RESEARCH ARTICLE # **COVID-19 vaccines knowledge and acceptance among** Indonesian adults in Java Island [version 1; peer review: 1 approved with reservations, 1 not approved] Annette d'Argom 1,2, Peter Asa, Amalia Putri Andriani 1, Mhd Zamal Nasution ⁶, Nurmawati Fatimah Arifa Mustika Arifa Mustika Arifa Mustika Arifa Djuari Arifa, Junaidah Yusof 107 V1 First published: 13 Feb 2023, **12**:170 https://doi.org/10.12688/f1000research.129129.1 Latest published: 13 Feb 2023. 12:170 https://doi.org/10.12688/f1000research.129129.1 #### Abstract **Background:** To increase vaccination coverage, it is important to understand COVID-19 vaccination programs and respondents' acceptance. Therefore, this study aimed to measure respondents' knowledge of the COVID-19 vaccine and its acceptance among Indonesian adults in Java. **Methods:** A web-based survey was distributed through social media on self-claimed knowledge, risk and benefits of the vaccine, as well as respondents' acceptance and experiences of the vaccination. The survey period was from March to July 2021, and 910 responses were included for further analysis. The frequency of each categorical factor, including self-claimed knowledge of the COVID-19 vaccine, their descriptive benefit and side effects of the COVID-19 vaccine, and their experiences receiving or not receiving the vaccine were explored. Predictor factors on vaccine knowledge and acceptance are investigated using multivariate ordinal regression analysis. **Results:** This study showed that almost all the respondents in both groups have knowledge about COVID-19 vaccination, or at least ever heard about it. The main source of information is social media. More than two third of respondents from each group had already received a COVID-19 vaccine or were at least on the waiting list. Moreover, a quarter of the respondents still hesitate to receive the vaccination. ¹Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60131, Indonesia ²Airlangga Research Group for Translational Medicine and Therapeutic, Universitas Airlangga, Surabaya, East Java, 60131, Indonesia ³Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60131, Indonesia ⁴Postgraduate School, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia ⁵Doctoral Program of Medical Science, Universitas Airlangga, Surabaya, East Java 60131, Indonesia ⁶Department of Public Health-Preventive Medicine, Faculty of Medicine, Airlangga University, Surabaya, East Java, 60131, Indonesia ⁷School of Human Resource Development & Psychology, Faculty of Social Sciences & Humanities, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia Only less than 10% of respondents reject the vaccination, with the strongest reason being scared of the side effect. Moreover, it found that respondents' knowledge of the vaccination was influenced by age, medical background, a history of relatives who tested positive for COVID-19, source of information, economic status, and education levels. Moreover, the acceptance was influenced by age, knowledge about vaccines, and having medical background. **Conclusions:** This study showed high levels of knowledge and acceptance of the COVID-19 vaccine among adults in Java. Increasing understanding or knowledge about COVID-19 vaccine risks and benefits is necessary to reduce vaccination hesitancy. #### **Keywords** acceptance, COVID-19, hesitancy, knowledge, vaccines This article is included in the Emerging Diseases and Outbreaks gateway. Corresponding author: Annette d'Argom (annette-d-a@fk.unair.ac.id) **Author roles: d'Arqom A**: Conceptualization, Data Curation, Funding Acquisition, Writing – Original Draft Preparation; **Asa P**: Data Curation, Investigation, Methodology, Writing – Review & Editing; **Andriani AP**: Data Curation, Investigation, Methodology, Writing – Review & Editing; **Nasution MZ**: Data Curation, Formal Analysis, Writing – Review & Editing; **Fatimah N**: Data Curation, Writing – Review & Editing; **Mustika A**: Data Curation, Writing – Review & Editing; **Djuari L**: Methodology, Validation, Writing – Review & Editing; **Yusof J**: Validation, Writing – Review & Editing **Competing interests:** No competing interests were disclosed. **Grant information:** This study was supported by Faculty of Medicine Universitas Airlangga as Rector Decree No. 212/UN3/2021. *The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.* **Copyright:** © 2023 d'Arqom A *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. How to cite this article: d'Arqom A, Asa P, Andriani AP *et al.* COVID-19 vaccines knowledge and acceptance among Indonesian adults in Java Island [version 1; peer review: 1 approved with reservations, 1 not approved] F1000Research 2023, 12:170 https://doi.org/10.12688/f1000research.129129.1 First published: 13 Feb 2023, 12:170 https://doi.org/10.12688/f1000research.129129.1 #### Introduction The COVID-19 situation has improved due to high vaccination coverage (Dye, 2022). Unfortunately, virus mutagenicity produces new variants known to reduce vaccine effectiveness. Boosters have been provided to maintain the protective effect of the vaccine. Even though many researchers continue to develop new vaccines with high efficacy, doubts regarding their effectiveness and safety remain an issue (Shukla *et al.*, 2022). Several studies have shown a relationship between sociodemographic and physiological factors and vaccine acceptance. The sociodemographic factors include age, type of occupation, marital status and monthly income (Faturohman *et al.*, 2021). Moreover, psychological factors might affect vaccination acceptance, adherence and completion (Pandolfo *et al.*, 2022; Yanto *et al.*, 2021). Moreover, misinformation about the COVID-19 pandemic, including the therapy and vaccination, constitutes a huge challenge to overcome (d'Arqom *et al.*, 2021; Pristiyono *et al.*, 2021). In Indonesia itself, the current president, Joko Widodo, became the first Indonesian to become vaccinated on January 13, 2021. Since then, the Indonesian government has implemented vaccination programs for certain Indonesian population groups such as Indonesia's medical personnel and the elderly. When this study was conducted, the vaccination for the general Indonesian adult population had just started, following the vaccination for healthcare professionals, the elderly, and individuals with comorbidity (Jiao & Aditya, 2021). However, various concerns have risen from the general population regarding the vaccine. Among these are views towards the vaccine's effectiveness, its lack of research, misinformation about its side effects, religious beliefs, fear of injection etc. (Fakhriani et al., 2022; Hidayana et al., 2022; Simanjorang et al., 2022; Theodorea et al., 2021). The Indonesian government ordered the vaccine from China and approved the emergency use for mass vaccinations; unfortunately, due to the concern above, vaccine acceptance was only about 64.8% as reported by UNICEF, WHO, and ministry of health (UNICEF et al., 2020). In the end, to increase vaccine coverage, the Indonesian government made COVID-19 vaccination a requirement for all social aspects such as transportation, direct cash assistance programs (bantuan langsung tunai), obtaining passports, and other public services (Gunawan J et al., 2022). This strategy remains in effect. With this mandate, vaccine acceptance increased from 60 to 86.81% (Kemenkes, 2022). However, the debate on mandatory vaccines involves human rights issues (King et al., 2022). As Java is the most developed island in Indonesia and the most populated, most government facilities and programs are concentrated in this area, including the COVID-19 vaccination programs during the early implementation. Therefore, this study focused on an adult population in Java (Arifin & Anas, 2021). Moreover, knowledge and awareness are part of individual factors affecting vaccine acceptance (Erchick *et al.