web	12
Before and after respons to reviewer	18
Bukti revisi	26
Bukti the galley proof	48

BUKTI KORESPONDING

Gondo Mastutik <gondomastutik@gmail.com>

Number assigned to your submission (#APJCP-2301-8744)

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>

To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com Cc: apjcp.copy@gmail.com Tue, Jan 17, 2023 at 12:48 PM BUKTI SUBMIT

Manuscript ID: APJCP-2301-8744

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Dear Dr. Gondo Mastutik

I would like to acknowledge receiving of your manuscript titled "<u>The MAGE A1-A10 expression associated with</u> <u>histopathological findings of malignant or non-malignant cells in peripheral lung tumors</u>". Your manuscript will undergo the review process. You can learn about our review process by visiting APJCP's peer review process page.

Please be sure that the submitted manuscript has not been published previously and will not be submitted elsewhere prior to our decision.

You will be informed of our editorial decision once your manuscript has been reviewed. You can always track your manuscript by login to the APJCP site.

Important Notice: Any future communications (email) about this manuscript should be done through our editorial system. All emails will be answered in 3 to 5 days unless your desired action has been taken place or acted on (you can track the action in our editorial system).

I wish to take this opportunity to thank you for sharing your work with us.

Regards,

Executive Managing Editor of Asian Pacific Journal of Cancer Prevention

NEED REVISE NOTIFICATION

Gondo Mastutik <gondomastutik@gmail.com>

Manuscript Needs Revision (#APJCP-2301-8744 (R1))

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>

Mon, May 15, 2023 at 1:16 PM

To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com

Manuscript ID: APJCP-2301-8744

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or nonmalignant cells in peripheral lung tumors

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Dear Dr. Gondo Mastutik

Your manuscript has been reviewed and reviewers asked for minor changes. The comments of the reviewer(s) are included at the bottom of this letter **or** as an attached file(s) to this mail.

Please revise your manuscript accordingly and respond to the reviewer(s) comments in a separate file (a text, doc, or pdf file). In the Response to Reviewer File, provide details about the changes you made to the manuscript (refer to section and paragraph that you made changes).

After you make necessary changes please log in the journal's management system and follow the option "*manuscript needing revision*" and upload your **revised manuscript and the Response to Reviewer File.**

-- Many times, reviewers leave comments in the manuscript file. If the reviewer commented in the manuscript file (which is normally attached to this mail). You need to copy the reviewer's comments from the file and paste into your "response to reviewer" file and explain how you address the comments.

For timely and orderly processing of your manuscript, Please upload your files within **two weeks** from the date you receive this mail.

If you need more times please send a request, so that editorial staff can extend the time for you. Please send all the request and mail through our Journal Management System by login into your account.

Once again, thank you for submitting your manuscript to this journal, and we look forward to receiving your revision.

Truly yours,

Editorial Office of Asian Pacific Journal of Cancer Prevention

- - remove figure 2 and 3 as you already report the data in the table. These kinds of figure will lose quality at production stage.

- - Extend your acknowledgement section to include a statement for the following items (EVEN if you have stated in the manuscript body):

- i. Funding statement
- ii. If it was approved by any scientific Body/ if it is part of an approved student thesis
- iii. Any conflict of interest
- iv. How the ethical issue was handled (name the ethical committee that approved the research)
- v. Authors contribution
- vi. Availability of data (if apply to your research)

- - In your revision upload, provide the figures in PowerPoint Slides and tables as Excel file. In both PowerPoint and Excel file, make sure you included the title and footnote of figures and tables.

Reviewers Recommendation:

Reviewer 1: File Sent by Reviewer: http://journal.waocp.org/jufile?__file=xD1EDdkDDbs1jhsImH1ZFVA1bnukBG Xpcnll5bX6MkeoUvFhi49deKCJMOpI1RA1_Q9xDgElU7gnRk2qXcIMGfNSDiQ2fyZ XMxbKe9JKSoBPMEcRu.EwSITtMPbhuGkShz9byFBZbY2sFkS_1N7v3kJw73vHw.7.dF89OH1116o-Reviewer Comment For Author:

The study report a kind of old data. The gene has been investigated in many cancers including lung cancer (as the author properly addressed). The novelty is not much. I left some comment to improve in the manuscript file.

Acknowledgement of Revision (#APJCP-2301-8744 (R1))

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>Sat, May 20, 2023 at 5:13 PMTo: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.comCc: apjcp.copy@gmail.com

Manuscript ID: APJCP-2301-8744 (R1)

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Date: 2023-01-17

Dear Dr. Gondo Mastutik

Thank you for submitting the revised file of your manuscript to the Asian Pacific Journal of Cancer Prevention

The Editorial Office will proceed on your manuscript and inform you in the earliest time.

If there is anything else, please do not hesitate to contact us.

Truly yours,

Executive Managing Director of Asian Pacific Journal of Cancer Prevention

ACCEPTED NOTIFICATION

Gondo Mastutik <gondomastutik@gmail.com>

Payment Request for Manuscript (#APJCP-2301-8744 (R1))

4 messages

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>

To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com

Manuscript ID: APJCP-2301-8744 (R1)

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Dear Dr. Gondo Mastutik

The APJCP editorial team is glad to inform you that your manuscript titled "The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors" has been accepted for publication and will be scheduled for publication as soon as we receive the documentary for processing fee payment.

The processing fee is: 300 US Dollars

Soon you will receive a Stripe based invoice from our partner "EpiSmart Science Vector LTD" by email. You can use your credit card to pay the invoice.

In case you cannot pay by credit card, Please let us know, we try to find you an alternative.

When you paid, you need to send us your payment documentary (the copy of the paid invoice/ or transfer slip) by logging into your account as the author at "journal.waocp.org". When you are logged in, click on "*Manuscripts Awaiting Payment*" and upload and send your payment documentary.

A payment invoice will be issued upon receiving the payment, however, if you need an invoice before payment, please email us and let us know.

You will receive an official acceptance letter when we receive your payment.

Thank you and looking forward to receiving your payment.

Editorial Office,

Asian Pacific Journal of Cancer Prevention

Gondo Mastutik <gondomastutik@gmail.com> To: Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com></journal.waocp@gmail.com></gondomastutik@gmail.com>	Wed, May 24, 2023 at 7:32 PM
Dear Editor, Thank you very much for accepting our manuscript to publish in APJCP. I am waiting for the invoice from the "EpiSmart Science Vector LTD" email. Thank you.	
Best regard, Gondo Mastutik [Quoted text hidden]	
Gondo Mastutik <gondomastutik@gmail.com> To: Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com></journal.waocp@gmail.com></gondomastutik@gmail.com>	Sun, May 28, 2023 at 12:56 PM
Dear Editor, I would like to inform you that I have paid the invoice, below: Invoice number 3351BB13-0001 Receipt number 2344-6000 Date paid May 27, 2023 Payment method Visa - 8270	
Please find it in the attached files. I have also submitted the receipt to the web system of APJCP.	
Thank you very much.	
Best Regard, Gondo Mastutik [Quoted text hidden]	
Receipt-2344-6000.pdf 25K	
APJCP Editor-in-Chief <journal@waocp.org> Reply-To: APJCP Editor-in-Chief <journal@waocp.org> To: Gondo Mastutik <gondomastutik@gmail.com></gondomastutik@gmail.com></journal@waocp.org></journal@waocp.org>	Sun, Jun 4, 2023 at 2:05 PM
Thank you will be acted on. Best	
Editorial Office, Asian Pacific Journal of Cancer Prevention (APJCP)	
[Quoted text hidden]	

Manuscript Payment Receipt (#APJCP-2301-8744 (R1))

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>

To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com

Manuscript ID: APJCP-2301-8744 (R1)

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Dear Dr. Dr. Gondo Mastutik,

Thank you for your payment. Your payment is now confirmed. Your manuscript will be sent back to the Executive director for further processing. You will receive an email indicating the volume and issue that your manuscript will be published. This may take up to 45 days.

Editorial Office, Asian Pacific Journal of Cancer Prevention

Payment Confirmed

Unsubscribe

Sun, Jun 11, 2023 at 1:34 PM

Request for Submit/Confirm Galley Proof (#APJCP-2301-8744 (R1))

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>

Mon, Jul 3, 2023 at 11:18 PM

To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com

Manuscript ID: APJCP-2301-8744 (R1)

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Dear Dr. Gondo Mastutik,

Your manuscript is in the final stage of publication. The galley proof, official acceptance letter and payment invoice for your manuscript are now ready for download. Please log into your account as the author at https://journal.waocp.org/. In author's page, you have to click on "Galley Proof (1)" and download the galley proof and other files.

The Galley proof is valid only until your paper is published online. It is for proof purposes only and may not be used by third parties.

Please read through the galley proof and let us know if any correction needs to be made. Use the PDF reader's annotation tools to mark the changes in the PDF file. You can download the instruction on how to use PDF' readers annotation tools from here.

The galley proof shows the paper as it will appear when it is published except the page numbers are not final. The page number will be final when the paper is officially published and registered in indexing databases.

Important: Please upload your evaluated Galley proof even though no changes or any marks included in the file. If you did not return the galley in **a week**, we consider that no changes are needed and consider the galley we sent as the final.

Thank you and looking forward to receiving your final proof.

Editorial office, Asian Pacific Journal of Cancer Prevention

Submit/Confirm Galley Proof by Author (#APJCP-2301-8744 (R1))

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com> Fri, Jul 7, 2023 at 11:17 AM To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com

Manuscript ID: APJCP-2301-8744 (R1)

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Dear Dr. Gondo Mastutik

Thank you for sending your galley proof. Changes (if asked) will be applied and soon your manuscript will be published in journal's site with "*in* press" status.

Best wishes

APJCP editorial office

Acceptance of Manuscript (#APJCP-2301-8744 (R1))

1 message

Asian Pacific Journal of Cancer Prevention <journal.waocp@gmail.com>

Mon, Jul 24, 2023 at 10:38 PM

To: gondomastutik@fk.unair.ac.id, gondomastutik@gmail.com

Manuscript ID: APJCP-2301-8744 (R1)

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Dear Dr. Gondo Mastutik

Thank you for your interest in publishing with Asian Pacific Journal of Cancer Prevention. Your manuscript (**APJCP - 2301-8744**) is scheduled to be published in **Volume 24**, **Issue 7**, **Year 2023**. This Issue will be uploaded into PubMed database around **31th July**, **2023**.

Best and thank you for your patience.

Editorial office

Asian pacific Journal of Cancer Prevention

ACCEPTANCE LETTER

Asian Pacific Journal of Cancer Prevention

11

Reference Number: APJCP-2301-8744

Date:06/13/2023

Dear Dr. Gondo Mastutik,

The APJCP editorial board is glad to inform you that the manuscript titled "**The MAGE A1-A10 Expression Associated with Histopathological Findings of Malignant or Nonmalignant Cells in Peripheral Lung Tumors**" has been accepted for publication in the Asian Pacific Journal of Cancer Prevention. The Manuscript will be published in our upcoming issue with the following authorship information:

Corresponding author: Gondo Mastutik *First Author:* Gondo Mastutik **Listed Co-Authors:** *Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika*

Our production team will soon send you the manuscript's galley proof for your final evaluation.

Thank you for your interest in publishing in APJCP.

SA Mosavi Jarrahi, MSPH, Ph.D. Editor-in-chief Asian Pacific Journal of Cancer Prevention

COMMENT REVIEWER FROM WEB

Manuscript Information		Authors	Files	Payment Information
Manuscript ID	APJCP-23	301-8744 (R ⁻	1)	
Manuscript Title	The MAG of maligr	E A1-A10 ex aant or non-n	pression nalignant	associated with histopathological findings cells in peripheral lung tumors
DOI	10.31557	7/APJCP.202	23.24.7.2	329
Manuscript Type	Research	Articles		
Section	Cancer P	revention (se	creening,	early detection, chemoprevention)
Running Title	MAGE A1	-10 associa	ted with r	nalignant cell
Main Subjects	Patholog	y / Anatomio	cal pathol	ogy (including cytopathology)

Abstract Objective: The objective was to evaluate the expression of melanoma antigen (MAGE) A from A1 to10 (A1-10) and the individual MAGE A family in the peripheral lung tumor and to analyze its association with histopathological findings.

Methods: A cross-sectional study was conducted on 67 samples of peripheral lung tumors obtained by core biopsies from patients with clinical diagnoses such as lung and mediastinal tumors. The specimens were divided into two, one to perform histopathological diagnosis and the last for mRNA MAGE A examination. A Nested polymerase chain reaction (PCR) was performed using universal primer, MF10/MR10 and MF10/MR12. The collected data were analyzed by appropriate statistical techniques.

Result: The histopathological finding showed 41 (61.2 %) of specimens as malignant cells and 26 (38.8 %) of specimens as non-malignant cells. MAGE A1-10 was expressed at 47 (70.1 %) and MAGE A1-6 was expressed at 25 (37.3 %) of specimens. In a malignant cell, MAGE A1-10 and MAGE A1-6 were expressed at 33 (80.5 %) and 19 (46.3 %), respectively. In non-malignant cells, MAGE A1-10 and MAGE A1-6 were expressed at 14 (53.9 %) and 6 (23.1 %,) respectively. The MAGE A1-10 and MAGE A8 expressions were significantly associated with histopathological findings of malignant or non-malignant cells. The sensitivity, specificity, and diagnostic accuracy of MAGE A1-10 were 80.5 %, 46.2 %, and 67.2 %, respectively; while for MAGE A8 were 41.5 %, 88.5 %, and 59.7 %, respectively.

Conclusion: The MAGE A1-10 expression was the most commonly detected and associated with the histopathological finding. Moreover, it was more sensitive and specific and had higher diagnostic accuracy than others. Therefore, the MAGE A1-10 assay may improve the accuracy of the diagnosis of malignancy in peripheral lung tumors.

Keywords	lung cancer; cancer cell; MAGE A1-10; MAGE A1-6; core biopsy
Submit Date	2023-01-17 00:48:16
Revise Date	2023-05-20 06:13:34
Accept Date	2023-07-03
View Published Article	Volume 24, Issue 7 https://journal.waocp.org/article_90704.html

Author'sDear Editor,CommentRe: Manuscript Needs Revision (#APJCP-2301-8744 (R1))

Manuscript ID: APJCP-2301-8744 Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Please find attached a revised version of our manuscript "The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors", which we would like to resubmit for publication as a research article in Asian Pacific Journal of Cancer Prevention.

Your comments and those of the reviewers were highly insightful and enabled us to greatly improve the quality of our manuscript. We respond to comments from editors and reviewers in sequence as below. We also display corrections in the form of before and after revision columns. Changes highlighted.

We hope that the revisions in the manuscript and our accompanying responses will be sufficient to make our manuscript suitable for publication in Asian Pacific Journal of Cancer Prevention.

We shall look forward to hearing from you at your earliest convenience.

Yours sincerely, Gondo Mastutik Email: gondomastutik@fk.unair.ac.id & gondomastutik@gmail.com

Editor-in-Chief Comment

- - remove figure 2 and 3 as you already report the data in the table. These kinds of figure will lose quality at production stage.

Yes, we did. Thank you very much for your suggestion. We have removed the Figure 2 and 3.

- Extend your acknowledgement section to include a statement for the following items (EVEN if you have stated in the manuscript body):
i. Funding statement

ii. If it was approved by any scientific Body/ if it is part of an approved

student thesis iii. Any conflict of interest iv. How the ethical issue was handled (name the ethical committee that approved the research) v. Authors contribution vi. Availability of data (if apply to your research) Yes, we did. Thank you very much for your suggestion.

- - In your revision upload, provide the figures in PowerPoint Slides and tables as Excel file. In both PowerPoint and Excel file, make sure you included the title and footnote of figures and tables.

Yes, we did. Thank you very much for your suggestion.

Reviewers Recommendation (REVIEWER 1)

The study report a kind of old data. The gene has been investigated in many cancers including lung cancer (as the author properly addressed). The novelty is not much. I left some comment to improve in the manuscript file.

Thank you very much for carefully reading and checking. We have fixed it according to your suggestions. We presented the details on the before and after revision forms.

Comments for Author

Author Comment for Galley Proof

Dear Editors,

The galley proof correction are :

1. Authorship.

Before: Gondo Mastutik1*, Alphania Rahniayu1, Isnin Anang Marhana2, Nila Kurniassari1, Anny Setijo Rahaju1, Mochamad Amin3, Heru Fajar Trianto4, Atika Atika5.

It should be: Gondo Mastutik1*, Alphania Rahniayu1, Isnin Anang Marhana2, Nila Kurniasari1, Anny Setijo Rahaju1, Mochamad Amin3, Heru Fajar Trianto4, Atika5

Delete "s" in the Kurniassari; delete Atika in the "Atika Atika"

2. Abstract.

Before: Objective: The objective was to evaluate the expression of melanoma antigen (MAGE) A from A1 to10 (A1-10) and the individual MAGE A family in the peripheral lung tumors and to analyze its association with histopathological findings.

It should be: : Objective: The objective was to evaluate the expression of melanoma antigen (MAGE) A from A1 to 10 (A1-10) and the individual MAGE A family in the peripheral lung tumors and to analyze its association with histopathological findings.

Give space between "to" and "10", to be "to 10".

3. Discussion (first sentence)

Before: Lung cancer is cancer that is usually diagnosed at an advanced stage.

It should be: Lung cancer is one of cancer that is usually diagnosed at an advanced stage.

Insert "one of" in the sentence.

4. Author Contribution Statement

Before: Idea, concepting, writing the manuscript: Mastutik G. Specimen collection: Marhana IA, Rahaju AN, Mastutik G. Laboratory investigation: Amin M, Mastutik G. Histopathological data: Rahniayu A, Kurniasri N, Rahaju AN. Data collection: Trianto HF, Rahniayu A. Statistical analysis: Atika; Trianto HF. Editing the manuscript: Mastutik G; Kurniasri N. Reviewing the manuscript: Mastutik G, Rahniayu A, Marhana IA, Kurniassari N, Rahaju AN, Amin M, Trianto HF, Atika.

It should be:

The idea, concept, writing the manuscript: Mastutik G. Specimen collection: Marhana IA, Rahaju AN, Mastutik G. Laboratory investigation: Amin M, Mastutik G. Histopathological data: Rahniayu A, Kurniasari N, Rahaju AN. Data collection: Trianto HF, Rahniayu A. Statistical analysis: Atika; Trianto HF. Editing the manuscript: Mastutik G; Kurniasari N. Reviewing the manuscript: Mastutik G, Rahniayu A, Marhana IA, Kurniasari N, Rahaju AN, Amin M, Trianto HF, Atika.

17

Please insert "a" to be: "Kurniasari" Please insert "a" to be: "Kurniasari" Please delete "s" to be: "Kurniasari"

Thank you very much for your kindness.

Regard, Gondo Mastutik

Current Status	Manuscript Published (Online)
Modify Date	2023-07-28 10:29:43

BEFORE AND AFTER RESPONS TO REVIEWER

RESPONS TO REVIEWER

Re: Manuscript Needs Revision (#APJCP-2301-8744 (R1))

Dear Editor,

Manuscript ID: APJCP-2301-8744

Manuscript Title: The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors

Authors: Gondo Mastutik, Alphania Rahniayu, Isnin Anang Marhana, Nila Kurniassari, Anny Setijo Rahaju, Mochamad Amin, Heru Fajar Trianto, Atika Atika

Please find attached a revised version of our manuscript "The MAGE A1-A10 expression associated with histopathological findings of malignant or non-malignant cells in peripheral lung tumors", which we would like to resubmit for publication as a research article in Asian Pacific Journal of Cancer Prevention.

Your comments and those of the reviewers were highly insightful and enabled us to greatly improve the quality of our manuscript. We respond to comments from editors and reviewers in sequence as below. We also display corrections in the form of before and after revision columns. Changes highlighted.

We hope that the revisions in the manuscript and our accompanying responses will be sufficient to make our manuscript suitable for publication in Asian Pacific Journal of Cancer Prevention.

We shall look forward to hearing from you at your earliest convenience.

Yours sincerely, Gondo Mastutik Email: gondomastutik@fk.unair.ac.id & gondomastutik@gmail.com

Editor-in-Chief Comment

- - remove figure 2 and 3 as you already report the data in the table. These kinds of figure will lose quality at production stage.

Yes, we did. Thank you very much for your suggestion. We have removed the Figure 2 and 3.

- - Extend your acknowledgement section to include a statement for the following items (EVEN if you have stated in the manuscript body):

i. Funding statement

ii. If it was approved by any scientific Body/ if it is part of an approved student thesis

iii. Any conflict of interestiv. How the ethical issue was handled (name the ethical committee that approved the research)v. Authors contributionvi. Availability of data (if apply to your research)

Yes, we did. Thank you very much for your suggestion.

- In your revision upload, provide the figures in PowerPoint Slides and tables as Excel file. In both
 PowerPoint and Excel file, make sure you included the title and footnote of figures and tables.
 Yes, we did. Thank you very much for your suggestion.

Reviewers Recommendation (REVIEWER 1)

The study report a kind of old data. The gene has been investigated in many cancers including lung cancer (as the author properly addressed). The novelty is not much. I left some comment to improve in the manuscript file.

Thank you very much for carefully reading and checking. We have fixed it according to your suggestions. We presented the details on the before and after revision forms.

Location	Comments	Before Revision	After Revision	
Title	The study reports an	-	Yes, we did. Thank you. In below.	
	old data however,			
	the topic has room			
	to work on.			
	Please report the number along the %. Do not shy of the umber being small.			
Title	Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant and non-malignant as number and percent.	-	Yes, we did. Thank you. In below.	