*, 2022). Thus, this study aimed to measure the effect of COVID-19 vaccine knowledge and COVID-19 acceptance among Indonesian adults in Java during the first implementation of the COVID-19 vaccination mandatory programs. #### Methods #### Study design and data collection This cross-sectional study on COVID-19 vaccination among Indonesian adults in Java during the second wave of the pandemic was part of the Dietary Supplement, COVID-19 Vaccine Acceptance, and Mental Health among Indonesian Adults project. This study followed the Helsinki Declaration and was approved by the Health Research Ethics Committee, Faculty of Medicine, Universitas Airlangga (No. 86/EC/KEPK/FKUA/2021). The data were collected from March to June 2021 using a web-based survey generator (www.surveyplanet.com). The survey was distributed online on social media and via email. Before entering the survey, respondents were provided with a landing page consisting of the objective of the study, brief explanation of the survey, the responsible person, and an informed consent page containing permission to use the data anonymously. The respondents provided their consent by choosing the YES button. Multiple submission was prevented by the web-based generator. The inclusion criteria of the respondents were Indonesian citizen, older than 18 years old, and residing in Java when the study was conducted. The minimum sample size was 383, calculated with 5% margin of error, 95% confidence level, and unknown population number which filled with 100,000. This study followed the Checklist for Reporting Results of Internet E-Surveys (CHERRIES) guidelines, and the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines
(Eysenbach, 2004; Vandenbroucke *et al.*, 2007). #### Survey instrument Three sections of the questionnaire were developed and distributed online to measure respondents' COVID-19 knowledge and acceptance. The sections covered sociodemographic information of the respondents, their knowledge of COVID-19 vaccine effects and their acceptance of COVID-19 vaccination. The sections of vaccine knowledge were modified from a questionnaire from UNICEF (UNICEF et al., 2020) and the COVID-19 vaccine acceptance behaviours were developed by a medical doctor and evaluated by three experts, two pharmacologists and a social science expert. Face validity was performed concerning 20 respondents to ensure their understanding of the questions, including the wording and format. A copy of the questionnaire can be found in Extended data. #### Analytical procedure Respondents were divided into two groups based on their sex: male and female. COVID-19 vaccine general knowledge and vaccine acceptance behaviours were measured using nominal scales. Data were processed and analysed using Microsoft Excel and SPSS 24.0 (IBM, Chicago, IL, USA), and visualized using GraphPad Prism 5.0. Descriptive analysis for each categorical variable was measured, followed by the chi-square test to observe differences between groups. For analysis, we converted the occupation into unemployed and employed, and religion into majority and non-majority. Multivariate ordinal regression analysis was performed to determine determinant factors of self-claimed vaccine knowledge and acceptance. All models were mutually adjusted for all potential confounders, such as sex, age, marital status, employment status, economic status, education, religion, insurance, history of testing positive for COVID-19, as well as the history of family members or relatives testing positive for COVID-19. The dummy variables included sex, marital status, religion, medical background and employment status. Vaccine acceptance points were contracted into reject, hesitate, and accept (respondents who received at least one vaccine or on the waiting list). Significance was defined as a p-value <0.05. #### **Results** #### Characteristics of respondents The questionnaires recorded 1,006 responses from March to June 2021. Only 910 responses were valid after the exclusion criteria. The 96 responses were excluded due to domicile outside Java. From these 910 responses, the majority were female, most numerous in the 18 to 25-year-old age group, with marital status single or unmarried, and average economic status. The majority of female respondents were unemployed and had graduated from high school, while the majority of male respondents were employed and held a bachelor's degree (p=0.000 and p=0.005, respectively). Table 1 summarizes respondent characteristics. #### Experiences of COVID-19 and its vaccination Most respondents reported never experiencing COVID-19 symptoms such as fever, sore throat, coughing, aches and pain, loss of taste and smell, etc. More female respondents reported these conditions compared with male respondents. Only 175 (19.2%) respondents reported that they ever experienced COVID-19 symptoms, with more male respondents confirmed to have symptoms compared with female respondents, both with or without lab confirmation (Figure 1A, p= 0.002). However, the proportion of the respondents did not differ regarding knowing relatives who contracted COVID-19 (Figure 1B). All respondents have some knowledge regarding the vaccination programs being initiated by the government, with more male respondents reporting having good knowledge levels, and more female respondents reporting having sufficient knowledge about the vaccine (p= 0.040). Less than 1% of males and females confessed never hearing about the vaccination programs (Figure 2A). No difference was found concerning respondents' knowledge on benefits of obtaining the COVID-19 vaccine, including preventing infection and spreading infection, preventing fatality from COVID-19, and even though they contract the disease, they will only exhibit mild symptoms (Figure 2B). Similar knowledge was also observed concerning the side effects of vaccination. The respondents knew that side effects ranged from mild to severe, from soreness at the injection site to anaphylactic shock (Figure 2C). They confessed that the main source of their information was social media, friends/family members, news and others (Figure 2D). When this study was conducted, COVID-19 vaccination remained limited for healthcare providers, the elderly, people with comorbidity and just reaching general adulthood. However, data of general adults were recorded and placed on a waiting list. Therefore, vaccine acceptance in this questionnaire was divided in six categories: received two shots, received one shot, received more than three shots, on a waiting list, hesitating, and rejecting the COVID-19 vaccine. The majority of respondents were willing to accept COVID-19 vaccines, with more female respondents receiving two doses of the COVID-19 vaccine, and more male respondents on the waiting list. One-third of male respondents hesitated whether to receive a shoot or not during this study period, which was more than female respondents (25%). The rejection number was less than 10%, with a higher proportion comprising male respondents (Figure 3A). Among respondents who received the vaccination, the strongest reason to receive was its safety, followed by its possibility to reduce COVID-19 fatality (Figure 3B). The three major side effects experienced by respondents receiving vaccination were soreness at the injection site, drowsiness, and myalgia or body aches. Only one male respondent experienced an anaphylactic reaction, even though more than 1% of male and female respondents reported allergic reactions such as itchiness and swelling **Table 1. Characteristics of respondents.