Abstract Nethods: Wethods: Wethods: Methods: Method:					
Nethods with antil? Does it sample would have base wath sample would have base prices if tissue wash regressed it 70.1% and MAGE A1-10 was expressed at 35.3% of specimens as motignated to any base of sample would have base prices if tissue wash regressed it 70.1% and MAGE A1-10 was expressed at 35.3% of specimens as motignated and any base of specimens as motignated and any base of specimens as motignated to any base of sample would have base wath sample and method water base method any base of sample would have base wath sample and method water base method any base of sample would have base wath sample and method water base wath sample and method water base wath sample and method water base water sample and the sample and water base water sample and the sample and method water base water sample and method water base water sample and method water base water sample and water base water water water water base water water water wat	Abstract	What do you mean	Methods: A cross-sectional study was	Methods: A cross-sectional study was	7
means that the ben better if a larger ben better if a larger better if a larger better better if a larger better if a larger better if a larg	Methods:	with small? Does it	conducted on 67 small pieces of peripheral	conducted on 67 samples of peripheral lu Comm	ented [A1]: What do you mean with small? Does it
sample would have prices with dimical diagnoses such as long all prices with storage of the storage of prices with storage of the storage of the storage of prices with storage of the storage of th		means that the	lung tumor obtained by core biopsies from	tumor obtained by core biopsies from pat means	that the sample would have ben better if a larger
ben better if auger guide of perspheral. large and mediastinal tumors. mediastinal tumors. mediastinal tumors. Abstract Result: Report number along with %. Like N(%) Result: The histopathological finding whtw % Like N(%) Result: The histopathological finding whtw % Like N(%) Result: The histopathological finding whtw % Like N(%) Result: with % Like N(%) Result: The histopathological finding whtw % Like N(%) Result: The histopathological finding whtw % Like N(%) Result: with % Like N(%) The sharp water with % Like N(%) Sequences an unlignant water water water with % Like N(%) Result: Result: The sharp water wa		sample would have	patients with clinical diagnoses such as	with clinical diagnoses such as lung and piece if	tissue was there???. Remove the small and write 67
price if fisting wash be small and virie of peripheral Result: The histopathological finding singes of peripheral Result: The histopathological finding singes of the histopathological finding sequences of the singes of the histopathological singes of the histopathological finding sequences of the singes of the histopathological sequences of the singes of the histopathological finding sequences of the singes of the histopathological finding sequences of the singes o		ben better if a larger	lung and mediastinal tumors.	mediastinal tumors.	s of peripheral
defer?77: Resurve of samples of perpiperal. Result: The histopathological finding showed (\$22): 65 specimens as malignant enginant cells. MAGE A1-10 was expressed at 70.1 % and MAGE A1-10 was expressed 11.0 % and expressed In 70.1 % and MAGE A1-10 was expressed 11.0 % and expressed In 70.1 % and MAGE A1-10 was expressed 11.0 % and expressed In 70.1 % and MAGE A1-10 was expressed 11.0 % and expressed In 70.1 % and MAGE A1-10 was expressed 11.0 % A1-10 was expressed In malignant expressed 11.0 % and expressed In 70		piece if tissue was			
whe small and write of peripheral Persont: The histopathological finding specimens as maliguant of the peripheral Abtract Result: The histopathological finding cells and 35.8 % of specimens as non-maliguant of cells and 35.8 % of specimens as non-maliguant of the peripheral Result: The histopathological finding specimens as non-maliguant of the peripheral of		there???. Remove			
67 samples of peripheral Report number along showed 54.2% of specimenes as malignant cells and 35.8% of specimenes as malignant expressed at 73.3% of specimenes as malignant expressed at 73.3% of specimenes as molecular malignant cells. MAGE A1-10 was expressed at 73.3% of specimenes as molecular malignant cells. MAGE A1-10 was expressed at 73.3% of specimenes as molecular malignant cells. MAGE A1-10 was expressed at 73.3% of specimenes as molecular malignant cells. MAGE A1-10 was expressed at 73.3% of specimenes as molecular malignant cells. MAGE A1-10 and MAGE A1-6 was expressed at 85.07.01 NAGE A1-10 mal malignant cells. NAGE A1-10 malignant cells. NaGE A1-10 mal malognant cells ad 0.213.8% repressed in malignant cells f		the small and write			
peripheral Result: Result: Result: Result: The biotropathological finding redismance (b, MAGE A1-10 was expressed at 70.1 % and MAGE A1-6 was expressed at 70.1 % and MAGE A1-10 was expressed at 70.1 % and 70.		67 samples of			
Abstract Result: Report number along with %. Like N(%) Result: The histopathological finding showed (H2)% of specimenes as malignant eclis and 35.8% of specimenes as malignant malignant cells. MAGE A1-10 was expressed at 73.9% of specimenes as non-malignant cells. MAGE A1-10 was expressed at 73.9% of specimenes as malignant eclis. MAGE A1-10 was expressed at 32.107.8% respecitively. In non-malignant cells, MAGE A1-10 and MAGE A1-6 was expressed at 32.1%, respecitively. In non-malignant cells, MAGE A1-10 and MAGE A1-6 was expressed at 32.1%, respecitively. In non-malignant cell, MAGE A1-10 was expressed at 53.9% of 20 specimenes. In antignant cell, MAGE A1-10 and MAGE A1-6 was expressed at 33.4% respecitively. In non-malignant cell, MAGE A1-10 and MAGE A1-10 and MAGE A1-6 was expressed at 33.4% respecitively. In non-malignant cells, MAGE A1-10 was expressed at 32.1%, respecitively. This study was conducted on 67 core biopy specimens from patients with clinical diagnoses of lung or malients with consisted 51.0% 22.03.8% respecitively. This study was conducted on 67 core biopy specimens from patients with clinical diagnoses of lung or malients with consisted 51.0% 22% of specimens as an all efficient diagnoses of pecimens an anzi from the core biopy specimens showed 61.2% of specimens as an anzi from the core biopy specimens showed 61.2% of specimens as an anzi from the core biopy specimens whowed 61.2% of specimens as anon-malignant cells. The study was conducted in form the core biopy specimens showed 61.2% of specimens as anon-malignant cells. The study was conducted and 20.2% of specimens as anon-malignant cells. Figure 2 and 3 with lose quality, cervore them and report the in a nuble for them and report the specimens as non-malignant cells. The showed that the MAGE A1-10 group was most highly expressed in malignant cells. </th <th></th> <th>peripheral</th> <th></th> <th></th> <th></th>		peripheral			
Abtract Report number along Result: The histopathological finding Result: The histopathological finding for the core histopathological finding for mithe core histopathological f					
Result: with %. Like N(%) showed 64.2 % of specimens as non-malignant cells. MAGE A1-10 was expressed at 27.01 % and MAGE A1-10 was expressed at 27.03 % and MAGE A1-10 was expressed at 25.07 % and MAGE A1-10 was expressed 10 and	Abstract	Report number along	Result: The histopathological finding	Result: The histopathological finding showed	
Result Report number along with %. Like N(%) This study was conducted on 67 core biopy specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consister of 10,2% or mediastinal tumors and 22.8 % indicastinal culls. AGE A1-10 and MAGE A1-6 was expressed at 35.9 % and 23.1 %, respectively. This study was conducted on 67 core biopy specimens from patients with clinical diagnoses of lung or mediastinal tumors and 22.8 % indicastinal tumors, 46 or specimes as non-malignant cells. MAGE A1-10 and MAGE A1-6 was expressed at 35.9 % and 23.1 %, respectively. This study was conducted on 67 core biopy specimens from patients with clinical diagnoses of lung or mediastinal tumors and 22.8 % indicastinal tumors, 46 or specimens as non-malignant cells. MAGE A1-10 and MAGE A1-6 was expressed at 32.9 % and 23.1 %, respectively. This study was conducted on 67 core biopy specimens from patients with clinical diagnoses of lung or mediastinal tumors, and 22.8 % indicastinal tumors, 46 appecimens as non-malignant cells. MAGE A1-10 and MAGE A1-0 was consisted 48 (67.2 % lung tumors and 22.8 % indicastinal tumors, 46 appecimens as nulganat cells. MAGE A1-10 was expressed in tumors. The result was consisted at 61.2 % long specimens as non-malignant cells. MAGE A1-10 and MAGE A1-0 was consisted 48 (67.2 % lung tumors. And 22.8 % indicastinal tumors, 46 appecimens as nulganat cells. Was result and results were aged 51-60 years old (7abie 1). The histopathological finding of malignant cells. MAGE A1-10 and MAGE A1-10 and followed by MAGE A1-10 and MAGE A1-10 and MAGE A1-10 and MAGE A1-10 and MAGE A1-6 in 43.7 % was most highly expressed in 30.5 % and MAGE A1-6 in 43.7 % was most highly expressed in analignant cells. Was	Result:	with %. Like N(%)	showed 64.2 % of specimens as malignant	41 (61.2 %) of specimens as malignant er Comm	ented [A2]: Report number along with %. Like N(%)
ResultReport number alog malignant cells, MACE A1-10 was capressed at 37.3 % of specimens. In a malignant cell, MACE A1-10 and MACE A1-10 and MACE A1-6 was capressed at 36.3 % of specimens. In a malignant cell, MACE A1-10 and MACE A1-10 and MACE A1-6 was capressed at 36.3 % of specimens. In a malignant cell, MACE A1-10 and MACE A1-10 and MACE A1-6 was capressed at 36.3 % of specimens. In a malignant cells, MACE A1-10 and MACE A1-6 was capressed at 32.8 % and 23.1 %, respectively.Cells. MACE A1-10 was capressed at 32.8 % on distant cells, MACE A1-10 was capressed at 36.3 %, respectively.ResultReport number alog with %. Like NV%This study was conducted on 67 core biopry specimens from patients with unnors. The patients consisted 67.2 % lung runnors and 22.3 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1-0, The histopathological finding from the ore borey specimens showed 41.6 (L2 %) of specimens as malignant cells. MACE A1-10 was expressed at 25.60 years old (Table 1-0, and followed b1.2 % of specimens showed 41.6 (L2 %) of specimens are malignant cells. MACE A1-10 was expressed at 25.60 years old (Table 1-0, and followed b1.2 % of specimens are malignant cells. MACE A1-10 was capressed the most in the lung and mediastinal tumors. The ray and 1.4 % was capressed in the lung and mediastinal tumors. The ray and 1.4 % was capressed in the lung and mediastinal tumors. The ray was not histopathological finding of malignant cells. MACE A1-10 was expressed in was at 700.1 % of MACE A1-10 was expressed in was at 700.1 % of MACE A1-10 was expressed in was at 700.1 % of MACE A1-10 was expressed in the was not histopathological finding of malignant cells. WACE A1-10 was expressed in the was not histopathological			cells and 35.8 % of specimens as non-	26 (38.8 %) of specimens as non-malignant	
ResultReport number and percent.In and MAGE A1-6 was expressed at 37.3 % of specimenes. In a malignant cell, MAGE A1-10 and MAGE A1-0 and MAGE A1-0 and MAGE A1-0 was expressed at 38.5 % of specimenes.In analignant cell, MAGE A1-10 and MAGE A1-0 was expressed at 33.5 % and 25.1 % or respectively. In non-malignant cells, MAGE A1-10 and MAGE A1-0 was expressed at 33.9 % and 25.1 % or respectively.ResultReport number and percent.This study was conducted on 67 coreThis study was conducted on 67 coreNumes and 22.8 % mediastinal tumors. The patients consisted 51.2 % or specimes an anignant cells.This study was conducted on 67 core biopsy specimens from patients with solut patients were aged 51-60 years old.Numes and 22.8 % mediastinal tumors. The patients consisted 51.2 % or specimes an anignant cells.This study was conducted on 67 core biopsy specimens from patients with solut patients were aged 51-60 years old.Numes and 23.2 % mediastinal tumors. The patients were aged 51-60 years old.This study was conducted on 70 core biopsy specimens showed 61.2 % of specimens as malignant cells.Numes and 23.6 % mediastinal tumors. The patients were aged 51-60 years old.The study was conducted on 70 core biopsy specimens showed 61.2 % of specimens as non-malignant cells.Numes And Parente was 70.1 % for was expressed the most in the lung and mediastinal tumors. The patients were aged 51-60 years old.Numes And Parente was 70.1 % for was expressed the most in the lung and mediastinal tumors. The patients were aged 51-60 years old.Numes And Parente was 70.1 % for WAGE A1-10 was expressed the most in the lung and mediastinal tumors. The patients were aged 51-60 years as non-malignant cells.Numes And Parente Was 70.1 % for WAGE A1-10 was expressed the most in the lung and			malignant cells. MAGE A1-10 was	cells. MAGE A1-10 was expressed at 47 (70.1	
Note: Section:			expressed at 70.1 % and MAGE A1-6 was	<mark>%)</mark> and MAGE A1-6 was expressed at 25 (37.3	
RealtReport number along respectively.In non-malignant cells, MAGE A1-10 and MAGE A1-0 and MAGE A1-10 and MAGE A1-0 and MAGE A1-10 and MAGE A1-10 and MAGE A1-10 a			expressed at 37.3 % of specimens. In a	%) of specimens. In a malignant cell, MAGE	
Image: A 1-6 was expressed at 80.5 and 46.3 %, respectively. In non-maigmant cells, MAGE A1-10 and MAGE A1-6 was expressed at 32.9 % and 23.1 %, respectively.(60.5 %) and 19 (64.3 %), maigmant cells, MAGE A1-10 and MAGE A1-6 was expressed at 32.9 % and 23.1 %, respectively.ResultReport number along with %. Like N(%)This study was conducted on 67 core borps specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consisted 67.2 % lung tumors. The patients consisted 67.2 % lung tumors. The patients consisted 67.2 % lung tumors. The patients consisted 61.2 % of specimers as malignant cells and 32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells.This study was conducted on 67 core biopsy specimes as malignant cells.The group of MAGE A1-10 was expressed the mors in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumors. MAGE A1-10 and KGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).Figure 2 and 3 will los equality, remove the man arcport the an ache for both malignant and non-malignant and non-mali			malignant cell, MAGE A1-10 and MAGE	A1-10 and MAGE A1-6 was expressed at 33	
ResultReport number alorg respectively.Initial diagnoses of lung or mediastinal tumors. The patients consisted 0.72 % lung tumors and 32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as malignant cells.This study was conducted on 67 core biopsy specimens from patients with dinical diagnoses of lung or mediastinal tumors. The patients consisted 67.2 % lung tumors and 32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as malignant cells.The situad diagnoses of to age same was the data in a table for hoth malignant and non-malignant and so figure 29.This showed that the MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).This showed hat the MAGE A1-10 gene was expressed in 83.5 % and MAGE a1-10 and followed by MAGE A1-10 gene was expressed in 83.5 % and MAGE A1-6 in 46.3 %.This showed that the MAGE A1-10 gene was expressed in 83.5 % and MAGE a1-6 in 46.3 %.Figure 2 and 3 will los quality, remove the man droportThis showed that the MAGE A1-10 gene was expressed in malignant cells figure 2).This showed that the MAGE A1-10 gene was expressed in malignant cells.This showed that the MAGE A1-10 gene was expressed in malignant cells.Figure 2 and 3 will hoth malignant and normalignant dataThis showed that the MAGE A1-10 gene was most highly expressed in malignant cells f			A1-6 was expressed at 80.5 and 46.3 %,	(80.5 %) and 19 (46.3 %), respectively. In non-	
MAGE A1-10 and MAGE A1-6 was expressed at 33.9 % and 23.1 %, respectively.6 was expressed at 14 (53.9 %) and 6 (23.1 %) respectively.ResultReport number along with %. Like N(%)This study was conducted on 67 core binis tudy was conducted on 67 core linical diagnoses of lung or mediastinal tumors. The patients with clinical diagnoses of lung or mediastinal tumors, 46 males and 21 females and 21 females. The age range was 18-79 years old. Most patients with andes and 21 females. The age range was 18-79 years old (Table 1). The histopathological finding from the core biopsy specimens from patients with shopathological finding from the core biopsy specimens as non-malignant cells and 38.8 % of specimens as non-malignant cells. The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in de lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed in 36.6 %.From specimens with histopathological finding of malignant cells. MAGE A1-10 gene was expressed in 36.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells. MAGE A1-10 gene was expressed in 36.8 % 30.6 % 30.6 MAGE A1-10 gene was expressed in 36.8 % 30.6 % 30.6 MAGE A1-10 gene was expressed in 36.8 % 30.6 % 30.6 MAGE A1-10 gene was expressed in 36.8 % 30.6 % 30.6 MAGE A1-10 gene was expressed in 30.6 % 30.6 MAGE A1-10 gene was most highly expressed in malignant cells.Figure 2 and 3 will los equality, remove the man dreporte.Fis showed that the MAGE A1-10			respectively. In non-malignant cells,	malignant cells, MAGE A1-10 and MAGE A1-	
ResultReport number along with %. Like N(%)This study was conducted on 67 core biopsy specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consisted 67.2 % lung tumors and 32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as malignant cells. The gor ange was 18-79 years old. The goring was 18-79 years old. (Table 1). The histopathological finding from the core biopsy specimens as malignant cells. The gorup of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 7.11 % for MAGE A1-10 was finding from the core biopsy specimens as non-malignant cells.This stowed tat 16.12 % of specimens as non-malignant cells.Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant and non-malignant and non-m			MAGE A1-10 and MAGE A1-6 was	6 was expressed at 14 (53.9 %) and 6 (23.1 %,)	
Result Report number long respectively. This study was conducted on 67 core Result Report number long This study was conducted on 67 core This study was conducted on 67 core Result With %. Like N(%) Dispsy specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consisted 67.2 % lung tumors and 22 (3.2 %) mediastinal tumors. 46 males and 21 fmales. The age range was 18-79 years old. Most patients were aged 51-60 years old. Most patients were aged 51-60 years old. Most patients were aged 51-60 years old. This study and patients were aged 51-60 years old. Most patients were aged 51-60 years old. The group of MAGE A1-10 was expressed the core biopsy specimens as non-malignant cells. The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 gene was expressed in 80.5 % and MGE A1-6 in 46.3 %. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in malignant expressed in malignant cells. From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant expressed in malignant cells. From specimens with histopathological finding of malignant cells. From specimens with histopathologic			expressed at 53.9 % and 23.1 %,	respectively.	
Result Report number along This study was conducted on 67 core biopsy Besult with %. Like N(%) This study was conducted on 67 core biopsy Besult with %. Like N(%) biopsy specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consisted 51.2 % lung tumors and 22 (32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells. and 38.8 % of specimens as non-malignant cells. and 38.8 % of specimens as non-malignant cells. and 38.8 % of specimens as non-malignant cells. and 26 (38.8 %) of specimens as non-malignant cells. and 26 (38.8 %) of specimens as non-malignant cells. and 26 (38.8 %) of specimens as non-malignant cells. and 21.6 males. The age range was 17.9 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells. and 38.8 % of specimens as non-malignant cells. and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed to 31.8 (05.%) and MAGE A1-10 gene was 47 (70.1 %) for MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 61.2 % of specimens with histopathological finding of malignant cells. MAGE A1-10 was expressed in 31.8 (05.%) and MAGE A1-10 gene was expressed in 80.3 % and MAGE A1-6 at 25 (37.3 %). % Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant anon-malignant cells. figu			respectively.		
Result with %. Like N(%) biopsy specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consisted 67.2 % lung tumors and 21.8 % mediastinal tumors, 46 males and 21 females. The age range was 18.79 years old. Most patients were aged 51-60 years old. Most patients were	Result	Report number along	This study was conducted on 67 core	This study was conducted on 67 core biopsy	
elinical diagnoses of lung or mediastinal tumors. The patients consisted 45 (67.2 %) lung tumors and 22 (32.8 %) mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as malignant cells.of lung or mediastinal tumors. The patients consisted 45 (67.2 %) (67.2 %) (mediastinal tumors, 46 males and 21 females. The age range was (1.60 years old. (Table 1). The histopathological finding from the core biopsy specimens as malignant cells.of lung or mediastinal tumors, 46 males and 21 females. The age range was Most patients were aged 51-60 years old. (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells.Nost patients were aged 51-60 years old. Most patients were aged 51-60 years old. Most patients were aged 51-60 years old.The forup of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.The group of MAGE A1-10 was expressed the was 47 (70.1 %) for MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).Figure 2 and 3 will lose quality, remove them and report the data in a table for boh malignant and non-malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells.	Result	with %. Like N(%)	biopsy specimens from patients with	specimens from patients with clinical diagnoses	
tumors. The patients consisted 67.2 % lung tumors and 32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as mon-malignant cells.% mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old. The histopathological finding from the core biopsy specimens as non-malignant cells. The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumos. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumos. There was 70.1 % for MAGE A1-10 was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells. MAGE A1-10 was expressed in 83 (80.5 %) and MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).From specimens with histopathological finding of malignant cells. MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).			clinical diagnoses of lung or mediastinal	of lung or mediastinal tumors. The patients	
tumors and 32.8 % mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells. The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells. MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells (Figure 2).From specimens with histopathological finding non-malignant cells (Figure 2).From specimens with histopathological finding non-malignant ad non-malignant ad non-malignant ad non-malignant adFrom specimens with histopathological finding non-malignant ad non-malignant ad non-malignant ad non-malignant adFrom specimens a			tumors. The patients consisted 67.2 % lung	consisted 45 (67.2 %) lung tumors and 22 (32.8	
males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as malignant cells and 38.8 % of specimens as mon-malignant cells.females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as mon-malignant cells.Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells.Most patients were aged 51-60 years old (Table 1). The histopathological finding from the core biopsy specimens as non-malignant cells.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 and followed by MAGE A1-6 at 37.3 %.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 33 (80.5 %) and MAGE A1-10 group was most highly expressed in malignant cells.This showed that the MAGE A1-10 group was most highly expressed in malignant cells.Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells.This showed hat the MAGE A1-10 group was most highly expressed in malignant cells.			tumors and 32.8 % mediastinal tumors, 46	%) mediastinal tumors, 46 males and 21	
Is-79 years old. Most patients were aged 51-60 years old (Table 1).No.tThe histopathological finding from the core biopsy specimens as malignant cells and 38.8 % of specimens as non-malignant cells.No.tThe group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.The group of MAGE A1-10 and followed by MAGE A1-6 at 27.3 %.Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).From specimens with histopathological finding of malignant as number and percent.From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).			males and 21 females. The age range was	females. The age range was 18-79 years old.	
S1-60 years old (Table 1).1).The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as malignant cells and 38.8 % of specimens as non-malignant cells.1).The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 0 and followed by MAGE A1-6 at 37.3 %.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 was 477(70.1 %) for MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).			18-79 years old. Most patients were aged	Most patients were aged 51-60 years old (Table	
Figure 2 and 3 will lose quality, remove the mant cept the data in a table for both malignant an number and percent.The histopathological finding from the core biopsy specimens showed 61.2 % of specimens as malignant cells and 38.8 % of specimens as non-malignant cells.The histopathological finding from the core biopsy specimens showed 41 (61.2 %) of specimens as malignant cells and 38.8 % of specimens as non-malignant cells.The histopathological finding from the core biopsy specimens showed 41 (61.2 %) of specimens as malignant cells and 38.8 %From specimens as non-malignant cells.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 or MAGE A1-6 at 37.3 %The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 47 (70.1 %) for MAGE A1-10 and followed by MAGE A1-6 at 37.3 %From specimens with histopathological finding of malignant cells, MAGE A1-10 A1-6 in 46.3 %From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).From specimens with histopathological finding of malignant cells.Figure 2 and 3 will horn-malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).			51-60 years old (Table 1).	1).	
core biopsy specimens showed 61.2 % of specimens as malignant cells and 38.8 % of specimens as non-malignant cells.biopsy specimens showed 41 (61.2 %) of specimens as malignant cells and 26 (38.8 %) of specimens as non-malignant cells.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 uad followed by MAGE A1-6 at 37.3 %.The group of MAGE A1-10 and followed by MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).*/c.From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %.From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).From specimens with histopathological finding of malignant cells, MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).Figure 1 and a table for both malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells.			The histopathological finding from the	The histopathological finding from the core	
specimens as malignant cells and 38.8 % of specimens as non-malignant cells. specimens as malignant cells and 26 (38.8 %) of specimens as mol-malignant cells. The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 and followed by MAGE A1-6 at 37.3 %. The group of MAGE A1-10 and sexpressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 and followed by MAGE A1-6 at 37.3 %. The group of MAGE A1-10 and followed by MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %). From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %. From specimens with histopathological finding of malignant cells (Figure 2). Figure 2 and 3 will be quality, remove them and report the data in a table for both malignant and non-malignant as number and percent. This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2). This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).			core biopsy specimens showed 61.2 % of	biopsy specimens showed 41 (61.2 %) of	
index of specimens as non-malignant cells. specimens as non-malignant cells. The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1% for MAGE A1- 10 and followed by MAGE A1-6 at 37.3 %. The group of MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3%). From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5% and MAGE A1-6 in 46.3%. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5% and MAGE A1-6 in 46.3%. From specimens with histopathological finding of malignant cells (Figure 2). Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant as number and percent. This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2). This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).			specimens as malignant cells and 38.8 %	specimens as malignant cells and 26 (38.8 %) of	
Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant as number and percent.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 70.1 % for MAGE A1-10 is for MAGE A1-6 at 37.3 %.The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 47 (70.1 %) for MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).The group of MAGE A1-10 and followed by MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %).Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant as number and percent.This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells (Figure 2).This showed that the MAGE A1-10 group was most highly expressed in malignant cells.			of specimens as non-malignant cells.	specimens as non-malignant cells.	
Image: Section of the section of th			The group of MAGE A1-10 was expressed	The group of MAGE A1-10 was expressed the	
Figure 2 and 3 will This showed that the MAGE A1-10 group This showed that the MAGE A1-10 group This showed that the MAGE A1-10 group Non-malignant as number and percent. This showed that the MAGE A1-10 group This showed that the MAGE A1-10 group was most highly expressed in malignant Cells (Figure 2). This showed that the MAGE A1-10 group This showed that the MAGE A1-10 group			the most in the lung and mediastinal	most in the lung and mediastinal tumors. There	
I0 and followed by MAGE A1-6 at 37.3 by MAGE A1-6 at 25 (37.3 %). %. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 13 (46.3 %). Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant and non-malignant as number and percent. This showed that the MAGE A1-10 group was most highly expressed in malignant cells. This showed that the MAGE A1-10 group was most highly expressed in malignant cells. Number and percent. Frigure 2). This showed that the MAGE A1-10 group was most highly expressed in malignant cells. This showed that the MAGE A1-10 group was most highly expressed in malignant cells.			tumors. There was 70.1 % for MAGE A1-	was 4/ (70.1%) for MAGE A1-10 and followed	
Ye. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 33 (80.5 %) and MAGE A1-6 in 19 (46.3 %). Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant and non-malignant as number and percent. This showed that the MAGE A1-10 group was most highly expressed in malignant cells. This showed that the MAGE A1-10 group was most highly expressed in malignant cells. Number and percent. Figure 2). This showed that the MAGE A1-10 group was most highly expressed in malignant cells. This showed that the MAGE A1-10 group was most highly expressed in malignant cells.			10 and followed by MAGE A1-6 at 37.3	by MAGE A1-6 at 25 (37.3 %).	
From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 80.5 % and MAGE A1-00 gene was expressed in 80.5 % and MAGE A1-6 in 46.3 %. From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 33 (80.5 %) and MAGE A1-6 in 19 (46.3 %). Figure 2 and 3 will lose quality, remove them and report the data in a table for both malignant and non-malignant as number and percent. This showed that the MAGE A1-10 group was most highly expressed in malignant cells. This showed that the MAGE A1-10 group was most highly expressed in malignant cells. Number and percent. Figure 2). This showed that the MAGE A1-10 group was most highly expressed in malignant cells.			%.		_
Figure 2 and 3 will This showed that the MAGE A1-10 group was most highly expressed in malignant This showed that the MAGE A1-10 group Isse quality, remove was most highly expressed in malignant cells (Figure 2). This showed that the MAGE A1-10 group Isse quality, remove was most highly expressed in malignant cells (Figure 2). This showed that the MAGE A1-10 group was Isse quality, remove was most highly expressed in malignant cells (Figure 2). This showed that the MAGE A1-10 group was Isse quality and non-malignant as number and percent. Isse quality and the mathematical percent. Isse quality and the mathematical percent.			From specimens with histopathological	From specimens with histopathological finding	
gene was expressed in 80.5 % and MAGE expressed in 35 (80.5 %) and MAGE A1-6 in 19 A1-6 in 46.3 %. (46.3 %). Figure 2 and 3 will This showed that the MAGE A1-10 group lose quality, remove was most highly expressed in malignant cells (Figure 2). This showed that the MAGE A1-10 group was data in a table for cells (Figure 2). both malignant and non-malignant as number and percent. under the mathematical section (19)			finding of malignant cells, MAGE A1-10	of malignant cells, MAGE A1-10 gene was	
A1-6 in 40.3 %. (40.3 %). Figure 2 and 3 will This showed that the MAGE A1-10 group lose quality, remove was most highly expressed in malignant them and report the cells (Figure 2). data in a table for Figure 1000000000000000000000000000000000000			gene was expressed in 80.5 % and MAGE	expressed in $33 (80.5 \%)$ and MAGE A1-6 in 19	
rigure 2 and 5 will This showed that the MAGE A1-10 group This showed that the MAGE A1-10 group was lose quality, remove was most highly expressed in malignant most highly expressed in malignant them and report the cells (Figure 2). most highly expressed in malignant data in a table for both malignant and non-malignant as number and percent.		Eiman 2 a. 1 2 11	A1-0 III 40.5 %.		-
tose quarry, remove was most nighty expressed in malignant most nighty expressed in malignant them and report the cells (Figure 2). most nighty expressed in malignant data in a table for both malignant and non-malignant as number and percent. umber and percent. most nighty expressed in malignant		Figure 2 and 3 will	I his showed that the MAGE A1-10 group	I his showed that the MAGE A1-10 group was	
Intern and report the data in a table for Cells (rigure 2). both malignant and Image: Cells (rigure 2). non-malignant as Image: Cells (rigure 2). number and percent. Image: Cells (rigure 2).		tose quality, remove	was most nightly expressed in malignant	most nightly expressed in malignant cells.	
both malignant and non-malignant as number and percent.		them and report the	cens (Figure 2).		
non-malignant as number and percent.		hath maligners			
number and percent.		non malignant and			
		number and persont			
		number and percent.			

Figure 2 and 3 will	Furthermore, in non-malignant cells, the	Furthermore, in non-malignant cells, the MAGE
lose quality, remove	MAGE A gene family was expressed	A gene family was expressed positively. The
them and report the	positively (Figure 3). The MAGE A1-10	MAGE A1-10 group were expressed on 14
data in a table for	group were expressed on 53.9 %, MAGE	<mark>(53.9 %),</mark> MAGE A1-6 on <mark>6 (23.1 %),</mark>
both malignant and	A1-6 on 23.1 %,	
non-malignant as		
number and percent.		

Table 1.

For age you do not need to report age group, the mean+-sd is enough.

Characteristic Patients			Frequency	Percentage (%)
Age (mean \pm SD)	:	50.81 <u>+</u> 14.770		
Age (years)	:	18-30	8	11.9
		31-40	7	10.4
		41-50	12	17.9
		51-60	24	35.8
		61-70	11	16.5
		71-80	5	7.5
		Total	67	100
Sex	:	Male	46	68.7
		Female	21	31.3
		Total	67	100
Clinical Diagnosis	:	Lung Tumor	45	67.2
		Mediastinal Tumor	22	32.8
		Total	67	100
Histopathological Diagnosis	:	Malignant cell	41	61.2
		Non-malignant cell	26	38.8
		Total	67	100
Lung Tumor	:	Malignant cell	29	64.4
		Non-malignant cell	16	35.6
		Total	45	100
Mediastinal Tumor	:	Malignant cell	12	54.5
		Non-malignant cell	10	45.5
		Total	22	100

Commented [A3]: For age you do not need to report age group, the mean+-sd is enough.

AFTER REVISION:

Table 1. Characteristics of the patient from the core biopsy of peripheral lung tumor

Characteristic Patients			Frequency	Percentage (%)
Age (mean \pm SD)	:	50.81 <u>+</u> 14.770		
Sex	:	Male	46	68.7
		Female	21	31.3
		Total	67	100
Clinical Diagnosis	:	Lung Tumor	45	67.2
		Mediastinal Tumor	22	32.8
		Total	67	100
Histopathological Diagnosis	:	Malignant cell	41	61.2
		Non-malignant cell	26	38.8
		Total	67	100
Lung Tumor	:	Malignant cell	29	64.4
		Non-malignant cell	16	35.6
		Total	45	100
Mediastinal Tumor	:	Malignant cell	12	54.5
		Non-malignant cell	10	45.5
		Total	22	100

Table 2.	In this table remove the % from inside the table. Define it in the column head as
	n(%)

 Table 2. The expression of MAGE A gene family based on histopathological finding from the core

 biopsy of lung and mediastinal tumor

Subture of	Histopatho	Histopathological finding			Contingency
MACE A	Malignant	Non-malignant	Total	P Value	coefficient
MAGE A	cells	cells			value
MAGE A1-10					
Positive	33 (80.5 %)	14 (53.9 %)	47 (70.1 %)	0.041*	0.273
Negative	8 (19.5 %)	12 (46.1 %)	20 (29.9 %)		(P = 0.020)
MAGE A1-6					
Positive	19 (46.3 %)	6 (23.1 %)	25 (37.3 %)	0.097	
Negative	22 (53.7 %)	20 (76.9 %)	42 (62.7 %)		
MAGE A1					
Positive	12 (29.3 %)	5 (19.2 %)	17 (25.4 %)	0.527	
Negative	29 (70.7 %)	21 (80.8 %)	50 (74.6 %)		

Commented [A4]: In this table remove the % from inside the table. Define it in the column head as n(%)

MAGE A2					
Positive	4 (9.8 %)	0	4 (6.0 %)	0.152	
Negative	37 (90.2 %)	26 (100 %)	63 (94.0 %)		
MAGE A3					
Positive	4 (9.8 %)	3 (11.5 %)	7 (10.4 %)	1.000	
Negative	37 (90.2 %)	23 (88.5 %)	60 (89.6 %)		
MAGE A4					
Negative	41 (100 %)	26 (100 %)	67 (100.0 %)	-	
MAGE A5					
Positive	22 (53.6 %)	8 (30.8 %)	30 (44.8 %)	0.113	
Negative	19 (46.3 %)	18 (69.2 %)	37 (55.2 %)		
MAGE A6					
Negative	41 (100 %)	26 (100 %)	67 (100.0 %)	-	
MAGE A8					
Positive	17 (41.5 %)	3 (11.5 %)	20 (29.9 %)	0.020*	0.304
Negative	24 (58.5 %)	23 (88.5 %)	47 (70.1 %)		(P = 0.009)
MAGE A9					
Positive	6 (14.6 %)	7 (26.9 %)	13 (19.4 %)	0.356	
Negative	35 (85.4 %)	19 (73 .1 %)	54 (80.6 %)		
MAGE A10					
Positive	1 (2.4 %)	0 (0 %)	1 (1.5 %)	1.000	
Negative	40 (97.6 %)	26 (100 %)	66 (98.5 %)		

AFTER REVISION:

Table 2. The expression of MAGE A gene family based on histopathological finding from the core biopsy of lung and mediastinal tumor

	Histopatho	ological finding			Contingonor
Subtype of	Malignant	Non-malignant	Total	D Valua	contingency
MAGE A	cells	cells	N (%)	r value	value
	N (%)	N (%)			value
MAGE A1-10					
Positive	33 (80.5)	14 (53.9)	47 (70.1)	0.041*	0.273
Negative	8 (19.5)	12 (46.1)	20 (29.9)		(P = 0.020)
MAGE A1-6					
Positive	19 (46.3)	6 (23.1)	25 (37.3)	0.097	
Negative	22 (53.7)	20 (76.9)	42 (62.7)		
MAGE A1					
Positive	12 (29.3)	5 (19.2)	17 (25.4)	0.527	
Negative	29 (70.7)	21 (80.8)	50 (74.6)		
MAGE A2					
Positive	4 (9.8)	0	4 (6.0)	0.152	
Negative	37 (90.2)	26 (100)	63 (94.0)		
MAGE A3					
Positive	4 (9.8)	3 (11.5)	7 (10.4)	1.000	
Negative	37 (90.2)	23 (88.5)	60 (89.6)		

MAGE A4					
Negative	41 (100)	26 (100)	67 (100)	-	
MAGE A5					
Positive	22 (53.6)	8 (30.8)	30 (44.8)	0.113	
Negative	19 (46.3)	18 (69.2)	37 (55.2)		
MAGE A6					
Negative	41 (100)	26 (100)	67 (100)	-	
MAGE A8					
Positive	17 (41.5)	3 (11.5)	20 (29.9)	0.020*	0.304
Negative	24 (58.5)	23 (88.5)	47 (70.1)		(P = 0.009)
MAGE A9					
Positive	6 (14.6)	7 (26.9)	13 (19.4)	0.356	
Negative	35 (85.4)	19 (73 .1)	54 (80.6)		
MAGE A10					
Positive	1 (2.4)	0	1 (1.5)	1.000	
Negative	40 (97.6)	26 (100)	66 (98.5)		

Table 3.	Remove % from inside the table define it in the column.

 Table 3. The diagnostic values of MAGE A gen family based on the histopathological finding of core biopsy specimens.

	Sn	Sp	PPV	NPV	LR+	LR-	DA
MAGE A1-10	80.5 %	46.2 %	70.2 %	60 %	1.49	0.42	67.2 %
MAGE A1-6	46.3 %	76.9 %	76 %	47.6 %	2.01	0.70	58.2 %
MAGE A1	29.23 %	80.8 %	70.6 %	42 %	1.52	0.88	49.3 %
MAGE A2	9.8 %	100 %	100 %	41.3 %	-	0.90	44.8 %
MAGE A3	9.8 %	88.5 %	57.1 %	38.3 %	0.85	1.02	40.3 %
MAGE A5	53.7 %	69.2 %	73.3 %	48.7 %	1.744	0.67	59.7 %
MAGE A8	41.5 %	88.5 %	85 %	48.9 %	3.59	0.66	59.7 %
MAGE A9	14.6 %	73.1 %	61.2 %	35.2 %	0.54	1.17	37.3 %
MAGE A10	2.4 %	100 %	100 %	39.4 %	-	0.98	40.3 %

Note: Sn: Sensitivity, Sp: Specificity, PPV: Positive predictive value, NPV: Negative predictive value, LR+: positive like ratio, LR-: negative like ratio, DA: Diagnostic accuracy

AFTER REVISION:

Table 3. The diagnostic values of MAGE A gen family based on the histopathological finding of core biopsy specimens.

	Sn (%)	Sp (%)	PPV	NPV	LR+	LR-	DA
			(%)	(%)			(%)
MAGE A1-10	80.5	46.2	70.2	60	1.49	0.42	67.2

Commented [A5]: Remove % from inside the table define it in the column.

MAGE A1-6	46.3	76.9	76	47.6	2.01	0.70	58.2
MAGE A1	29.23	80.8	70.6	42	1.52	0.88	49.3
MAGE A2	9.8	100	100	41.3	-	0.90	44.8
MAGE A3	9.8	88.5	57.1	38.3	0.85	1.02	40.3
MAGE A5	53.7	69.2	73.3	48.7	1.744	0.67	59.7
MAGE A8	41.5	88.5	85	48.9	3.59	0.66	59.7
MAGE A9	14.6	73.1	61.2	35.2	0.54	1.17	37.3
MAGE A10	2.4	100	100	39.4	-	0.98	40.3

Note: Sn: Sensitivity, Sp: Specificity, PPV: Positive predictive value, NPV: Negative predictive value, LR+: positive like ratio, LR-: negative like ratio, DA: Diagnostic accuracy

Figure 2 and 3: We have removed the figure 2 and 3.

BUKTI REVISI

1	The MAGE A1-A10 expression associated with histopathological findings of
2	malignant or non-malignant cells in peripheral lung tumors.
3	
4	
5	Gondo Mastutik*, Alphania Rahniayu ^{1,2} , Isnin Anang Marhana ^{3,4} , Nila
6	Kurniassari ^{1,2} , Anny Setijo Rahaju ^{1,2} , Mochamad Amin ⁵ , Heru Fajar Trianto ⁶ , Atika ⁷
7	
8	*Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya,
9	Indonesia. Email: gondomastutik@fk.unair.ac.id; gondomastutik@gmail.com
10	
11	
12	Abstract
13	
14	Objective: The objective was to evaluate the expression of melanoma antigen (MAGE) A
15	from A1 to10 (A1-10) and the individual MAGE A family in the peripheral lung tumors and
16	to analyze its association with histopathological findings.
47	
1/	Methods: A cross-sectional study was conducted on 67 samples of peripheral lung tumor
18	obtained by core biopsies from patients with clinical diagnoses such as lung and mediastinal
19	tumors. The specimens were divided into two, one to perform histopathological diagnosis and
20	the last for mRNA MAGE A examination. A Nested polymerase chain reaction (PCR) was
21	performed using universal primer, MF10/MR10 and MF10/MR12. The collected data were
22	analyzed by appropriate statistical techniques.

23	Result: The histopathological finding showed 41 (61.2 %) of specimens as malignant cells
24	and <mark>26 (38.8 %)</mark> of specimens as non-malignant cells. MAGE A1-10 was expressed at <mark>47</mark>
25	(70.1 %) and MAGE A1-6 was expressed at 25 (37.3 %) of specimens. In a malignant cell,
26	MAGE A1-10 and MAGE A1-6 were expressed at 33 (80.5 %) and 19 (46.3 %), respectively.
27	In non-malignant cells, MAGE A1-10 and MAGE A1-6 were expressed at 14 (53.9 %) and 6
28	(23.1 %,) respectively. The MAGE A1-10 and MAGE A8 expressions were significantly
29	associated with histopathological findings of malignant or non-malignant cells. The
30	sensitivity, specificity, and diagnostic accuracy of MAGE A1-10 were 80.5 %, 46.2 %, and
31	67.2 %, respectively; while for MAGE A8 were 41.5 %, 88.5 %, and 59.7 %, respectively.
32	Conclusion: The MAGE A1-10 expression was the most commonly detected and associated
33	with the histopathological finding. Moreover, it was more sensitive and specific and had
34	higher diagnostic accuracy than others. Therefore, the MAGE A1-10 assay may improve the
35	accuracy of the diagnosis of malignancy in peripheral lung tumors.
36	
37	
38	Keywords: lung cancer; cancer cell; MAGE A1-10; MAGE A1-6; core biopsy
39	
40	
41	Introduction
42	
43	Lung cancer is the second most common malignancy in worldwide. GLOBOCAN 2020 data
44	shows that new cases of lung cancer are 2.206.771 cases (11.4 %) and are the main cause of
45	death due to cancer with a mortality rate of 1.796.144 (18.0 %) (Sung, 2020). Lung cancer is

significantly newly detected at an advanced stage and affects patient survival (Sugita, 2002). 46 47 This may because most of the patients diagnosed are at an advanced stage making it difficult to provide appropriate treatment (Cainap, 2021). The difficulty encountered in diagnosing 48 lung cancer at an early stage is the location of the tumor which is difficult to reach. 49 50 Furthermore, the patient does not feel symptoms because new symptoms appear after the cancer has reached an advanced stage (Sugita, 2002; Cainap, 2021). Locations on the 51 periphery or center of the chest cavity that are difficult to reach with existing equipment. 52 53 Therefore, molecular approaches to assist detection of lung cancer or determine clinical outcomes can be developed in certain regions of the lung tumor (Mazzone, 2017), either 54 55 centrally or peripherally in the thoracic cavity. One of the possible approaches for diagnosing patients with lung tumors in the peripheral 56 areas is to perform a biopsy. A core biopsy can be performed in the thoracic cavity under 57 58 ultrasound guidance or computed tomography (Marhana, 2021). The specimen obtained by core biopsy is quite adequate and can be used to specify the type of histopathological 59 diagnosis of lung cancer and also contributes to the selection of appropriate therapy for lung 60 61 tumor patients (Huang, 2021; Zhang, 2022; Marhana, 2022). In addition, the risk of 62 complication such as pneumothorax or hemoptysis of core biopsies can be reduced (Yao,

63 2012). Therefore, the sample from the core biopsy of lung tumors could be used in the64 molecular diagnosis based on PCR techniques.