** | Sociodemographic Factors | Male (n=250) | Female (n=660) | X ² | p-value | |--------------------------------|--------------|----------------|----------------|---------| | Age | | | 6.672 | 0.246 | | 18-25 | 102 (40.8) | 260 (39.4) | | | | >25-35 | 43 (17.2) | 93 (14.1) | | | | >35-45 | 40 (16) | 102 (15.5) | | | | >45-55 | 32 (12.8) | 72 (10.9) | | | | >55-60 | 8 (3.2) | 33 (5.0) | | | | >60 | 25 (10) | 100 (15.1) | | | | Marital Status | | | 2.847 | 0.092 | | Single/Un-married | 128 (51.2) | 379 (57.4) | | | | Married | 122 (48.8) | 281 (42.6) | | | | Occupation | | | 23.531 | 0.000 | | Unemployed | 118 (47.2) | 428 (64.8) | | | | Employed | 132 (52.8) | 232 (35.2) | | | | Economic Status | | | 3.936 | 0.140 | | Below Average | 27 (10.8) | 75 (11.4) | | | | Average | 185 (74) | 516 (78.2) | | | | Above Average | 38 (15.2) | 69 (10.4) | | | | Education | | | 12.875 | 0.005 | | Below high school graduate | 10 (4.0) | 60 (9.1) | | | | High school Graduate | 84 (33.6) | 265 (40.2) | | | | Undergraduate | 118 (47.2) | 259 (39.2) | | | | Post-Graduate | 38 (15.2) | 76 (11.5) | | | | Religion | | | 2.402 | 0.121 | | Muslim | 216 (86.4) | 594 (90) | | | | Non-Muslim | 34 (13.6) | 66 (10) | | | | Insurance | | | 1.121 | 0.780 | | National coverage | 191 (76.4) | 501 (75.9) | | | | Private insurance | 8 (3.2) | 14 (2.1) | | | | Both | 27 (10.8) | 79 (12.0) | | | | Does not have insurance | 24 (9.6) | 66 (10.0) | | | | Medical background | | | 10.975 | 0.001 | | Yes | 106 (42.4) | 361 (54.7) | | | | No | 144 (57.6) | 299 (45.3) | | | | Family with medical background | | | 0.641 | 0.423 | | Yes | 143 (57.2) | 358 (54.2) | | | | No | 107 (42.8) | 302 (45.8) | | | $Note: Bold\ face\ indicate\ significant\ p-value\ calculated\ using\ Chi-square\ test\ or\ Fischer\ Exact\ test$ (Figure 3C). For those still hesitant to receive the COVID-19 vaccine, almost two-thirds would consult healthcare professionals and their family members or friends. Different patterns concerning to whom respondents would consult were observed in this study. In all, 5.3% of the female respondents considered consulting health cadres, which was higher than that of male respondents (3.77%). Moreover, a smaller portion of female respondents considered consulting a government officer or their teacher, while none of the male respondents considered it. Less than 2% of males and females would not consult anyone, except themselves (Figure 3D). Furthermore, the strongest reasons for not receiving the Figure 1. History of COVID-19. (A) History of contracting COVID-19, and (B) History of family/relatives testing positive for COVID-19. **Figure 2. Self-claimed knowledge and understanding about the COVID-19 vaccine.** (A) Self-claimed knowledge of the respondents, (B) benefits of COVID-19 vaccination, (C) side effect of the COVID-19 vaccine and (D) source of information about COVID-19 vaccination programs. COVID-19 vaccine were fear of side effects, insufficient information about this program, and doubt concerning its effectiveness and safety (Figure 3E). #### Determinants of COVID-19 knowledge and acceptance Ordinal regression was performed to predict sociodemographic factors associated with respondents' COVID-19 knowledge and acceptance. Table 2 shows the results from modelling the outcome as a function of several independent variables including age, sex, marital status, work, economic status, education, religion, insurance, having a relative contract COVID-19, and testing positive for COVID-19. The model in Table 2 shows that young adults were 2.654 times and 2.071 times more likely to have a good knowledge on COVID-19 vaccinations than older subjects (18-25 year olds 95% CI 1.534 to 4.592, p=0.000; >25-35 year olds 95% CI 1.130 to 3.796, p= 0.018, respectively). Respondents with a medical background were 2.176 times more likely to possess knowledge of COVID-19 shots (95% CI 1.586 to 2.984, p=0.000). Another positive predictor factor was their knowledge about relatives that had or never had contracted respondents that did not know about this matter.
Respondents that could defined that they had relatives who contracted with COVID-19, either yes or no, have higher knowledge about COVID-19 vaccine compared with respondents that did not know about this matter. Respondents that had relatives with COVID-19 were 1.902 more likely to have a good knowledge about COVID-19 vaccination programs (95% CI 1.239 to 2.920, p= 0.003), in contrast, respondents with no COVID-19 positive relatives were 1.583 time more likely to have knowledge about the vaccination (95% CI 1.014 to 2.471, p= 0.043). In addition, respondents following related information, through social media and webinars were more likely to have a higher knowledge level concerning COVID-19 compared with respondents receiving information from other sources (social media: AOR 2.456, 95% CI 1.180 to 5.112, p= 0.016; webinars: AOR 3.563, 95% CI 1.524 to 8.331, p = 0.003, respectively). The negative predictors to knowledge COVID-19 vaccination programs were economic and education status. Respondents with lower economic status, below average and average, were less likely to have a good knowledge on COVID-19 **Figure 3. The acceptance and experiences concerning COVID-19 vaccination.** (A) Vaccine acceptance, (B) strongest reason to receive COVID-19 jabs, (C) side effects experienced after receiving the vaccine, (D) who hesitating respondents will consult about the programs and (E) reason for vaccine rejection. vaccinations (below average: AOR 0.439, 95% CI 0.244 to 0.790, p= 0.006; average: AOR 0.438, 95% CI 0.278 to 0.689, p= 0.000). Similarly, respondents with lower education were also less likely to have a good knowledge on vaccinations as respondents below high school level education were 0.120 more likely to have a good knowledge about this program (95% CI 0.057 to 0.254, p=0.000) and high school graduates were 0.490 more likely to have a good knowledge about this program (95% CI 0.286 to 0.838, p=0.009). Moreover, for COVID-19 vaccination acceptance, at this study period, young adults (18-35 years old) have higher odds to receive and to accept the vaccination (18-25 years old: AOR 0.071, 95% CI 0.031 to 0.159, p= 0.000; >25-35 years old: AOR 0.287, 95% CI 0.114 to 0.724, p= 0.008), as well as middle age adults (>45-55 years old: AOR 0.222, 95% CI 0.087 to 0.567, p= 0.002). Respondents with no or less knowledge about COVID-19 vaccination programs also less likely to receive the jab. Respondents that never heard about these programs were 0.035 times more likely to obtain a vaccination (95% CI 0.005 to 0.239, p=0.001), In contrast, respondents that only heard about government programs were 0.071 times more likely to receive the COVID-19 shot (95% CI 0.035 to 0.145, p=0.000). Respondents with little knowledge about vaccination programs were 0.455 times more likely to receive a jab (0.208 to 0.994, p= 0.048). The only significant positive predictor was whether the respondents had a medical background (AOR 1.488, 95% CI 1.019 to 2.175, p=0.040). The result of ordinal regression for COVID-19 vaccine acceptance was showed in Table 3. #### Discussion Java island is the densest and the most developed island in Indonesia. The capital city of Indonesia is located in the west part of