Melanoma-associated antigen (MAGE) is a tumor antigen that was first discovered in
melanoma patients (Meek, 2012). MAGE A belongs to the class of cancer/testis antigens
which is expressed on cancer cells and germ cells, including the testis, fetal ovary, and
placenta (Õunap, 2018; Li, 2021). Based on the location of the gene on the chromosome and
gene expression in the tissue, MAGE is classified into two kinds. MAGE I consists of MAGE
A, B, and C, while MAGE II consists of MAGE D (Weon and Potts, 2015; Li, 2021). The

family of MAGE A gene consists of 12 subtypes that are MAGE- A1, MAGE- A2, MAGE-71 72 A3, MAGE- A4, MAGE- A5, MAGE- A6, MAGE- A7 (pseudo gene), MAGE- A8, MAGE-A9, MAGE- A10, MAGE- A11, and MAGE- A12 (Brisam, 2016; Mastutik, 2021). 73 The MAGE A gene has been reported that it was expressed in several types of cancer, such as 74 75 laryngeal cancer (Liu, 2020), oral cancer (Pereira, 2012), salivary gland cancer (Beppu, 2017), gastric cancer (Ries, 2008), colorectal cancer (Almutairi, 2022), liver cancer 76 (Mastutik, 2010; Li, 2020), and lung cancer (Sugita, 2002; Karimi, 2012). Furthermore, in 77 lung cancer, MAGE A3 and MAGE A4 were identified in lung cancer patients with 78 histopathological type of non-small cell lung cancer (NSCLC) (Shigematsu, 2010), while 79 MAGE A1 and MAGE A3 were identified in the early stage of carcinogenesis (Chen, 2017). 80 The expression of several subtypes of MAGE A3 and A4 in NSCLC was associated with 81 tumor progression, poor survival, and poor outcome (Shigematsu, 2010; Chen, 2017; Yi, 82 2017). 83 The Previous study identified expression of MAGE A1 to MAGE A6 (MAGE A1-6) together 84 using nested PCR (Park, 2002). They were expressed in papillary thyroid microcarcinoma 85 86 (Lee, 2013), head and neck squamous cell carcinoma (Noh, 2016), and in lung cancer (Yi, 87 2017). However, MAGE A8 to MAGE A10 were expressed in NSCLC (Sugita, 2002; Tsai, 2007) and small cell lung cancer (SCLC) (Sugita, 2002) that may improve the finding of the 88 malignant cell on the small specimens of the core biopsy. Our previous study has identified 89 90 MAGE A1-10 expression by nested PCR using universal primers that were MF10/MR10 and

91 MF10/MR12 (Mastutik, 2021). Therefore, the identification of several subtypes of MAGE A

92 that consists of MAGE A1 to MAGE A10 (MAGE A1-10) could increase the diagnostic

value and serve as a predictor marker of cancer progression. The objective of this study was

- 94 to evaluate the expression of MAGE A1-10, MAGE A1-6, and the individual of MAGE A
- 95 gene, including MAGE A1, A2, A3, A4, A5, A6, A8, A9, and A10 in the peripheral lung

- 96 tumor and analyses the association between MAGE A1-10, MAGE A1-6, and individual
- 97 MAGE A with histopathological finding.

99

- 100 Materials and methods
- 101

102 The samples collection

An observational study with a cross-sectional approach was performed in Dr. Soetomo 103 Hospital, Surabaya, Indonesia. Samples were the core biopsies specimens collected from 104 105 patients with clinical diagnoses suffering from lung and mediastinal tumors in the Lung Intervention Room, Diagnostic Center Building from August 2017 to August 2018. This 106 study was approved by Ethics Committee of Dr. Soetomo Hospital, Surabaya, Indonesia with 107 ethical clearance number 497/ Panke.KKE/ VIII/2017. All subjects participating in this study 108 109 signed informed consent. 110 The Inclusion criteria were patients aged 18-80 years, patients had at least one measurable tumor or

111 lesion, lung tumor underwent ultrasound-guided core biopsy for collection of tissue specimens,

112 Karnofsky score was expressed at > 70 %, patients had never received systemic therapy, and patients

113 willing to participate in the study (with informed consent). The exclusion criteria were the presence

- of a primary tumor in other organs and the patient was not in optimal condition to undergo invasive
- 115 diagnostic procedures, such as uncooperativeness, hypercapnia, hypoxemia, arrhythmia, and
- 116 unstable hemodynamics.

117 Detection of expression of MAGE A genes

118 RNA was extracted from core biopsies specimens using RNAeasy Plus Mini Kit (Qiagen,

119 Hilden, Germany) with the procedure in the protocol as in our previously study (Mastutik,

120	2021). Total RNA was used as a template for reverse-transcription PCR (RT-PCR) with the
121	RT PCR Master Mix (Toyobo, Osaka, Japan) and followed by nested PCR.
122	Before RT PCR was performed to detect MAGE A expression, all samples were used for RT
123	PCR using the housekeeping gene, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
124	This aims to ensure that the specimen used in the RT PCR process has DNA in sufficient
125	quantity. Specimens with GAPDH positive will be used to identify the expression of the
126	MAGE A family gene. If the GAPDH RT- PCR results show negative, then the sample is
127	excluded.
128	Identification of MAGE A1-10 was performed the PCR using the MF10/MR10 primers and
129	MF10/MR12 primers (Mastutik, 2021), while MAGE A1-6 by using MMRP1/MMRP1
130	primers and MMRP3/MMRP4 primers (Park, 2002). The GAPDH primers, the individual of
131	MAGE A from MAGE A1 to MAGE A10 primers, and the PCR condition were performed as
132	in the previous studies (Park, 2002; Mastutik, 2021).
133	Statistical analysis
134	The expression of MAGE A was presented in percentage. The association between the
135	expression of MAGE A1-10, MAGE A1-6, and individual MAGE A from MAGE A1 to
136	MAGE A10 with histopathological finding were analysis with Fisher's Exact Test 2 sided.
137	The sensitivity and specificity were showed in percentage.
138	
139	
140	Results
141	
142	This study was conducted on 67 core biopsy specimens from patients with clinical diagnoses

of lung or mediastinal tumors. The patients consisted 45 (67.2 %) lung tumors and 22 (32.8

144 %) mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most
145 patients were aged 51-60 years old (Table 1).

146 The histopathological finding from the core biopsy specimens showed 41 (61.2 %) of

specimens as malignant cells and 26 (38.8 %) of specimens as non-malignant cells. The

- 148 malignant cells from lung tumors were carcinoma poorly differentiated (1 patient), Small cell
- 149 carcinoma (1 patient), NSCLC type adenocarcinoma (23 patients), and NSCLC type of
- 150 squamous cell carcinoma (2 patients), NSCLC type of adenosquamous carcinoma (2

patients), (Figure 1). In non-malignant cells were inflammation (6 patients), and no found

152 malignant cells (10 patients). Furthermore, the malignant cells from mediastinal tumors were

153 malignant round cell tumor (4 patients), malignant germ cell tumor (1 patients), malignant

154 lymphoma (1 patients), hodgkin lymphoma (2 patients), and non-hodgkin lymphoma (4

patients), while in categories non-malignant cell were thymoma (2 patients) and no found

156 malignant cells (8 patients).

157 The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors.

158 There was 47 (70.1 %) for MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %). For

- 159 individual MAGE A family genes showed MAGE A5 was expressed at 44.8 %, then
- 160 followed by MAGE A8 was 29.9 %, MAGE A1 was 25.4 %, MAGE A9 was 19.4 %, MAGE
- 161 A3 was 10.4 %, MAGE A2 was 6.0 %, MAGE 10 was 1.5 % (Table 2). In addition, there

were no specimens expressed MAGE A4 and A6 (Table 2).

- 163 From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was
- 164 expressed in 33 (80.5 %) and MAGE A1-6 in 19 (46.3 %). The individual of MAGE A
- 165 family, MAGE A5 was expressed in 53.6 %, MAGE A8 in 41.5 %, MAGE A1 in 29.3 %,
- 166 MAGE A9 in 14.6 %, MAGE A2 and A3 in 9.8 % respectively, and MAGE A10 in 2.4 %

167 (Table 2). This showed that the MAGE A1-10 group was most highly expressed in malignant

168 cells.

- 169 Furthermore, in non-malignant cells, the MAGE A gene family was expressed positively. The
- 170 MAGE A1-10 group were expressed on 14 (53.9 %), MAGE A1-6 on 6 (23.1 %), and the
- single gen of MAGE A5 was expressed on 30.8 %, MAGE A9 on 26.9 %, MAGE A1 on 19.2
- 172 %, MAGE A3 and MAGE A8 on 11.5 %, respectively (Table 2).
- 173 The MAGE A1-10 expression was significantly associated with histopathological diagnosis
- 174 (P < 0.05) with a probability value was 0.041. The contingency coefficient value for MAGE
- 175 A1-10 was 0.273 (*P*-value 0.020) with the strength of association being weak (0.21-0.4)
- 176 (Table 2). Analysis of the diagnostic value of MAGE A1-10 showed a sensitivity of 80.5 %, a
- specificity of 46.2 %, and a diagnostic accuracy of 67.2 % (Table 3).
- 178 This study found that there is a significant association between the expressions of MAGE A8
- 179 with histopathology diagnosis of malignant cells and non-malignant cells (P < 0.05), the P-
- value was 0.020. The contingency coefficient value was 0.304 (*P*-value 0.009) with the
- 181 strength of association is being weak (0.21-0.4) (Table 2). The diagnostic value analysis
- showed that MAGE A8 had a sensitivity of 41.5 %, a specificity of 88.5 %, and a diagnostic
- accuracy of 59.7 % (Table 3). This study found that there is no significant association
- between the expressions of MAGE A1-6, MAGE A1, MAGE A2, MAGE A3, MAGE A5,
- 185 MAGE A9, MAGE A10 with histopathology diagnosis of malignant cells and non-malignant
- 186 cells (P > 0.05) (Table 2).
- 187
- 188

189 Discussion

191 Lung cancer is cancer that is usually diagnosed at an advanced stage. One of the obstacles192 encountered in diagnosing lung malignancy is the location of the deep tumor in the thoracic

cavity (Marhana, 2021; Marhana, 2022). Therefore, specimens were collected in the process of 193 194 diagnosing lung malignancy with interventions, such as core biopsy, fine needle aspiration biopsy, forceps biopsy, bronchoalveolar lavage, and brushing (Marhana, 2021). Compared 195 with the fine needle aspiration biopsy, the core biopsy procedure showed lower complications, 196 197 such as pneumothorax and hemoptysis (Yao, 2012). In this study, specimens from the core biopsies of peripheral lung tumors were used to establish a histopathological diagnosis and 198 examine mRNA of MAGE A gene family. The mRNA type can be identified by nested 199 polymerase chain reaction (PCR) (Park, 2002; Mastutik, 2007). This gene is expressed from a 200 silent condition in normal cells or overexpressed in cancer cells before symptoms appear that 201 may be beneficial as a biomarker in the diagnosis and prognosis of lung cancer (Jheon, 2004; 202 Karimi, 2012; Weon and Potts, 2015) 203

The core biopsy specimen was a small piece of a specimen that was used in a routine procedure 204 205 to determine the malignancy status of a patient. Based on the histopathological feature, it found 61.2 % of specimens as malignant cells and 38.8 % of specimens as non-malignant cells. 206 Expression of a single MAGE A gene family showed that MAGE A5 was the most frequent, 207 208 then followed by MAGE A8, MAGE A1, MAGE A9, MAGE A3, MAGE A2, and MAGE 209 A10. It followed the previous studies in lung cancer that showed the expression of MAGE A1 was 27-46 %, MAGE A3 was 38-55 %, MAGE A4 was 19-35 %, MAGE A6 was 26 %, MAGE 210 A10 was 14-27 % (Weon and Potts, 2015). Another study reported MAGE A3 was expressed 211 at 42 %, MAGE A1 at 27 %, MAGE A4 at 19 %, and MAGE A10 at 14 % of lung cancer (Kim, 212 2012). MAGE A1 and MAGE A3 have the same expression that was at 77 % of SCLC and 67 213 214 % of NSCLC, MAGE A4 was expressed on 82 % of SCLC and 67 % of NSCLC (Sugita, 2002), while MAGE A3 was expressed on 73 % of NSCLC (Chen, 2017). 215 This study showed that MAGE A1-10 expression was the most frequently found, followed by 216

217 MAGE A1-6 expression. It found MAGE A1-10 was expressed at 70.1 % specimens and

MAGE A1-6 was expressed at 37.3 % specimens. In addition, MAGE A1-10 expression were 218 found to be more frequently detected in malignant cells than in non-malignant cells. In 219 malignant cells, the MAGE A1-10 expression was detected at 80.5 %, while MAGE A1-6 220 expression was detected at 46.3 %. In non-malignant cells, MAGE A1-10 was detected in 53.9 221 %, while MAGE A1-6 was detected in 23.1 %. MAGE A1-6 expression in this study was lower 222 than previous studies, but MAGE A1-10 expression showed almost the same number as MAGE 223 A1-6 expression in previous studies. Previous studies have shown that MAGE A1-6 were 224 expressed on 70 % of head and neck cancer (Noh, 2016). MAGE A1-6 was expressed on 71 225 % of oral cancer (Ries, 2008), on 83 % of lung cancer tissue (Jheon 2004), and 15 % in bone 226 marrow of lung cancer patients (Yi, 2017). It suggested that the examination of MAGE A1 to 227 A10 and MAGE A1 to A6 expression can support each other in determining lung malignancy. 228 Moreover, the MAGE A gene has been reported that it was expressed in several types of cancer 229 and may be beneficial for detecting of lung cancer in early stage and for predicting the 230 prognosis of patients. In oral squamous cell carcinoma, the expression of the MAGE A3 to A5, 231 and MAGE A9 were corelated to lymph node metastases and MAGE A1 was associated with 232 clinical stage progression (Brisam, 2016). In advanced gastric cancer, the MAGE A1 233 expression was related with poor overall survival and can be served as poor prognose (Ogata, 234 2011; Lian 2017). A meta-analysis study reported that the overexpression of MAGE A could 235 be a potential marker for poor prognosis in several cancer cases (Poojary, 2020). Furthermore, 236 237 the MAGE A gene is also expressed in the tissue surrounding NSCLC cancer which appears normal based on the histopathological diagnosis (Karimi, 2012) and associated with poor 238 clinical prognosis (Weon and Potts, 2015). Expression of MAGE A gene family related to the 239 shorter overall survival of lung cancer patients (Gu, 2018) and laryngeal cancer (Liu, 2020). It 240 is also associated with lymph node metastasis of oral cancer and advanced-stage of disease 241

35

clinically (Brisam, 2016).

This study found that there was a significantly different association between the expression of 243 MAGE A1-10 and MAGE A8 with histopathological diagnosis showing malignant or non-244 malignant cells. In addition, 53.9 % of specimens in the group of non-malignant cells were 245 expressed MAGE A1-10. In histopathological findings, malignant and non-malignant cells was 246 247 determined based on the characteristic of structural alteration in cells or tissues. They can be observed microscopically on a slide (Gurcan, 2009; Jayasinghe, 2015; Wang, 2021). While 248 examination of MAGE A expression is based on the transcription activation process to 249 produces mRNA in the cell that may occur at the molecular level before or during the cell 250 structure changes (Park, 2002). This study showed that MAGE A1-10 can still be found 251 positive by nested PCR technique on the histopathological findings of the non-malignant cells. 252 This could be used to improve diagnostic accuracy when cancer cells are not found in the 253 specimen. In addition, to determine therapeutic options for lung cancer patients, it is necessary 254 to diagnose the type of cancer based on histopathological changes. Therefore, these two 255 examination methods can complement each other. If malignant cells are not found, then a 256 molecular examination can be carried out using the PCR technique to find out whether the 257 specimen contains cancer cells or not. 258

The gold standard in examining the malignancy status of lung tumors is histopathological 259 examination (Gurcan, 2009). Nested PCR in this study was able to detect MAGE A1 to MAGE 260 A10 as previous study (Mastutik, 2021). It was compared to histopathological finding showed 261 that MAGE A1-10 expression had a sensitivity of 80.5 % and a diagnostic accuracy of 67.2 %. 262 MAGE A1-10 is most frequently expressed in tumor specimens with sensitivity and diagnostic 263 accuracy of more than 65 %. Therefore, the examination of MAGE A1 to MAGE A10 264 expression by nested PCR technique could be used as an alternative assay method to detect 265 cancer cells in specimens from the core biopsy of peripheral lung cancer. 266

The MAGE A1-10 was expressed highest in the core biopsies of peripheral lung tumors and associated with the histopathological finding of malignant or non-malignant cells. The MAGE A1-10 detection is more sensitive and specific, as well as diagnostic accuracy than the identification of MAGE A family individuals. In addition, this detection can be performed using small specimens of peripheral lung tumors taken by core biopsy. Therefore, the MAGE A1-10 assay could be beneficial to assist in the diagnosis of malignancy in lung tumors.