this island. The infrastructure, including transportation and health-related structure, is most complete and advanced compared to other islands in this country (Handayani & Kumalasari, 2015). As the densest island, Java also contributes 68% of the COVID-19 cases in Indonesia. Therefore, the vaccination program was started on this island with the fastest spreading of the vaccination (Arifin & Anas, 2021). This study found that most of the respondents have a knowledge about the program, or at least have ever heard about the COVID-19 vaccination program. Only small portion of the respondents had never heard about it. Most of the respondents Table 2. Ordinal regression on self-claimed knowledge of COVID-19 vaccine. | | Univariat | :e | | Multivariate | | | |----------------------------------|--------------------|-------|--------------|--------------------|-------|-------------| | Sociodemographic Factors | p-value COR 95% CI | | | p-value AOR 95% CI | | | | Age | | | | | | | | 18-25 | 0.000 | 6.304 | 4.165-9.543 | 0.000 | 2.654 | 1.534-4.592 | | >25-35 | 0.000 | 8.133 | 4.967-13.314 | 0.018 | 2.071 | 1.130-3.796 | | >35-45 | 0.000 | 6.220 | 3.838-10.079 | 0.155 | 1.563 | 0.844-2.896 | | >45-55 | 0.000 | 5.036 | 3.006-8.438 | 0.167 | 1.578 | 0.826-3.013 | | >55-60 | 0.001 | 3.185 | 1.601-6.338 | 0.860 | 0.933 | 0.430-2.024 | | >60 | | 1.000 | | | 1.000 | | | Sex | | | | | | | | Male | 0.239 | 1.182 | 0.895-1.562 | 0.963 | 0.993 | 0.727-1.355 | | Female | | 1.000 | | | 1.000 | | | Marital Status | | | | | | | | Married | 0.046 | 0.775 | 0.603-0.996 | 0.230 | 0.768 | 0.499-1.182 | | Single/Un-Married | | 1.000 | | | 1.000 | | | Occupation | | | | | | | | Unemployed | 0.000 | 0.545 | 0.421-0.705 | 0.928 | 0.982 | 0.666-1.450 | | Employed | | 1.000 | | | 1.000 | | | Economic Status | | | | | | | | Below Average | 0.000 | 0.271 | 0.157-0.466 | 0.006 | 0.439 | 0.244-0.790 | | Average | 0.000 | 0.348 | 0.229-0.529 | 0.000 | 0.438 | 0.278-0.689 | | Above Average | | 1.000 | | | 1.000 | | | Education | | | | | | | | Below high school graduate | 0.000 | 0.032 | 0.017-0.059 | 0.000 | 0.120 | 0.057-0.254 | | High school Graduate | 0.000 | 0.425 | 0.279-0.648 | 0.009 | 0.490 | 0.286-0.838 | | Undergraduate | 0.113 | 0.715 | 0.472-1.083 | 0.206 | 0.742 | 0.468-1.178 | | Post-Graduate | | 1.000 | | | 1.000 | | | Religion | | | | | | | | Muslim | 0.407 | 1.183 | 0.796-1.758 | | | | | Non-Muslim | | 1.000 | | | | | | Medical background | | | | | | | | Yes | 0.000 | 3.833 | 2.939-5.000 | 0.000 | 2.176 | 1.586-2.984 | | No | | 1.000 | | | 1.000 | | | Relative with Medical background | | | | | | | | Yes | 0.000 | 1.982 | 1.538-2.554 | 0.927 | 0.987 | 0.741-1.314 | | No | | 1.000 | | | 1.000 | | | Insurance | | | | | | | | National coverage | 0.248 | 1.280 | 0.842-1.946 | 0.834 | 1.049 | 0.670-1.643 | | Private insurance | 0.069 | 2.334 | 0.936-5.815 | 0.611 | 1.283 | 0.491-3.352 | | Both | 0.069 | 1.648 | 0.962-2.824 | 0.730 | 1.108 | 0.619-1.986 | | Does not have insurance | | 1.000 | | | 1.000 | | | History relatives with COVID-19 | | | | | | | | Yes | 0.000 | 4.942 | 3.382-7.222 | 0.003 | 1.902 | 1.239-2.920 | | No | 0.000 | 3.374 | 2.244-5.073 | 0.043 | 1.583 | 1.014-2.471 | | Do not Know | | 1.000 | | | 1.000 | | Table 2. Continued | | Univariate | | | Multivariate | | | |-------------------------------|------------|-------|-------------|--------------|-------|-------------| | Sociodemographic Factors | p-value | COR | 95% CI | p-value | AOR | 95% CI | | Infected with COVID-19 | | | | | | | | Yes, with lab confirmation | 0.000 | 4.195 | 2.017-8.727 | 0.246 | 1.604 | 0.723-3.560 | | Yes, without lab conformation | 0.006 | 2.711 | 1.331-5.520 | 0.582 | 1.237 | 0.581-2.635 | | Never | 0.004 | 2.465 | 1.337-4.542 | 0.369 | 1.353 | 0.699-2.617 | | Do not know | | 1.000 | | | 1.000 | | | Source of Information | | | | | | | | Social Media | 0.317 | 1.423 | 0.713-1.512 | 0.016 | 2.456 | 1.180-5.112 | | Family/Friend | 0.350 | 0.686 | 0.312-1.512 | 0.381 | 1.453 | 0.629-3.353 | | Webinar | 0.043 | 2.283 | 1.024-5.088 | 0.003 | 3.563 | 1.524-8.331 | | Literature/Journal | 0.873 | 0.912 | 0.295-2.822 | 0.694 | 1.270 | 0.386-4.184 | | News | 0.422 | 1.355 | 0.646-2.842 | 0.076 | 2.031 | 0.928-4.447 | | Others | | | 1.000 | | | 1.000 | Notes: The multivariate analysis data in ordinal regression (using a cut-off of P < 0.25) following univariate analysis. AOR: adjusted odds ratio; COR: crude odds ratio; 95% CI: 95% confidence interval. understand about the benefit and side effects of vaccination, from mild to severe cases. The positive determinant factors of COVID-19 vaccine understanding were respondents with young age and had medical background. Respondents that can be defined as having or did not have relatives with COVID-19, rather than did not know, had higher odds of having good self-claimed knowledge about this vaccine. Moreover, respondents received information from social media, webinars, and literature or journal. Meanwhile respondents with a lower level of education and lower self-reported economic status were less likely to have a good self-claimed knowledge about this government mass program. A similar finding was reported from 449 university students in Bangladesh that concluded medical students had higher odd of having positive knowledge about vaccines, as well as students majoring in economic and business, and science and technology (Rahman et al., 2022). However, our study did not break down the medical-related field background, such as clinical doctors, medical lecturers, pharmacist, nurses, etc. as a study in Vietnam reported that the last two professions had lower knowledge about the COVID-19 vaccine (Duong et al., 2022). Our findings also support that low income and education were related to low levels of knowledge, as reported in 1708 adults in Vietnam. However, in term of young age, this current study showed better self-claimed knowledge than a study in Vietnam (Duong et al., 2022). A study in 1009 Turkey adults also found that respondents with bachelor degrees were more likely to have good knowledge regarding COVID-19 vaccination (Sonmezer et al., 2022). Even though during COVID-19 pandemic, social media was criticized due to its circulation about the misinformation, including on vaccine, in our study, respondents who got information form social media had higher odd to have good knowledge on COVID-19 vaccination, as well as for them who received information from webinar and literature/journal, compared to news, information from friend/family, etc. We cannot find the study that showed the source of information as a positive predictor factor on COVID-19 vaccine knowledge, but half of the respondents in Turkey, that concluded 62.7% have positive