273

274

275 Acknowledgements:

276

General: Thanks to the Republic of Indonesia especially the Ministry of Research Technology
and Higher Education and Airlangga University, as well as patients willing to participate in
this study. In addition, the authors thank Doctor Mokhammad Mukhlis, Pulmonologist, Doctor
Mawartih Susanty (deceased), Pulmonologist, and Doctor Cut Diana Laili, Pulmonologist, for
their technical assistance during collecting specimens.

Funding Statement: This study was supported by the Ministry of Research, Technology and Higher Education in fiscal year 2019, in the scheme PDUPT with contract number 533/UN3.14/LT/2019.

285

286

287 Conflict of Interest:

All authors have no potential conflict of interest to disclose.

290	Ethical Declaration: This study was approved by Ethics Committee of Dr. Soetomo Hospital,
291	Surabaya, Indonesia with ethical clearance number 497/ Panke.KKE/ VIII/2017. Subjects
292	participating in this study signed informed consent.
293	
~~ .	
294	Authors Contribution:
295	Idea, concepting, writing the manuscript: Mastutik G. Specimen collection: Marhana IA,
296	Rahaju AN, Mastutik G. Laboratory investigation: Amin M, Mastutik G.
297	Histopathological data: Rahniayu A, Kurniasri N, Rahaju AN. Data collection: Trianto
298	HF, Rahniayu A. Statistical analysis: Atika; Trianto HF. Editing the manuscript:
299	Mastutik G; Kurniasri N. Reviewing the manuscript: Mastutik G, Rahniayu A, Marhana
300	IA, Kurniassari N, Rahaju AN, Amin M, Trianto HF, Atika.
301	
001	
302	
303	References
304	
305	Almutairi MH, Alotaibi MM, Alonaizan R, et al (2022). Identification of MAGE-A family
306	genes in colon cancer patients and their expression mechanism. J King Saud Univ-Sci,
307	34 , 102251.
308	Beppu S, Ito Y, Fujii K, et al (2017). Expression of cancer/testis antigens in salivary gland
309	carcinomas with reference to MAGE-A and NY-ESO-1 expression in adenoid cystic
310	carcinoma. Histopathology, 71, 305-15.
311	Brisam M, Rauthe S, Hartmann S, et al (2016). Expression of MAGE-A1-A12 subgroups

312	in the invasive tumor front and tumor center in oral squamous cell carcinoma. Oncol
313	<i>Rep</i> , 35 , 1979-86.

- Cainap C, Pop LA, Balacescu O, et al (2021). Early diagnosis and screening for lung
 cancer. *Cold Spring Harb Perspect Med*, 11, 1993-2009.
- Chen X, Wang L, Liu J, et al (2017). Expression and prognostic relevance of MAGE-A3
 and MAGE-C2 in non-small cell lung cancer. *Oncol Lett*, 13,1609-18.
- 318 Gu L, Sang M, Yin D, et al (2018). MAGE-A gene expression in peripheral blood serves

as a poor prognostic marker for patients with lung cancer. *Thorac Cancer*, **9**, 431-8.

- Gurcan MN, Boucheron LE, Can A, et al (2009). Histopathological Image Analysis: A
 Review. *IEEE Rev Biomed Eng*, 2, 147-71.
- Huang W, Ye J, Qiu Y, et al (2021). Ultrasound-guided percutaneous core needle biopsy
 of peripheral pulmonary nodules ≤ 2 cm: diagnostic performance, safety and influence
 factors. *Front Oncol*, 11, 1-9.
- Jayasinghe C, Simiantonaki N, Kirkpatrick CJ (2015). Histopathological features predict
 metastatic potential in locally advanced colon carcinomas. *BMC Cancer*, 15, 1-14.
- Jheon S, Hyun DS, Lee SC, et al (2004). Lung cancer detection by a RT-nested PCR using
 MAGE A1-6 common primers. *Lung Cancer*, 43, 29-37.
- Karimi S, Mohammadi F, Porabdollah M, et al (2012). Characterization of melanomaassociated antigen-A genes family differential expression in non-small-cell lung
 cancers. *Clin Lung Cancer*, 13, 214-9.
- Kim YD, Park HR, Song MH, et al (2012). Pattern of cancer/testis antigen expression in
 lung cancer patients. *Int J Mol Med*, 29, 656-62.

334	Lee HS, Kim SW, Hong JC, et al (2013) Expression of MAGE A1-6 and the clinical
335	characteristics of papillary thyroid carcinoma. Anticancer Res, 33, 1731-6.
336	Lian Y, Sang M, Gu L, et al (2017). MAGE-A family is involved in gastric cancer
337	progression and indicates poor prognosis of gastric cancer patients. Pathol Res Pract,
338	213 , 943-8.
339	Li R, Gong J, Xiao C, et al (2020). A comprehensive analysis of the MAGE family as
340	prognostic and diagnostic markers for hepatocellular carcinoma. Genomics, 112, 5101-
341	14.
342	Liu S, Zhao Y, Xu Y, et al (2020) Mage-A genes as predictors of the outcome of laryngeal
343	squamous cell carcinoma. Oncol Lett, 20, 1-10.
344	Li S, Shi X, Li J, et al (2018). Pathogenicity of the MAGE family. Oncol Lett, 22, 844.
345	Marhana IA, Amin M, Mastutik G, et al (2021). Melanoma-associated antigen A1 and A3
346	as new candidate of diagnostic for non-small cell lung cancer. J Adv Pharm Educ Res,
347	11 , 1-4.
348	Marhana IA, Widianiti K, Kusumastuti EH (2022). Conformity of fine needle aspiration
349	biopsy (FNAB) and core needle biopsy (CNB) in peripheral lung tumor patients: a
350	cross-sectional study. Ann Med Surg, 75, 103423.
351	Mastutik G, Hardjowijoto S, Lunardi JH, et al (2007). MAGE-1 cDNA isolation from
352	testis with RT PCR. Fol Med Indones, 43,195-200.
353	Mastutik G, Reny I, Lunardi JH, et al (2010). Cloning of melanoma antigen-1 (MAGE)
354	gene from fine needle aspiration biopsy of hepatic tissue of hepatocelluler carcinoma
355	patients. Fol Med Indones, 46, 200-5.

356	Mastutik G, Rahniayu A, Marhana IA, et al (2021). Novel universal primers to identify the
357	expression of mage A1-A10 in the core biopsy of lung cancer. Middle East J Cancer,
358	12 , 10-9.
359	Mazzone PJ, Sears CR, Arenberg DA, et al (2017). Evaluating molecular biomarkers for
360	the early detection of lung cancer: When is a biomarker ready for clinical use? An
361	official American Thoracic Society Policy Statement. Am J Respir Crit Care Med,
362	196 , e15-29.
363	Meek DW, Marcar L (2012). MAGE-A antigens as targets in tumour therapy. Cancer Lett,
364	324 , 126-32.
365	Noh ST, Lee HS, Lim SJ, et al (2016). MAGE-A1-6 expression in patients with head and
366	neck squamous cell carcinoma: impact on clinical patterns and oncologic outcomes. Int
367	<i>J Clin Oncol</i> , 21 , 875-82.
368	Ogata K, Aihara R, Mochiki E, et al (2011). Clinical significance of melanoma antigen-
369	encoding gene-1 (MAGE-1) expression and its correlation with poor prognosis in
370	differentiated advanced gastric cancer. Ann Surg Oncol, 18, 1195-203.
371	Õunap K, Kurg K, Võsa L, et al (2018). Antibody response against cancer-testis antigens
372	MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett, 16, 211-8.
373	Park JW, Kwon TK, Kim IH, et al (2002). A new strategy for the diagnosis of MAGE-
374	expressing cancers. J Immunol Methods, 266, 79-86.
375	Pereira CM, Gomes CC, Silva JDFC, et al (2012). Evaluation of MAGE A1 in oral
376	squamous cell carcinoma. Oncol Rep, 27, 1843-8.
377	Poojary M, Jishnu PV, Kabekkodu SP (2020). Prognostic value of melanoma-associated

378	antigen-A (MAGE-A) gene expression in various human cancers: a systematic review
379	and meta-analysis of 7428 patients and 44 studies. Mol Diagnosis Ther, 24, 537-55.
380	Ries J, Vairaktaris E, Mollaoglu N, et al (2008). Expression of melanoma-associated
381	antigens in oral squamous cell carcinoma. J Oral Pathol Med, 37, 88-93.
382	Shigematsu Y, Hanagiri T, Shiota H, et al (2010). Clinical significance of cancer/testis
383	antigens expression in patients with non-small cell lung cancer. Lung Cancer, 68, 105-
384	10.
385	Sugita M, Geraci M, Gao B, et al (2002). Combined use of oligonucleotide and tissue
386	microarrays identifies cancer/testis antigens as biomarkers in lung carcinoma. Cancer
387	<i>Res</i> , 62 , 3971-9.
388	Sung H, Ferlay J, Siegel RL, et al (2021). Global cancer statistics 2020: GLOBOCAN
389	estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA
390	<i>Cancer J Clin</i> , 71 , 209-49.
391	Tsai JR, Chong IW, Chen YH, et al (2007). Differential expression profile of MAGE
392	family in non-small-cell lung cancer. Lung Cancer, 56, 185-92.
393	Wang XX, Shao C, Huang XJ, et al (2021). Histopathological features of multiorgan
394	percutaneous tissue core biopsy in patients with COVID-19. J Clin Pathol, 74, 522-7.
395	Weon JL, Potts RR (2015). The MAGE protein family and cancer. Physiol Behav, 176,
396	139-48.
397	Yao X, Gomes MM, Tsao MS, et al (2012). Fine-needle aspiration biopsy versus core-
398	needle biopsy in diagnosing lung cancer: A systematic review. Curr Oncol, 19, 16-27.
399	Yi E, Chang JE, Leem C, et al (2017). Association of MAGE A1-6 expression with lung

400	cancer progression. J Cancer, 8, 1324-9.
401	Zhang H, Tian S, Wang S, et al (2022). CT-guided percutaneous core needle biopsy in
402	typing and subtyping lung cancer: a comparison to surgery. Technol Cancer Res Treat,
403	21 , 15330338221086411.
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	
421	
422	
423	
424	

425 Table 1. Characteristics of the patient from the core biopsy of peripheral lung tumor

Characteristic Patients			Frequency	Percentage (%)
Age (mean <u>+</u> SD)	:	<mark>50.81 <u>+</u> 14.770</mark>		
Sex	:	Male	46	68.7
		Female	21	31.3
		Total	67	100
Clinical Diagnosis	:	Lung Tumor	45	67.2
		Mediastinal Tumor	22	32.8
		Total	67	100
Histopathological Diagnosis	s : Malignant cell		41	61.2
		Non-malignant cell	26	38.8
		Total	67	100
Lung Tumor	:	Malignant cell	29	64.4
		Non-malignant cell	16	35.6
		Total	45	100
Mediastinal Tumor	:	Malignant cell	12	54.5
		Non-malignant cell	10	45.5
		Total	22	100

Table 2. The expression of MAGE A gene family based on histopathological finding from the corebiopsy of lung and mediastinal tumor

Histopathological finding Contingency Malignant Non-malignant Total Subtype of P Value coefficient <mark>N (%)</mark> MAGE A cells **cells** value <mark>N (%)</mark> <mark>N (%)</mark> MAGE A1-10 14 (53.9) <mark>47 (70.1)</mark> 0.041* Positive 33 (80.5) 0.273 Negative 8 (19.5) 12 (46.1) <mark>20 (29.9)</mark> (P = 0.020)MAGE A1-6 0.097 Positive 19 (46.3) 6 (23.1) 25 (37.3) Negative 22 (53.7) 20 (76.9) 42 (62.7) MAGE A1 Positive 12 (29.3) <mark>5 (19.2)</mark> 17 (25.4) 0.527 Negative <mark>29 (70.7)</mark> <mark>21 (80.8)</mark> <u>50 (74.6)</u> MAGE A2 Positive <mark>4 (9.8)</mark> 0 <mark>4 (6.0)</mark> 0.152 Negative 37 (90.2) <mark>26 (100)</mark> <mark>63 (94.0)</mark> MAGE A3 1.000 Positive **4 (9.8)** 3(11.5)7 (10.4) Negative 37 (90.2) 23 (88.5) <u>60 (89.6)</u> MAGE A4 Negative <mark>41 (100)</mark> 26 (100) **67 (100)** MAGE A5 Positive 22 (53.6) 8 (30.8) <u>30 (44.8)</u> 0.113 Negative <u>19 (46.3)</u> 18 (69.2) <u>37 (55.2)</u> MAGE A6 <mark>41 (100)</mark> 26 (100) Negative **67 (100)** MAGE A8 20 (29.9) 0.020* 0.304 Positive 17 (41.5) 3(11.5)(P = 0.009)Negative <mark>24 (58.5)</mark> <mark>23 (88.5)</mark> <mark>47 (70.1)</mark> MAGE A9 Positive <u>6 (14.6)</u> 7 (26.9) 13 (19.4) 0.356 Negative 35 (85.4) 19 (73.1) 54 (80.6) MAGE A10 0 1(2.4)Positive 1(1.5)1.000 Negative 26 (100) <mark>40 (97.6)</mark> <mark>66 (98.5)</mark>

455

454

453

456

457

	<mark>Sn (%)</mark>	<mark>Sp (%)</mark>	PPV	NPV	LR+	LR-	DA
			<mark>(%)</mark>	<mark>(%)</mark>			<mark>(%)</mark>
MAGE A1-10	<mark>80.5</mark>	<mark>46.2</mark>	<mark>70.2</mark>	<mark>60</mark>	1.49	0.42	<mark>67.2</mark>
MAGE A1-6	<mark>46.3</mark>	<mark>76.9</mark>	<mark>76</mark>	<mark>47.6</mark>	2.01	0.70	<mark>58.2</mark>
MAGE A1	<mark>29.23</mark>	<mark>80.8</mark>	<mark>70.6</mark>	<mark>42</mark>	1.52	0.88	<mark>49.3</mark>
MAGE A2	<mark>9.8</mark>	<mark>100</mark>	<mark>100</mark>	<mark>41.3</mark>	-	0.90	<mark>44.8</mark>
MAGE A3	<mark>9.8</mark>	<mark>88.5</mark>	<mark>57.1</mark>	<mark>38.3</mark>	0.85	1.02	<mark>40.3</mark>
MAGE A5	<mark>53.7</mark>	<mark>69.2</mark>	<mark>73.3</mark>	<mark>48.7</mark>	1.744	0.67	<mark>59.7</mark>
MAGE A8	<mark>41.5</mark>	<mark>88.5</mark>	<mark>85</mark>	<mark>48.9</mark>	3.59	0.66	<mark>59.7</mark>
MAGE A9	<mark>14.6</mark>	<mark>73.1</mark>	<mark>61.2</mark>	<mark>35.2</mark>	0.54	1.17	<mark>37.3</mark>
MAGE A10	<mark>2.4</mark>	<mark>100</mark>	<mark>100</mark>	<mark>39.4</mark>	-	0.98	<mark>40.3</mark>

Table 3. The diagnostic values of MAGE A gen family based on the histopathological finding of corebiopsy specimens.

Note: Sn: Sensitivity, Sp: Specificity, PPV: Positive predictive value, NPV: Negative predictive value, LR+: positive like ratio, LR-: negative like ratio, DA: Diagnostic accuracy

492 Figure 1. Histopathological diagnosis of lung tumors. (A) Non-small cell lung cancer type
493 adenocarcinoma and (B) Non-small cell lung cancer type squamous cell carcinoma observed with a
494 light microscope, magnification 100x.

RESEARCH ARTICLE

Editorial Process: Submission:00/00/0000 Acceptance:00/00/0000

The MAGEA1-A10 Expression associated with Histopathological Findings of Malignant or Non-Malignant Cells in Peripheral Lung Tumors

Gondo Mastutik¹*, Alphania Rahniayu¹, Isnin Anang Marhana², Nila Kurniassari Anny Setijo Rahaju¹, Mochamad Amin³, Heru Fajar Trianto⁴, Atika Atika⁵

Abstract

Objective: The objective was to evaluate the expression of melanoma antigen (MAGE) A from A1 t (A1-10) and the individual MAGE A family in the peripheral lung tumors and to analyze its association with histopathological findings. Methods: A cross-sectional study was conducted on 67 samples of peripheral lung tumor obtained by core biopsies from patients with clinical diagnoses such as lung and mediastinal tumors. The specimens were divided into two, one to perform histopathological diagnosis and the last for mRNA MAGE A examination. A Nested polymerase chain reaction (PCR) was performed using universal primer, MF10/MR10 and MF10/MR12. The collected data were analyzed by appropriate statistical techniques. Result: The histopathological finding showed 41 (61.2%) of specimens as malignant cells and 26 (38.8 %) of specimens as non-malignant cells. MAGE A1-10 was expressed at 47 (70.1 %) and MAGE A1-6 was expressed at 25 (37.3 %) of specimens. In a malignant cell, MAGE A1-10 and MAGE A1-6 were expressed at 33 (80.5 %) and 19 (46.3 %), respectively. In non-malignant cells, MAGE A1-10 and MAGE A1-6 were expressed at 14 (53.9 %) and 6 (23.1 %), respectively. The MAGE A1-10 and MAGE A8 expressions were significantly associated with histopathological findings of malignant or non-malignant cells. The sensitivity, specificity, and diagnostic accuracy of MAGE A1-10 were 80.5 %, 46.2 %, and 67.2 %, respectively; while for MAGE A8 were 41.5 %, 88.5 %, and 59.7 %, respectively. Conclusion: The MAGE A1-10 expression was the most commonly detected and associated with the histopathological finding. Moreover, it was more sensitive and specific and had higher diagnostic accuracy than others. Therefore, the MAGE A1-10 assay may improve the accuracy of the diagnosis of malignancy in peripheral lung tumors.

Keywords: Lung cancer- cancer cell- MAGE A1-10- MAGE A1-6- core biopsy

Asian Pac J Cancer Prev, 24,

Introduction

Lung cancer is the second most common malignancy in worldwide. GLOBOCAN 2020 data shows that new cases of lung cancer are 2.206.771 cases (11.4 %) and are the main cause of death due to cancer with a mortality rate of 1.796.144 (18.0 %) (Sung et al., 2020). Lung cancer is significantly newly detected at an advanced stage and affects patient survival (Sugita et al., 2002). This may because most of the patients diagnosed are at an advanced stage making it difficult to provide appropriate treatment (Cainap et al., 2021). The difficulty encountered in diagnosing lung cancer at an early stage is the location of the tumor which is difficult to reach. Furthermore, the patient does not feel symptoms because new symptoms appear after the cancer has reached an advanced stage (Sugita et al., 2002; Cainap et al., 2021). Locations on the periphery or center of the chest cavity that are difficult to reach with existing equipment. Therefore, molecular approaches to assist detection of lung cancer or determine clinical outcomes can be developed in certain regions of the lung tumor (Mazzone et al., 2017), either centrally or peripherally in the thoracic cavity.

One of the possible approaches for diagnosing patients with lung tumors in the peripheral areas is to perform a biopsy. A core biopsy can be performed in the thoracic cavity under ultrasound guidance or computed tomography (Marhana et al., 2021). The specimen obtained by core biopsy is quite adequate and can be used to specify the type of histopathological diagnosis of lung

¹Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. ²Department of Pulmonology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. ³Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia. ⁴Department of Anatomic Pathology, Faculty of Medicine, Universitas Tanjungpura, Pontianak, Indonesia. ⁵Department of Public Health Sciences-Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. *For Correspondence: gondomastutik@fk.unair.ac.id

cancer and also contributes to the selection of appropriate therapy for lung tumor patients (Huang et al., 2021; Zhang et al., 2022; Marhana et al., 2022). In addition, the risk of complication such as pneumothorax or hemoptysis of core biopsies can be reduced (Yao et al., 2012). Therefore, the sample from the core biopsy of lung tumors could be used in the molecular diagnosis based on PCR techniques.

Melanoma-associated antigen (MAGE) is a tumor antigen that was first discovered in melanoma patients (Meek and Marcar, 2012). MAGE A belongs to the class of cancer/testis antigens which is expressed on cancer cells and germ cells, including the testis, fetal ovary, and placenta (Õunap et al., 2018; Li et al., 2021). Based on the location of the gene on the chromosome and gene expression in the tissue, MAGE is classified into two kinds. MAGE I consists of MAGE A, B, and C, while MAGE II consists of MAGE D (Weon and Potts, 2015; Li et al., 2021). The family of MAGE A gene consists of 12 subtypes that are MAGE- A1, MAGE- A2, MAGE-A3, MAGE- A4, MAGE- A5, MAGE- A6, MAGE- A7 (pseudo gene), MAGE- A8, MAGE- A9, MAGE- A10, MAGE- A11, and MAGE- A12 (Brisam et al., 2016; Mastutik et al., 2021).

The MAGE A gene has been reported that it was expressed in several types of cancer, such as laryngeal cancer (Liu et al., 2020), oral cancer (Pereira et al., 2012), salivary gland cancer (Beppu et al., 2017), gastric cancer (Ries et al., 2008), colorectal cancer (Almutairi et al., 2022), liver cancer (Mastutik et al., 2010; Li et al., 2020), and lung cancer (Sugita et al., 2002; Karimi et al., 2012). Furthermore, in lung cancer, MAGE A3 and MAGE A4 were identified in lung cancer patients with histopathological type of non-small cell lung cancer (NSCLC) (Shigematsu et al., 2010), while MAGE A1 and MAGE A3 were identified in the early stage of carcinogenesis (Chen et al., 2017). The expression of several subtypes of MAGE A3 and A4 in NSCLC was associated with tumor progression, poor survival, and poor outcome (Shigematsu et al., 2010; Chen et al., 2017; Yi et al., 2017).

The Previous study identified expression of MAGE A1 to MAGE A6 (MAGE A1-6) together using nested PCR (Park et al., 2002). They were expressed in papillary thyroid microcarcinoma (Lee et al., 2013), head and neck squamous cell carcinoma (Noh et al., 2016), and in lung cancer (Yi et al., 2017). However, MAGE A8 to MAGE A10 were expressed in NSCLC (Sugita et al., 2002; Tsai et al., 2007) and small cell lung cancer (SCLC) (Sugita et al., 2002) that may improve the finding of the malignant cell on the small specimens of the core biopsy. Our previous study has identified MAGE A1-10 expression by nested PCR using universal primers that were MF10/ MR10 and MF10/MR12 (Mastutik et al., 2021). Therefore, the identification of several subtypes of MAGE A that consists of MAGE A1 to MAGE A10 (MAGE A1-10) could increase the diagnostic value and serve as a predictor marker of cancer progression. The objective of this study was to evaluate the expression of MAGE A1-10, MAGE A1-6, and the individual of MAGE A gene, including MAGE A1, A2, A3, A4, A5, A6, A8, A9, and A10 in the peripheral lung tumor and analyses the association

between MAGE A1-10, MAGE A1-6, and individual MAGE A with histopathological finding.

Materials and Methods

The samples collection

An observational study with a cross-sectional approach was performed in Dr. Soetomo Hospital, Surabaya, Indonesia. Samples were the core biopsies specimens collected from patients with clinical diagnoses suffering from lung and mediastinal tumors in the Lung Intervention Room, Diagnostic Center Building from August 2017 to August 2018. This study was approved by Ethics Committee of Dr. Soetomo Hospital, Surabaya, Indonesia with ethical clearance number 497/ Panke.KKE/ VIII/2017. All subjects participating in this study signed informed consent.

The Inclusion criteria were patients aged 18–80 years, patients had at least one measurable tumor or lesion, lung tumor underwent ultrasound-guided core biopsy for collection of tissue specimens, Karnofsky score was expressed at > 70 %, patients had never received systemic therapy, and patients willing to participate in the study (with informed consent). The exclusion criteria were the presence of a primary tumor in other organs and the patient was not in optimal condition to undergo invasive diagnostic procedures, such as uncooperativeness, hypercapnia, hypoxemia, arrhythmia, and unstable hemodynamics.

Detection of expression of MAGE A genes

RNA was extracted from core biopsies specimens using RNAeasy Plus Mini Kit (Qiagen, Hilden, Germany) with the procedure in the protocol as in our previously study (Mastutik et al., 2021). Total RNA was used as a template for reverse-transcription PCR (RT-PCR) with the RT PCR Master Mix (Toyobo, Osaka, Japan) and followed by nested PCR.

Before RT PCR was performed to detect MAGE A expression, all samples were used for RT PCR using the housekeeping gene, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This aims to ensure that the specimen used in the RT PCR process has DNA in sufficient quantity. Specimens with GAPDH positive will be used to identify the expression of the MAGE A family gene. If the GAPDH RT- PCR results show negative, then the sample is excluded.

Identification of MAGE A1-10 was performed the PCR using the MF10/MR10 primers and MF10/MR12 primers (Mastutik et al., 2021), while MAGE A1-6 by using MMRP1/MMRP1 primers and MMRP3/MMRP4 primers (Park et al., 2002). The GAPDH primers, the individual of MAGE A from MAGE A1 to MAGE A10 primers, and the PCR condition were performed as in the previous studies (Park et al., 2002; Mastutik et al., 2021).

Statistical analysis

The expression of MAGE A was presented in percentage. The association between the expression of MAGE A1-10, MAGE A1-6, and individual MAGE A from MAGE A1 to MAGE A10 with histopathological finding were analysis with Fisher's Exact Test 2 sided. The sensitivity and specificity were showed in percentage.

Results

This study was conducted on 67 core biopsy specimens from patients with clinical diagnoses of lung or mediastinal tumors. The patients consisted 45 (67.2 %) lung tumors and 22 (32.8 %) mediastinal tumors, 46 males and 21 females. The age range was 18-79 years old. Most patients were aged 51-60 years old (Table 1).

The histopathological finding from the core biopsy specimens showed 41 (61.2%) of specimens as malignant cells and 26 (38.8 %) of specimens as non-malignant cells. The malignant cells from lung tumors were carcinoma poorly differentiated (1 patient), Small cell carcinoma (1 patient), NSCLC type adenocarcinoma (23 patients), and NSCLC type of squamous cell carcinoma (2 patients), NSCLC type of adenosquamous carcinoma (2 patients), (Figure 1). In non-malignant cells were inflammation (6 patients), and no found malignant cells (10 patients). Furthermore, the malignant cells from mediastinal tumors were malignant round cell tumor (4 patients), malignant germ cell tumor (1 patients), malignant lymphoma (1 patients), hodgkin lymphoma (2 patients), and non-hodgkin lymphoma (4 patients), while in categories non-malignant cell were thymoma (2 patients) and no found malignant cells (8 patients).

The group of MAGE A1-10 was expressed the most in the lung and mediastinal tumors. There was 47 (70.1 %) for MAGE A1-10 and followed by MAGE A1-6 at 25 (37.3 %). For individual MAGE A family genes showed MAGE A5 was expressed at 44.8 %, then followed by MAGE A8 was 29.9 %, MAGE A1 was 25.4 %, MAGE A9 was 19.4 %, MAGE A3 was 10.4 %, MAGE A2 was 6.0 %, MAGE 10 was 1.5 % (Table 2). In addition, there were no specimens expressed MAGE A4 and A6 (Table 2).

From specimens with histopathological finding of malignant cells, MAGE A1-10 gene was expressed in 33 (80.5 %) and MAGE A1-6 in 19 (46.3 %). The individual of MAGE A family, MAGE A5 was expressed in 53.6 %, MAGE A8 in 41.5 %, MAGE A1 in 29.3 %, MAGE A9 in 14.6 %, MAGE A2 and A3 in 9.8 % respectively, and MAGE A10 in 2.4 % (Table 2). This showed that the MAGE A1-10 group was most highly expressed in

malignant cells.

Furthermore, in non-malignant cells, the MAGE A gene family was expressed positively. The MAGE A1-10 group were expressed on 14 (53.9 %), MAGE A1-6 on 6 (23.1 %), and the single gen of MAGE A5 was expressed on 30.8 %, MAGE A9 on 26.9 %, MAGE A1 on 19.2 %, MAGE A3 and MAGE A8 on 11.5 %, respectively (Table 2).

The MAGE A1-10 expression was significantly associated with histopathological diagnosis (P < 0.05) with a probability value was 0.041. The contingency coefficient value for MAGE A1-10 was 0.273 (P-value 0.020) with the strength of association being weak (0.21–0.4) (Table 2). Analysis of the diagnostic value of MAGE A1-10 showed a sensitivity of 80.5 %, a specificity of 46.2 %, and a diagnostic accuracy of 67.2 % (Table 3).

This study found that there is a significant association between the expressions of MAGE A8 with histopathology diagnosis of malignant cells and non-malignant cells (P < 0.05), the P-value was 0.020. The contingency coefficient value was 0.304 (P-value 0.009) with the strength of association is being weak (0.21–0.4) (Table 2).

Table 1. Characteristics of the Patient from the Core Biopsy of Peripheral Lung Tumor

Characteristic Patie	Frequency	Percentage (%)	
Age (mean + SD)	50.81 + 14.770		
Sex	Male	46	68.7
	Female	21	31.3
	Total	67	100
Clinical	Lung Tumor	45	67.2
Diagnosis	Mediastinal Tumor	22	32.8
	Total	67	100
Histopathological Diagnosis	Malignant cell	41	61.2
	Non-malignant cell	26	38.8
	Total	67	100
Lung Tumor	Malignant cell	29	64.4
	Non-malignant cell	16	35.6
	Total	45	100
Mediastinal	Malignant cell	12	54.5
Tumor	Non-malignant cell	10	45.5
	Total	22	100

Figure 1. Histopathological Diagnosis of Lung Tumors. (A) Non-small cell lung cancer type adenocarcinoma and (B) Non-small cell lung cancer type squamous cell carcinoma observed with a light microscope, magnification 100x.

Subtype of MAGE	Histopatho	Total N (%)	P Value	Contingency	
А	Malignant cells N (%) Non-malignant cells N (%)				coefficient value
MAGE A1-10					
Positive	33 (80.5)	14 (53.9)	47 (70.1)	0.041*	0.273
Negative	8 (19.5)	12 (46.1)	20 (29.9)		(P = 0.020)
MAGE A1-6					
Positive	19 (46.3)	6 (23.1)	25 (37.3)	0.097	
Negative	22 (53.7)	20 (76.9)	42 (62.7)		
MAGE A1					
Positive	12 (29.3)	5 (19.2)	17 (25.4)	0.527	
Negative	29 (70.7)	21 (80.8)	50 (74.6)		
MAGE A2					
Positive	4 (9.8)	0	4 (6.0)	0.152	
Negative	37 (90.2)	26 (100)	63 (94.0)		
MAGE A3					
Positive	4 (9.8)	3 (11.5)	7 (10.4)	1,000	
Negative	37 (90.2)	23 (88.5)	60 (89.6)		
MAGE A4					
Negative	41 (100)	26 (100)	67 (100)	-	
MAGE A5					
Positive	22 (53.6)	8 (30.8)	30 (44.8)	0.113	
Negative	19 (46.3)	18 (69.2)	37 (55.2)		
MAGE A6					
Negative	41 (100)	26 (100)	67 (100)	-	
MAGE A8					
Positive	17 (41.5)	3 (11.5)	20 (29.9)	0.020*	0.304
Negative	24 (58.5)	23 (88.5)	47 (70.1)		(P = 0.009)
MAGE A9					
Positive	6 (14.6)	7 (26.9)	13 (19.4)	0.356	
Negative	35 (85.4)	19 (73 .1)	54 (80.6)		
MAGE A10					
Positive	1 (2.4)	0	1 (1.5)	1.000	
Negative	40 (97.6)	26 (100)	66 (98.5)		

Table 2. The Expression of MAGE A Gene Family based on Histopathological Finding from the Core Biopsy of Lung and Mediastinal Tumor

The diagnostic value analysis showed that MAGE A8 had a sensitivity of 41.5 %, a specificity of 88.5 %, and

a diagnostic accuracy of 59.7 % (Table 3). This study found that there is no significant association between the

Table 3. The Diagnostic Values of *MAGE A* Gen Family based on the Histopathological Finding of Core Biopsy Specimens.

opeeninenio.							
	Sn (%)	Sp (%)	PPV (%)	NPV (%)	LR+	LR-	DA (%)
MAGE A1-10	80.50	46.2	70.2	60	1.49	0.42	67.2
MAGE A1-6	46.30	76.9	76	47.6	2.01	0.70	58.2
MAGE A1	29.23	80.8	70.6	42	1.52	0.88	49.3
MAGE A2	9.80	100	100	41.3	-	0.90	44.8
MAGE A3	9.80	88.5	57.1	38.3	0.85	1.02	40.3
MAGE A5	53.70	69.2	73.3	48.7	1.744	0.67	59.7
MAGE A8	41.50	88.5	85	48.9	3.59	0.66	59.7
MAGE A9	14.60	73.1	61.2	35.2	0.54	1.17	37.3
MAGE A10	2.40	100	100	39.4	-	0.98	40.3

Note: Sn, Sensitivity; Sp, Specificity; PPV, Positive predictive value; NPV, Negative predictive value; LR+, positive like ratio; LR-, negative like ratio; DA, Diagnostic accuracy

expressions of MAGE A1-6, MAGE A1, MAGE A2, MAGE A3, MAGE A5, MAGE A9, MAGE A10 with histopathology diagnosis of malignant cells and non-malignant cells (P > 0.05) (Table 2).