perceptions, used social media as their source of information regarding the COVID-19 vaccine (Sonmezer et al., 2022). However, a study in 233 university students in Nigeria reported only 20.6% had a good knowledge on COVID-19 vaccination, and 60% of the respondent received information from social media (Orok et al., 2022). This discrepancy might be caused by our study using self-claimed knowledge, instead of measuring it. It has been reported that a good knowledge or understanding of vaccination is important for a successful vaccination program, such as in the influenza vaccine (Yaqub et al., 2014), including in the COVID-19 vaccine (Al-kafarna et al., 2022; Yupari-Azabache et al., 2022). As this study was conducted at the beginning of the vaccination program for general adults; therefore, the experience of COVID-19 vaccination was divided into six categories, including waiting list and hesitated. Our study showed that 60-70% of respondents had already received at least one vaccine and registered on a waiting list. Due to the limited stock of vaccine numbers, cold chain storage, vaccinator, etc., the vaccination program was faster in urban areas than in rural areas, even in Java (Arifin & Anas, 2021). The public sentiment about the vaccine used in Indonesian COVID-19 vaccination program on its early implementation has become a challenge for the government (Xu et al., 2022). Data from Twitter mining showed that 56% of Indonesian had negative tweet in January 2021 (Pristiyono et al., 2021). Lack of confidence about vaccine efficacy, safety, and various personal reason was major Table 3. Univariate and Multivariate ordinal regression on COVID-19 vaccine acceptance. | | Univariate | | | Multivariate | | | | |----------------------------------|------------|-------|-------------|--------------|-------|-------------|--| | Sociodemographic Factors | p-value | COR | 95% CI | p-value | AOR | 95% CI | | | Age | | | | | | | | | 18-25 | 0.000 | 0.313 | 0.197-0.498 | 0.000 | 0.071 | 0.031-0.159 | | | >25-35 | 0.148 | 1.581 | 0.850-2.943 | 0.008 | 0.287 | 0.114-0.724 | | | >35-45 | 0.033 | 2.018 | 1.059-3.847 | 0.190 | 0.530 | 0.205-1.369 | | | >45-55 | 0.936 | 0.975 | 0.527-1.804 | 0.002 | 0.222 | 0.087-0.567 | | | >55-60 | 0.322 | 1.609 | 0.628-4.127 | 0.176 | 0.442 | 0.136-1.440 | | | >60 | | 1.000 | | | 1.000 | | | | Sex | | | | | | | | | Male | 0.031 | 0.715 | 0.527-0.969 | 0.093 | 0.727 | 0.501-1.055 | | | Female | | 1.000 | | | 1.000 | | | | Marital Status | | | | | | | | | Married | 0.000 | 0.300 | 0.220-0.410 | 0.536 | 1.209 | 0.664-2.201 | | | Single/Un-Married | | 1.000 | | | 1.000 | | | | Occupation | | | | | | | | | Unemployed | 0.000 | 0.294 | 0.212-0.407 | 0.137 | 0.691 | 0.424-1.125 | | | Employed | | 1.000 | | | 1.000 | | | | Economic Status | | | | | | | | | Below Average | 0.000 | 0.273 | 0.143-0.521 | 0.056 | 0.481 | 0.227-1.017 | | | Average | 0.001 | 0.410 | 0.239-0.705 | 0.052 | 0.540 | 0.290-1.005 | | | Above Average | | 1.000 | | | 1.000 | | | | Education | | | | | | | | | Below high school graduate | 0.000 | 0.116 | 0.051-0.265 | 0.076 | 0.381 | 0.131-1.107 | | | High school Graduate | 0.000 | 0.109 | 0.054-0.223 | 0.184 | 0.565 | 0.243-1.313 | | | Undergraduate | 0.001 | 0.292 | 0.142-0.601 | 0.434 | 0.729 | 0.330-1.609 | | | Post-Graduate | | 1.000 | | | 1.000 | | | | Religion | | | | | | | | | Muslim | 0.283 | 0.774 | 0.485-1.236 | | | | | | Non-Muslim | | 1.000 | | | | | | | Medical background | | | | | | | | | Yes | 0.002 | 1.544 | 1.166-2.044 | 0.040 | 1.488 | 1.019-2.175 | | | No | | | | | 1.000 | | | | Relative with Medical background | | | | | | | | | Yes | 0.001 | 1.589 | 1.200-2.104 | 0.084 | 1.349 | 0.961-1.893 | | | No | | 1.000 | | | 1.000 | | | | Insurance | | | | | | | | | National coverage | 0.178 | 0.709 | 0.429-1.170 | 0.462 | 0.809 | 0.459-1.424 | | | Private insurance | 0.812 | 0.881 | 0.310-2.505 | 0.831 | 0.882 | 0.277-2.806 | | | Both | 0.611 | 0.848 | 0.450-1.599 | 0.632 | 0.837 | 0.403-1.736 | | | Does not have insurance | | 1.000 | | | 1.000 | | | | History relatives with COVID-19 | | | | | | | | | Yes | 0.000 | 2.170 | 1.481-3.182 | 0.134 | 1.450 | 0.891-2.359 | | | No | 0.027 | 1.603 | 1.056-2.431 | 0.368 | 1.264 | 0.759-2.105 | | | Do not Know | | 1.000 | | | 1.000 | | | Table 3. Continued | | Univariate | | | Multivariate | | | |-------------------------------|------------|-------|-------------|--------------|-------|-------------| | Sociodemographic Factors | p-value | COR | 95% CI | p-value | AOR | 95% CI | | Infected with COVID-19 | | | | | | | | Yes, with lab confirmation | 0.007 | 2.839 | 1.328-6.073 | 0.586 | 0.779 | 0.316-1.916 | | Yes, without lab conformation | 0.568 | 1.230 | 0.604-2.504 | 0.159 | 0.555 | 0.245-1.259 | | Never | 0.000 | 3.019 | 1.631-5.589 | 0.312 | 1.448 | 0.706-2.968 | | Do not know | | 1.000 | | | 1.000 | | | Source of Information | | | | | | | | Social Media | 0.167 | 1.663 | 0.808-3.421 | 0.812 | 1.112 | 0.462-2.674 | | Family/Friend | 0.413 | 1.416 | 0.616-3.255 | 0.726 | 1.196 | 0.439-3.261 | | Webinar | 0.354 | 1.489 | 0.642-3.454 | 0.959 | 0.974 | 0.357-2.659 | | Literature/Journal | 0.191 | 2.427 | 0.643-9.158 | 0.359 | 2.065 | 0.438-9.738 | | News | 0.157 | 1.762 | 0.804-3.862 | 0.588 | 1.296 | 0.507-3.317 | | Others | | 1.000 | | | 1.000 | | | Knowledge on COVID-19 Vaccine | | | | | | | | Never heard of it | 0.008 | 0.104 | 0.019-0.561 | 0.001 | 0.035 | 0.005-0.239 | | Ever heard of it | 0.000 | 0.110 | 0.061-0.199 | 0.000 | 0.071 | 0.035-0.145 | | Little knowledge | 0.066 | 0.557 | 0.299-1.039 | 0.048 | 0.455 | 0.208-0.994 | | Enough knowledge | 0.089 | 0.763 | 0.560-1.042 | 0.238 | 0.806 | 0.562-1.154 | | Good knowledge | | 1.000 | | | 1.000 | | Notes: The multivariate analysis data in ordinal regression (using a cut-off of P < 0.25) following univariate analysis. AOR: adjusted odds ratio; COR: crude odds ratio; 95% CI: 95% confidence interval. concern found in this study. The acceptance options were further minimized in the multivariate analysis as reject, hesitate, and accept (consisted of respondents had received at least one jab and on the waiting list). Our study found a young adult and middle age adult respondents were less likely to accept the vaccination, as well as respondents that never heard, ever heard, and had a little knowledge about this vaccination. Almost half of younger respondents (18-25 years old) were still hesitant to receive COVID-19 vaccination, even though they claimed to have a good or enough knowledge about the vaccine. A similar finding was also reported in a study of 6,226 Palestinian adults, with 37.8% of them did not believe in the efficacy of COVID-19 as protection toward SARS-CoV-2 infection, even though younger Palestinians showed higher knowledge (Al-kafarna et al., 2022). Our study also found that middle age respondents also have lower odd accept the vaccination. Their rejection and hesitancy was more likely due to their possibility to develop comorbidity diseases (Fan et al., 2021) and higher risk to develop adverse event (Almufty et al., 2021; Orebi et al., 2022). Our study also supports that less knowledge about COVID-19 vaccine also significantly associated with lower COVID-19 acceptance. A similar finding was also reported in Vietnam, where individual with less knowledge is more likely to reject COVID-19 vaccination (Duong et al., 2022). The only significant positive predictor factor was having medical background, which might be related that the healthcare professionals were among the priority to receive the vaccination, and more likely due to higher level of knowledge as reported in Bangladesh and Vietnam (Duong et al., 2022; Rahman et al., 2022). As this study only covers one most developed and densest islands in Indonesia, a study with wider coverage is necessary. Moreover, as this study was conducted in the beginning of the vaccination program, a follow-up about the reason behind high vaccination coverage in Indonesia should be investigated and analysed as a lesson for future recommendations. Measurement of knowledge, instead of self-claimed, might show more complete picture, even though the results in this study mostly have similar finding with other studies. Taken together, this study showed high COVID-19 vaccine knowledge and acceptance among adults on Java Island. Increasing understanding or knowledge about COVID-19 vaccine risks and benefits is necessary to reduce vaccination