Discussion

Lung cancer is cer that is usually diagnosed at an advanced stage. One of the obstacles encountered in diagnosing lung malignancy is the location of the deep tumor in the thoracic cavity (Marhana et al., 2021; Marhana et al., 2022). Therefore, specimens were collected in the process of diagnosing lung malignancy with interventions, such as core biopsy, fine needle aspiration biopsy, forceps biopsy, bronchoalveolar lavage, and brushing (Marhana et al., 2021). Compared with the fine needle aspiration biopsy, the core biopsy procedure showed lower complications, such as pneumothorax and hemoptysis (Yao et al., 2012). In this study, specimens from the core biopsies of peripheral lung tumors were used to establish a histopathological diagnosis and examine mRNA of MAGE A gene family. The mRNA type can be identified by nested polymerase chain reaction (PCR) (Park et al., 2002; Mastutik et al., 2007). This gene is expressed from a silent condition in normal cells or overexpressed in cancer cells before symptoms appear that may be beneficial as a biomarker in the diagnosis and prognosis of lung cancer (Jheon et al., 2004; Karimi et al., 2012; Weon and Potts, 2015).

The core biopsy specimen was a small piece of a specimen that was used in a routine procedure to determine the malignancy status of a patient. Based on the histopathological feature, it found 61.2 % of specimens as malignant cells and 38.8 % of specimens as non-malignant cells. Expression of a single MAGE A gene family showed that MAGE A5 was the most frequent, then followed by MAGE A8, MAGE A1, MAGE A9, MAGE A3, MAGE A2, and MAGE A10. It followed the previous studies in lung cancer that showed the expression of MAGE A1 was 27-46 %, MAGE A3 was 38-55 %, MAGE A4 was 19-35 %, MAGE A6 was 26 %, MAGE A10 was 14-27 % (Weon and Potts, 2015). Another study reported MAGE A3 was expressed at 42 %, MAGE A1 at 27 %, MAGE A4 at 19%, and MAGE A10 at 14% of lung cancer (Kim et al., 2012). MAGE A1 and MAGE A3 have the same expression that was at 77 % of SCLC and 67 % of NSCLC, MAGE A4 was expressed on 82 % of SCLC and 67 % of NSCLC (Sugita, 2002), while MAGE A3 was expressed on 73 % of NSCLC (Chen et al., 2017).

This study showed that MAGE A1-10 expression was the most frequently found, followed by MAGE A1-6 expression. It found MAGE A1-10 was expressed at 70.1 % specimens and MAGE A1-6 was expressed at 37.3 % specimens. In addition, MAGE A1-10 expression were found to be more frequently detected in malignant cells than in non-malignant cells. In malignant cells, the MAGE A1-10 expression was detected at 80.5 %, while MAGE A1-6 expression was detected at 46.3 %. In non-malignant cells, MAGE A1-10 was detected in 53.9 %, while MAGE A1-6 was detected in 23.1 %. MAGE A1-6 expression in this study was lower than previous studies, but MAGE 52

A1-10 expression showed almost the same number as MAGE A1-6 expression in previous studies. Previous studies have shown that MAGE A1-6 were expressed on 70 % of head and neck cancer (Noh et al., 2016). MAGE A1-6 was expressed on 71 % of oral cancer (Ries et al., 2008), on 83 % of lung cancer tissue (Jheon et al., 2004), and 15 % in bone marrow of lung cancer patients (Yi et al., 2017). It suggested that the examination of MAGE A1 to A10 and MAGE A1 to A6 expression can support each other in determining lung malignancy.

Moreover, the MAGE A gene has been reported that it was expressed in several types of cancer and may be beneficial for detecting of lung cancer in early stage and for predicting the prognosis of patients. In oral squamous cell carcinoma, the expression of the MAGE A3 to A5, and MAGE A9 were corelated to lymph node metastases and MAGEA1 was associated with clinical stage progression (Brisam et al., 2016). In advanced gastric cancer, the MAGE A1 expression was related with poor overall survival and can be served as poor prognose (Ogata et al., 2011; Lian et al., 2017). A meta-analysis study reported that the overexpression of MAGE A could be a potential marker for poor prognosis in several cancer cases (Poojary et al., 2020). Furthermore, the MAGE A gene is also expressed in the tissue surrounding NSCLC cancer which appears normal based on the histopathological diagnosis (Karimi et al., 2012) and associated with poor clinical prognosis (Weon and Potts, 2015). Expression of MAGE A gene family related to the shorter overall survival of lung cancer patients (Gu et al., 2018) and laryngeal cancer (Liu et al., 2020). It is also associated with lymph node metastasis of oral cancer and advanced-stage of disease clinically (Brisam et al., 2016).

This study found that there was a significantly different association between the expression of MAGE A1-10 and MAGE A8 with histopathological diagnosis showing malignant or non-malignant cells. In addition, 53.9 % of specimens in the group of non-malignant cells were expressed MAGE A1-10. In histopathological findings, malignant and non-malignant cells was determined based on the characteristic of structural alteration in cells or tissues. They can be observed microscopically on a slide (Gurcan et al., 2009; Jayasinghe et al., 2015; Wang et al., 2021). While examination of MAGEA expression is based on the transcription activation process to produces mRNA in the cell that may occur at the molecular level before or during the cell structure changes (Park et al., 2002). This study showed that MAGE A1-10 can still be found positive by nested PCR technique on the histopathological findings of the non-malignant cells. This could be used to improve diagnostic accuracy when cancer cells are not found in the specimen. In addition, to determine therapeutic options for lung cancer patients, it is necessary to diagnose the type of cancer based on histopathological changes. Therefore, these two examination methods can complement each other. If malignant cells are not found, then a molecular examination can be carried out using the PCR technique to find out whether the specimen contains cancer cells or not.

The gold standard in examining the malignancy status of lung tumors is histopathological examination (Gurcan

et al., 2009). Nested PCR in this study was able to detect MAGE A1 to MAGE A10 as previous study (Mastutik et al., 2021). It was compared to histopathological finding showed that MAGE A1-10 expression had a sensitivity of 80.5 % and a diagnostic accuracy of 67.2 %. MAGE A1-10 is most frequently expressed in tumor specimens with sensitivity and diagnostic accuracy of more than 65 %. Therefore, the examination of MAGE A1 to MAGE A10 expression by nested PCR technique could be used as an alternative assay method to detect cancer cells in specimens from the core biopsy of peripheral lung cancer.

The MAGE A1-10 was expressed highest in the core biopsies of peripheral lung tumors and associated with the histopathological finding of malignant or non-malignant cells. The MAGE A1-10 detection is more sensitive and specific, as well as diagnostic accuracy than the identification of MAGE A family individuals. In addition, this detection can be performed using small specimens of peripheral lung tumors taken by core biopsy. Therefore, the MAGE A1-10 assay could be beneficial to assist in the diagnosis of malignancy in lung tumors.

Author Contribution Statement

Idea, concepting, writing the manuscript: Mastutik G. Specimen collection: Marhana IA, Rahaju AN, Mastutik G. Laboratory investigation: Amin M. Mastutik G. Histopathological data: Rahniayu A, Kuri 🐱 i N, Rahaju AN. Data collection: Trianto HF, Rahniayu A. Statistical analysis: Atika; anto HF. Editing the manuscript: Mastutik G; Kukhusri N. Reviewing the manuscript: Mastutik G, Rahniayu A, Marhana IA, Kurnikaturi N, Rahaju AN, Amin M, Trianto HF, Atika.

Acknowledgements

General

Thanks to the Republic of Indonesia especially the Ministry of Research Technology and Higher Education and Airlangga University, as well as patients willing to participate in this study. In addition, the authors thank Doctor Mokhammad Mukhlis, Pulmonologist, Doctor Mawartih Susanty (deceased), Pulmonologist, and Doctor Cut Diana Laili, Pulmonologist, for their technical assistance during collecting specimens.

Funding Statement

This study was supported by the Ministry of Research, Technology and Higher Education in fiscal year 2019, in the scheme PDUPT with contract number 533/UN3.14/ LT/2019.

Conflict of Interest

All authors have no potential conflict of interest to disclose.

Ethical Declaration

This study was approved by Ethics Committee of Dr. Soetomo Hospital, Surabaya, Indonesia with ethical clearance number 497/ Panke.KKE/ VIII/2017. Subjects participating in this study signed informed consent.

References

- Almutairi MH, Alotaibi MM, Alonaizan R, et al (2022). Identification of MAGE-A family genes in colon cancer patients and their expression mechanism. J King Saud Univ-Sci, 34, 102251.
- Beppu S, Ito Y, Fujii K, et al (2017). Expression of cancer/ testis antigens in salivary gland carcinomas with reference to MAGE-A and NY-ESO-1 expression in adenoid cystic carcinoma. Histopathology, 71, 305-15.
- Brisam M, Rauthe S, Hartmann S, et al (2016). Expression of MAGE-A1-A12 subgroups in the invasive tumor front and tumor center in oral squamous cell carcinoma. Oncol Rep, 35, 1979-86.
- Cainap C, Pop LA, Balacescu O, et al (2021). Early diagnosis and screening for lung cancer. Cold Spring Harb Perspect Med, 11, 1993-2009.
- Chen X, Wang L, Liu J, et al (2017). Expression and prognostic relevance of MAGE-A3 and MAGE-C2 in non-small cell lung cancer. Oncol Lett, 13,1609-18.
- Gu L, Sang M, Yin D, et al (2018). MAGE-A gene expression in peripheral blood serves as a poor prognostic marker for patients with lung cancer. Thorac Cancer, 9, 431-8.
- Gurcan MN, Boucheron LE, Can A, et al (2009). Histopathological Image Analysis: A Review. IEEE Rev Biomed Eng, 2, 147-71.
- Huang W, Ye J, Qiu Y, et al (2021). Ultrasound-guided percutaneous core needle biopsy of peripheral pulmonary nodules ≤2 cm: diagnostic performance, safety and influence factors. Front Oncol, 11, 1-9.
- Jayasinghe C, Simiantonaki N, Kirkpatrick CJ (2015). Histopathological features predict metastatic potential in locally advanced colon carcinomas. BMC Cancer, 15, 1-14.
- Jheon S, Hyun DS, Lee SC, et al (2004). Lung cancer detection by a RT-nested PCR using MAGE A1-6 common primers. Lung Cancer, 43, 29-37.
- Karimi S, Mohammadi F, Porabdollah M, et al (2012). Characterization of melanoma-associated antigen-A genes family differential expression in non-small-cell lung cancers. Clin Lung Cancer, 13, 214-9.
- Kim YD, Park HR, Song MH, et al (2012). Pattern of cancer/ testis antigen expression in lung cancer patients. Int J Mol Med, 29, 656-62.
- Lee HS, Kim SW, Hong JC, et al (2013) Expression of MAGE A1-6 and the clinical characteristics of papillary thyroid carcinoma. Anticancer Res, 33, 1731-6.
- Lian Y, Sang M, Gu L, et al (2017). MAGE-A family is involved in gastric cancer progression and indicates poor prognosis of gastric cancer patients. Pathol Res Pract, 213, 943-8.
- Li R, Gong J, Xiao C, et al (2020). A comprehensive analysis of the MAGE family as prognostic and diagnostic markers for hepatocellular carcinoma. Genomics, 112, 5101-14.
- Liu S, Zhao Y, Xu Y, et al (2020) Mage-A genes as predictors of the outcome of laryngeal squamous cell carcinoma. Oncol Lett, 20, 1-10.
- Li S, Shi X, Li J, et al (2018). Pathogenicity of the MAGE family. Oncol Lett, 22, 844.
- Marhana IA, Amin M, Mastutik G, et al (2021). Melanomaassociated antigen A1 and A3 as new candidate of diagnostic for non-small cell lung cancer. J Adv Pharm Educ Res, 11, 1-4.
- Marhana IA, Widianiti K, Kusumastuti EH (2022). Conformity of fine needle aspiration biopsy (FNAB) and core needle biopsy (CNB) in peripheral lung tumor patients: a crosssectional study. Ann Med Surg, 75, 103423.
- Mastutik G, Hardjowijoto S, Lunardi JH, et al (2007). MAGE-1 cDNA isolation from testis with RT PCR. Fol Med Indones,

43,195-200.

- Mastutik G, Reny I, Lunardi JH, et al (2010). Cloning of melanoma antigen-1 (MAGE) gene from fine needle aspiration biopsy of hepatic tissue of hepatocelluler carcinoma patients. Fol Med Indones, 46, 200-5.
- Mastutik G, Rahniayu A, Marhana IA, et al (2021). Novel universal primers to identify the expression of mage A1-A10 in the core biopsy of lung cancer. Middle East J Cancer, 12, 10-9.
- Mazzone PJ, Sears CR, Arenberg DA, et al (2017). Evaluating molecular biomarkers for the early detection of lung cancer: When is a biomarker ready for clinical use? An official American Thoracic Society Policy Statement. Am J Respir Crit Care Med, 196, e15-29.
- Meek DW, Marcar L (2012). MAGE-A antigens as targets in tumour therapy. Cancer Lett, 324, 126-32.
- Noh ST, Lee HS, Lim SJ, et al (2016). MAGE-A1–6 expression in patients with head and neck squamous cell carcinoma: impact on clinical patterns and oncologic outcomes. Int J Clin Oncol, 21, 875-82.
- Ogata K, Aihara R, Mochiki E, et al (2011). Clinical significance of melanoma antigen-encoding gene-1 (MAGE-1) expression and its correlation with poor prognosis in differentiated advanced gastric cancer. Ann Surg Oncol, 18, 1195-203.
- Õunap K, Kurg K, Võsa L, et al (2018). Antibody response against cancer-testis antigens MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett, 16, 211-8.
- Park JW, Kwon TK, Kim IH, et al (2002). A new strategy for the diagnosis of MAGE-expressing cancers. J Immunol Methods, 266, 79-86.
- Pereira CM, Gomes CC, Silva JDFC, et al (2012). Evaluation of MAGE A1 in oral squamous cell carcinoma. Oncol Rep, 27, 1843-8.
- Poojary M, Jishnu PV, Kabekkodu SP (2020). Prognostic value of melanoma-associated antigen-A (MAGE-A) gene expression in various human cancers: a systematic review and metaanalysis of 7428 patients and 44 studies. Mol Diagnosis Ther, 24, 537-55.
- Ries J, Vairaktaris E, Mollaoglu N, et al (2008). Expression of melanoma-associated antigens in oral squamous cell carcinoma. J Oral Pathol Med, 37, 88-93.
- Shigematsu Y, Hanagiri T, Shiota H, et al (2010). Clinical significance of cancer/testis antigens expression in patients with non-small cell lung cancer. Lung Cancer, 68, 105-10.
- Sugita M, Geraci M, Gao B, et al (2002). Combined use of oligonucleotide and tissue microarrays identifies cancer/ testis antigens as biomarkers in lung carcinoma. Cancer Res, 62, 3971-9.
- Sung H, Ferlay J, Siegel RL, et al (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 Cancers in 185 countries. CA Cancer J Clin, 71, 209-49.
- Tsai JR, Chong IW, Chen YH, et al (2007). Differential expression profile of MAGE family in non-small-cell lung cancer. Lung Cancer, 56, 185-92.
- Wang XX, Shao C, Huang XJ, et al (2021). Histopathological features of multiorgan percutaneous tissue core biopsy in patients with COVID-19. J Clin Pathol, 74, 522-7.
- Weon JL, Potts RR (2015). The MAGE protein family and cancer. Physiol Behav, 176, 139-48.
- Yao X, Gomes MM, Tsao MS, et al (2012). Fine-needle aspiration biopsy versus core-needle biopsy in diagnosing lung cancer: A systematic review. Curr Oncol, 19, 16-27.
- Yi E, Chang JE, Leem C, et al (2017). Association of MAGE A1-6 expression with lung cancer progression. J Cancer, 8, 1324-9.

Zhang H, Tian S, Wang S, et al (2022). CT-guided percutaneous core needle biopsy in typing and subtyping lung cancer: a comparison to surgery. Technol Cancer Res Treat, 21, 15330338221086411.

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.