hesitancy. Vigorous campaigns and dissemination of information are needed to increase knowledge of young adults, people at high risk, low economic background, low education level and individuals with the nonmedical-related background. Moreover, because social media constitutes the highest source of information, it could be used for stakeholders to share the correct information about the pandemic and its vaccination programs, including booster programs. #### **Data availability** #### Underlying data Mendeley data: COVID-19 Vaccine Understanding and Acceptance in Java. https://doi.org/10.17632/7y7mg4r9b4.2 (d'Arqom, 2022). This project contains the following underlying data: - 910 Vaccine Java Data.xlsx - Erratum 910 Vaccine Java Data.xlsx (correction of the labelled on the column O on the 910 Vaccine Java Data.xlsx) #### Extended data Mendeley data: COVID-19 Vaccine Understanding and Acceptance in Java. https://doi.org/10.17632/7y7mg4r9b4.2 (d'Arqom, 2022). This project contains the following extended data: - Supplement Vaccine.docx (questionnaire) Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0). #### References Al-kafarna M, Matar SG, Almadhoon HW, et al.: Public knowledge, attitude, and acceptance toward COVID-19 vaccines in Palestine: a cross-sectional study. BMC Public Health. 2022; 22(1): 529. PubMed Abstract | Publisher Full Text | Free Full Text Almufty HB, Mohammed SA, Abdullah AM, et al.: Potential adverse effects of COVID19 vaccines
among Iraqi population; a comparison between the three available vaccines in Iraq; a retrospective cross-sectional study. Diabetes Metab. Syndr. Clin. Res. Rev. 2021; 15(5): 102207. PubMed Abstract | Publisher Full Text | Free Full Text Arifin B, Anas T: Lessons learned from COVID-19 vaccination in Indonesia: experiences, challenges, and opportunities. *Hum. Vaccin. Immunother.* 2021; **17**(11): 3898–3906. PubMed Abstract | Publisher Full Text | Free Full Text d'Arqom A, Sawitri B, Nasution Z, et al.: "Anti-COVID-19" Medications, Supplements, and Mental Health Status in Indonesian Mothers with School-Age Children. Int. J. Women's Health. 2021; 13: 699–709. PubMed Abstract | Publisher Full Text | Free Full Text d'Arqom A: COVID-19 Vaccine Understanding and Acceptance in Java. [dataset]. *Mendeley Data*. 2022; **V2**. **Publisher Full Text** Duong MC, Duong BT, Nguyen HT, et al.: **Knowledge about COVID-19 vaccine and vaccination in Vietnam: A population survey.** *J. Am. Pharm. Assoc.* 2022; **62**(4): 1197–1205.e4. PubMed Abstract | Publisher Full Text | Free Full Text Dye C: **The benefits of large scale covid-19 vaccination.** *BMJ.* 2022; **377**: o867. **Publisher Full Text** Erchick DJ, Gupta M, Blunt M, et al.: Understanding determinants of vaccine hesitancy and acceptance in India: A qualitative study of government officials and civil society stakeholders. PLoS One. 2022; 17(6): e0269606. PubMed Abstract | Publisher Full Text | Free Full Text Eysenbach G: Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). J. Med. Internet Res. 2004; 6(3): e34. PubMed Abstract | Publisher Full Text | Free Full Text Fakhriani R, Ulfa M, Maryani N, et al.: Investigating Knowledge toward COVID-19 Vaccination: A Cross-sectional Survey in Yogyakarta, Indonesia. Open Access Maced. J. Med. Sci. 2022; 10(E): 865–874. Publisher Full Text Fan ZY, Yang Y, Zhang CH, et al.: Prevalence and Patterns of Comorbidity Among Middle-Aged and Elderly People in China: A Cross-Sectional Study Based on CHARLS Data. Int. J. Gen. Med. 2021; 14: 1449–1455. PubMed Abstract | Publisher Full Text | Free Full Text Faturohman T, Kengsiswoyo GAN, Harapan H, et al.: Factors influencing COVID-19 vaccine acceptance in Indonesia: an adoption of Technology Acceptance Model. F1000Res. 2021; 10: 476. PubMed Abstract | Publisher Full Text | Free Full Text Gunawan J, Aungsuroch Y, Fisher M, et al.: Identifying and understanding challenges to inform new approaches to improve vaccination rates: A qualitative study in Indonesia. J. Nurs. Scholarsh. 2022. (1527-6546 (Print)). Publisher Full Text Handayani W, Kumalasari NR: Migration as Future Adaptive Capacity: The Case of Java — Indonesia. Hillmann F, Pahl M, Rafflenbeul B, Sterly H, editors. Environmental Change, Adaptation and Migration: Bringing in the Region. Palgrave Macmillan UK; 2015; (pp. 117–138). **Publisher Full Text** and Health. 2022; 50(1): 37. Hidayana I, Amir S, Pelupessy DC, et al.: Using a health belief model to assess COVID-19 vaccine intention and hesitancy in Jakarta, Indonesia. PLOS Global Public Health. 2022; 2(10): e0000934. Publisher Full Text Jiao C, Aditya A: Indonesia Begins COVID-19 Vaccine Rollout – and Jokowi Is First to Get Jab. TIME; 2021, 13 January 2021. Reference Source Kemenkes: Vaksinasi COVID-19 Nasional (National COVID-19 Vaccination). Ministry of Health of Republic of Indonesia; 2022. Retrieved 20 November. Reference Source King J, Ferraz OLM, Jones A: Mandatory COVID-19 vaccination and human rights. *Lancet.* 2022; 399(10321): 220–222. PubMed Abstract | Publisher Full Text | Free Full Text Orebi HA, Emara HE, Alhindi AA, et al.: Perceptions and experiences of COVID-19 vaccines' side effects among healthcare workers at an Egyptian University Hospital: a cross-sectional study. Tropical Medicine PubMed Abstract | Publisher Full Text | Free Full Text Orok E, Ndem E, Daniel E: Knowledge, attitude and perception of medical students on COVID-19 vaccines: A study carried out in a Nigerian University [Original Research]. Front. Public Health. 2022; 10. PubMed Abstract | Publisher Full Text | Free Full Text Pandolfo G, Genovese G, Iannuzzo F, et al.: COVID-19 Vaccination and Mental Disorders, What Has Been Accomplished and Future Direction. PubMed Abstract | Publisher Full Text | Free Full Text Pristiyono RM, Ihsan MAA, Anjar A, et al.: Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm. IOP Conference Series: Materials Science and Engineering. 2021; 1088(1): 012045. **Publisher Full Text** Rahman MM, Chisty MA, Alam MA, et al.: **Knowledge**, attitude, and hesitancy towards COVID-19 vaccine among university students of Bangladesh. PLoS One. 2022; 17(6): e0270684. PubMed Abstract | Publisher Full Text | Free Full Text Shukla SK, Patra S, Das TR, et al.: Progress in COVID research and developments during pandemic. VIEW. 2022; n/a(n/a): 20210020. PubMed Abstract | Publisher Full Text | Free Full Text Simanjorang C, Pangandaheng N, Tinungki Y, et al.: The determinants of SARS-CoV-2 vaccine hesitancy in a rural area of an Indonesia-Philippines border island: A mixed-method study [10.1016/j.enfcle.2022.03.002]. Enfermería Clínica (English Edition). 2022; **32**: 376-384. PubMed Abstract | Publisher Full Text | Free Full Text Sonmezer MC, Sahin TK, Erul E, et al.: Knowledge, Attitudes, and Perception towards COVID-19 Vaccination among the Adult Population: A Cross-Sectional Study in Turkey. Vaccines. 2022; 10(2): PubMed Abstract | Publisher Full Text | Free Full Text | Reference Theodorea CF, Widyarman AS, Dewanto I, et al.: COVID-19 Vaccines in Indonesia: Knowledge, Attitudes, and Acceptance Among Dental Professionals [Original Research]. Front. Med. 2021; 8 PubMed Abstract | Publisher Full Text | Free Full Text UNICEFNITAG, WHOKemenkes: COVID-19 Vaccine Acceptance Survey in Indonesia 2020. **Reference Source** Vandenbroucke JP, von Elm E, Altman DG, et al.: Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007; 4(10): e297. PubMed Abstract | Publisher Full Text | Free Full Text Xu H, Liu R, Luo Z, et al.: COVID-19 vaccine sensing: Sentiment analysis and subject distillation from twitter data. Telematics and Informatics Reports. 2022; 8: 100016. **Publisher Full Text** Yanto TA, Octavius GS, Heriyanto RS, et al.: Psychological factors affecting COVID-19 vaccine acceptance in Indonesia. Egypt J Neurol Psychiatr Neurosurg. 2021; **57**(1): 177. PubMed Abstract | Publisher Full Text | Free Full Text Yaqub O, Castle-Clarke S, Sevdalis N, et al.: Attitudes to vaccination: a critical review. Soc. Sci. Med. 2014; 112: 1-11. **Publisher Full Text** Yupari-Azabache IL, Díaz-Ortega JL, Bardales-Aguirre LB, et al.: Factors Associated with the Acceptance of COVID-19 Vaccines in Citizens of Northern Peru: Cross-Sectional Study. Risk Manag Healthc Policy. 2022; 15· 1705-1715 PubMed Abstract | Publisher Full Text | Free Full Text ## **Open Peer Review** ## Current Peer Review Status: X **Version 1** Reviewer Report 02 June 2023 https://doi.org/10.5256/f1000research.141791.r168166 © 2023 Chutipattana N. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. #### ? Nirachon Chutipattana 🔟 School of Public Health, Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand Studying COVID-19 vaccine knowledge and acceptance is an important issue. Although it is not a novel idea at the moment, it may help to reduce vaccination hesitancy, increase access to booster vaccination, and provide vaccination programs in the event of a pandemic in the future. I believe it will be beneficial if the authors work hard to improve the clarity and consistency of the article on all topics. ### Relationship to Literature - 1. According to the sentence "Unfortunately, virus mutagenicity produces new variants known to reduce vaccine effectiveness." - it would be better if you explained the significance of vaccines. - 2. What happens if people do not get immunized? - 3. The sentence "Even though many researchers continue to develop new vaccines with high efficacy, doubts regarding their effectiveness and safety remain an issue" is irrelevant to the research objectives. - 4. Provide statistics on COVID-19 deaths worldwide, in Asia, and in Indonesia. - 5. What are psychological factors? - 6. According to the sentences "Moreover, psychological factors might affect vaccination acceptance, adherence and completion (Pandolfo et al., 2022; Yanto et al., 2021). Moreover, misinformation about the COVID-19 pandemic, including the therapy and vaccination, constitutes a huge challenge to overcome (d'Argom et al., 2021; Pristiyono et al., 2021)." - a lack of connection between sentences. - 7. According to the sentence "In Indonesia itself, the current president, Joko Widodo, became the first Indonesian to become vaccinated on January 13, 2021." It would be more helpful to specify when Indonesian citizens started receiving vaccinations. - 8. Explain why the relationship between sociodemographic factors and COVID-19 vaccine knowledge is necessary. - 9. Explain why the relationship between sociodemographic factors and COVID-19 vaccine acceptance is necessary. - 10. Please explain why you want to examine the relationship between sociodemographic factors and sex in Table 1. - 11. It should explain why you must classify by sex. - 12. What concept or theory do you apply? - 13. Please explain how your work differs from previous studies. ### Methodology - 1. Please reference the sentence "...calculated with 5% margin of error, 95% confidence level, and unknown population number which filled with 100,000." - 2. Explain the sampling method. - 3. Please explain the questionnaire on knowledge and acceptance of
COVID-19 vaccines, such as how many items it has, how the questions are explained to the participants, and the scale used to measure them. - 4. Show the results of tests of validity and reliability. - 5. "Respondents were divided into two groups based on their sex: male and female. COVID-19 vaccine general knowledge and vaccine acceptance behaviours were measured using nominal scales." should move to the instrument section. - 6. Why does the 'Analytic procedure' section only explain occupation and religion? - 7. Explain how to test the main assumptions in multivariate ordinal regression and what the results are. #### Results - 1. If you want to show the chi-square test in Table 1 and the information in Figures 2 and 3, write down your research objectives. - 2. Explain the medical background. - 3. "Another positive predictor factor was their knowledge about relatives that had or never had contracted respondents that did not know about this matter." means you compared with whom? - 4. To make it easier for the audience to understand, I propose that you change a reference - category in the dummy coding of Tables 2 and 3, such as economic status, education, age, and knowledge. However, if you want to keep it the same, please clarify your results and discussion. - 5. According to the paragraph "Java island is the densest and the most developed island in Indonesia....Therefore, the vaccination program was started on this island with the fastest spreading of the vaccination (Arifin & Anas, 2021).", I suggest that the author move it to the beginning of the Methods section with the subheading 'Study Area'. - 6. In the first paragraph of your discussion, summarize your major and novel findings. - 7. How does the sentence "Moreover, respondents received information from social media, webinars, and literature or journal" help to explain the previous sentence? - 8. The sentence "However, in term of young age, this current study showed better self-claimed knowledge than a study in Vietnam" is an exaggeration. - 9. Please expand on the sentence "This discrepancy might be caused by our study using self-claimed knowledge, instead of measuring it" to better understand. - 10. According to the sentence "Our study showed that 60-70% of respondents had already received at least one vaccine and registered on a waiting list" you should present data that includes both men and women in your figure. - 11. Please reconsider whether sex classification is helpful for research discussion. In Tables 2 and 3, I noticed that sex was not associated with COVID-19 vaccine knowledge or acceptance. - 12. "The acceptance options were further minimized in the multivariate analysis as reject, hesitate, and accept (consisted of respondents had received at least one jab and on the waiting list)." should be revised and moved to the instrument section. Put citations that state the grouping "reject, hesitate, and accept" as well. - 13. Factors that have been discovered to be statistically significantly correlated and discussed should provide recommendations. - 14. It should include a conclusion section. - 15. Which factor has the most influence on COVID-19 vaccine knowledge and acceptance? Please explain. #### **Implications for research** - 1. Please clearly explain how this research bridges the gap between theory and practice. - 2. Please explain how this research could impact upon society. ## **Quality of Communication** 1. Avoid using redundant words. Avoid using the word "moreover" several times. For example, "Moreover, psychological factors might affect vaccination acceptance, adherence and completion (Pandolfo et al., 2022; Yanto et al., 2021). Moreover, misinformation about the COVID-19 pandemic, including the therapy and vaccination, constitutes a huge challenge to overcome". 2. There is a lack of connection in some paragraphs. Is the work clearly and accurately presented and does it cite the current literature? Partly Is the study design appropriate and is the work technically sound? Partly Are sufficient details of methods and analysis provided to allow replication by others? Partly If applicable, is the statistical analysis and its interpretation appropriate? Partly Are all the source data underlying the results available to ensure full reproducibility? γ_{es} **Are the conclusions drawn adequately supported by the results?** Partly **Competing Interests:** No competing interests were disclosed. **Reviewer Expertise:** Health education and behavioral science I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above. Reviewer Report 18 May 2023 https://doi.org/10.5256/f1000research.141791.r172034 © **2023 Octavius G.** This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ## Gilbert Sterling Octavius 🕛 Department of Pediatrics, Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Banten, Indonesia I have read the article which attempted to analyze the knowledge and acceptance of Indonesians regarding COVID-19 vaccines. While this article has its merits, such as a solid sample size, several points need to be addressed: - 1. The introduction could be rephrased to ensure the readers understand what the authors are trying to convey. Several phrases, such as "In Indonesia itself, the current president, Joko Widodo, became the first Indonesian to become vaccinated on January 13, 2021", do not add coherency or essential points to the introduction and yet disrupt the whole flow. - 2. The authors mentioned that the study aims to "...measure the effect of COVID-19 vaccine knowledge and COVID-19 acceptance..." However, based on the results and discussion, the aim of the study is not answered as the authors tend to respond to what factors influenced vaccine knowledge and acceptance in Javanese individuals. - 3. If this work is part of another study, has it been published elsewhere? If so, please cite the paper so other readers can refer to that study. - 4. Operational definitions must be stated clearly, even though the authors adopted the questionnaires elsewhere. For example, what constitutes vaccine acceptance? - 5. A statistician must be consulted as all univariate results are presented without an odds ratio and 95% CI, while the p-value is 0.000. An overhaul of the statistics and Results section is needed. After the Results section is revised, the Abstract section must also be rephrased. - 6. The authors must explain several rationales in choosing the reference for multivariate analysis. For example, why is "others" being selected as a reference point for source of information? - 7. Using stack bars to visualize the data may not be appropriate. It is confusing, and the y-axis is off (as it jumps from 30 to 80%), potentially misleading the readers. - 8. The authors need to include a limitation section. Is the work clearly and accurately presented and does it cite the current literature? Partly Is the study design appropriate and is the work technically sound? Partly Are sufficient details of methods and analysis provided to allow replication by others? Partly If applicable, is the statistical analysis and its interpretation appropriate? $_{\mbox{\scriptsize NO}}$ Are all the source data underlying the results available to ensure full reproducibility? Yes **Are the conclusions drawn adequately supported by the results?** Partly Competing Interests: No competing interests were disclosed. Reviewer Expertise: COVID-19 Vaccine Research (Social aspect) I confirm that I have read this submission and believe that I have an appropriate level of expertise to state that I do not consider it to be of an acceptable scientific standard, for reasons outlined above. ## Comments on this article Reader Comment 10 Mar 2023 **Yasir Elsanousi**, Division of Medical & Health Services, Alsabeel Charitable Health Center (SCHC), Sudan Thank you for this important research. My comments towards improvement of this manuscript: - 1. The statement in Introduction section: "Unfortunately, virus mutagenicity produces new variants known to reduce vaccine effectiveness" Also, the immunity acquired by the primer vaccine dose against the original virus would wane over time. This is a major cause of decline in vaccine efficacy, among other causes, and main indication of adding booster doses (see Shekhar et al. (2021)). - 2. The statement in Introduction section: "Even though many researchers continue to develop new vaccines with high efficacy, doubts regarding their effectiveness and safety remain an issue." Is it about skepticism of scientists or the general public? Kindly elaborate more to ensure relevance. - 3. The word "*Moreover*" is repeated excessively: consider using various other expressions of the same meaning (such as 'Additionally', 'Likewise', 'Furthermore', 'Besides'...etc). - 4. "Indonesia itself" Suggestion: delete "itself" - 5. The statement in Introduction section: "...vaccination a requirement for all social aspects such as transportation" Kindly explain more what these measures were (did you mean "travel"?). - 6. The statement in Introduction section: "*This strategy remains in effect*" Not clear: kindly explain more or remove. - 7. The statement in Introduction section: "vaccine acceptance increased from 60 to 86.81%" From 60 or 64.8? Kindly explain or just mention as "vaccine acceptance increased to 86.81%". - 8. "focused on an adult population" "on the adult population" - 9. The statement in Methods section: "data were collected from March to June 2021" Because the range is short, better to define the period more precisely e.g. by exact date or utilize 'beginning', middle', 'end' expressions. - 10. The variable
"medical background" Authors may wish to explain clearly what is meant by this (does it mean a medical-related study/work or a past history of a medical condition...?). - 11. "Characteristics of respondents" as in Table 1 I am not comfortable with this age categorization: the category of (>55-60) is a too short interval not in consistency with the other group ranges. Is it a group with special characteristics? The group could be combined with the above (>45-55) to make a more logical increment (i.e 45-60). You then may get different results; so different interpretation may be needed. - 12. The opening paragraph in Discussion section: "Java island is the densest.... spreading of the vaccination." The whole paragraph is suitable to be moved up to be the first part of Methods section under subheading, Study Area. Remember to enrich with more numerical demographic and epidemiological data. 13. The paragraph beginning with the sentence: "As this study only covers one most developed.... similar finding with other studies." Kindly rephrase and define explicitly as limitations of the study. Also add other limitations if any. 14. The paragraph beginning with the sentence: "Taken together, this study showed high....booster programs" Suggest putting this under subheading Conclusion. 15. Additional observation: The inclusion of 'Insurance' as variant implies that vaccine was not free in the country. If that was the case, then it should be mentioned clearly and a 'willing to pay' factor discussed. Thank you Yasir E A Elsanousi, Msc, EMDM, DTM&H Competing Interests: No competing interests to disclose ____ Page 20 of 21 ## The benefits of publishing with F1000Research: - Your article is published within days, with no editorial bias - You can publish traditional articles, null/negative results, case reports, data notes and more - The peer review process is transparent and collaborative - Your article is indexed in PubMed after passing peer review - Dedicated customer support at every stage For pre-submission enquiries, contact research@f1000.com