Source details

Journal of Arrhythmia CiteScore 2020Open Access (i)Scopus coverage years: from 2005 to Present
Publisher: Wiley-Blackwell SJR 2020
ISSN: 1880-4276 E-ISSN: 1883-2148 0.463
Subject area: Medicine: Cardiology and Cardiovascular Medicine
Source type: Journal SNIP 20200.730
View all documents > Set document alert $\boxed{\square}$ Save to source list
CiteScore CiteScore rank \& trend Scopus content coverage
i Improved CiteScore methodology

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more >
CiteScore 2020
$1.9=\frac{1.001 \text { Citations 2017-2020 }}{523 \text { Documents 2017-2020 }}$

Calculated on 05 May, 2021

CiteScoreTracker 2021 (1) 1. $9=\begin{aligned} & \text { 1.033 Citations to date } \\ & 539 \text { Documents to date }\end{aligned}$

Last updated on 06 April, 2022 . Updated monthly

CiteScore rank 2020 (1)

Category	Rank Percentile	
Medicine		
- Cardiology and	\#194/317	38 th
\quadCardiovascular Medicine		

Submit Your Manuscript With Us

Accepting Research Focused on Wireless Power Transf with Us.

Journal of Arrhythmia ©

COUNTRY
Netherlands
Universities and
research institutions in
tenconct

SUBJECT AREA AND CATEGORY

Medicine
Cardiology and
Cardiovascular
Medicine

PUBLICATION TYPE
ISSN

18804276, 18832148

PUBLISHER

John Wiley \& Sons Inc.

COVERAGE

2005-2011, 2014-2020

H-INDEX
21

INFORMATION

Homepage
How to publish in this
journal
JOAEO@wiley.com

SCOPE

Journal of Arrhythmia, the official journal of the Japanese Heart Rhythm Society and the Asia Pacific Heart Rhythm Society, aims to provide a scientific platform on which to promote excellence and advancement in the study and care of patients with cardiac rhythm disorders. The Journal publishes peer-reviewed original clinical and basic research articles, along with case reports on all aspects of cardiac pacing and cardiovascular electrophysiology devoted to the ongoing developments of diagnosis and treatment of arrhythmia. Also included are reviews, editorials, ECGs for students and associated professionals, EPS and related devices for resident physicians, and basic science information for clinicians. Much of the contributed material is requested, but unsoliched submissions are welcome and will be given full consideration.

0 (2) $4 / 2216.35$
\% Hiterfational comauoration

Cited documents Uncited documents

Journal of Arrhythmia
chave uocurnerts rvorratable uocumems
1.4k

G SCImago Graphica

Explore, visually communicate and make sense of data with our new free tool.

Get it

Metrics based on Scopus ® data as of April 2021

Leave a comment

Name

Email
(will not be published)

Gournal of

Official Journal of

 (3) clinical REview

(3) editorial.

24) oricimal abticles

CUNICAL. REVIEW
W)

(17) ORIGINAL ARTICLES

 Clicica outcomen of atred fikritstion wihh hyterthyruidism
Aspociston botwoen atral ftorlaten and bundio branch block

Rationah and deregn of the HINCCE study: Mert falurn indication and sudfen carchac death proveriton trai dean

Factors Elocting signal qualsy in implantable cardias manaiters with long sersing vector

Cebt ondectromess of meartablo cardise manitors for diagncais of atrial ftomilaben in cryptogonis shoke m Austris

3. CAPDUAC ARRHYTHMIA SPOT LIQHT

Susceastul implantation of a left venticuter bad in an anencicua coronery ainus

(8) ECG FOR STUDENTS \& ASSOC. PROFESSIONALS

Sournal

Editorial Board

Co-Editors-in-Chief:
Shih-Ann Chen, Taipei Veterans General Hospital, Taipei, Taiwan
Kazuo Matsumoto، Saitama Medical University, Saitama، Japan

Deputy Editors:

Akihiko Nogami, University of Tsukuba, Tsukuba, Japan
Shu Zhang, Beijing Fuwai Hospital, Beijing, China

Associate Editors:

Ming-Hsiung Hsieh, Taipei Medical University and Wan-Fang Hospital, Taipei, Taiwan
Toshiyuki Ishikawa, Yokohama City University Hospital, Yokohama, Japan
Ritsushi Kato, Saitama Medical University, Saitama, Japan
Kengo Kusano, National Cerebral and Cardiovascular Center, Osaka, Japan
Hiroshi Tada, University of Fukui, Fukui, Japan
Hung-Fat Tse, The University of Hong Kong, Hong Kong, Hong Kong
Wanwarang Wongcharoen, Chiang Mai University, Chiang Mai, Thailand

Section Editors:

Jonathan Kalman, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
Young-Hoon Kim, Korea University Medical Center, Seoul, Korea
Chu-Pak Lau, The University of Hong Kong, Hong Kong, Hong Kong
Kazuo Matsumoto, International Medical Center, Saitama Medical University, Higashimatsuyama, Japan
Prash Sanders, Royal Adelaide Hospital and The University of Adelaide, Adelaide, Australia
Shu Zhang, Beijing Fuwai Hospital, Beijing, China

Section Co-Editor:

Kazuo Matsumoto, International Medical Center, Saitama Medical University, Higashimatsuyama, Japan Hsuan-Ming Tsao, National Yang Ming University Hospital, Taipei, Taiwan
Yoga Yuniadi, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

JHRS Editorial Board:
Haruhiko Abe, University of Occupational and Environmental Health, Kitakyushu, Japan
Osmar Antonio Centurion, Asuncion National University, Asuncion, Paraguay
Masaomi Chinushi, Niigata University School of Medicine, Niigata, Japan

Tetsushi Furukawa, Tokyo Medical and Dental University, Tokyo, Japan
Masahiko Goya, Tokyo Medical and Dental University, Tokyo, Japan
Hitoshi Hachiya, Tsuchiura Kyodo Hospital, Ibaraki, Japan
Tomoo Harada, St. Marianna University School of Medicine, Kawasaki, Japan
Takanori Ikeda, Toho University Faculty of Medicine, Tokyo, Japan
Katsuhiko Imai, NHO Kure Medical Center, Hiroshima, Japan
Yoshiaki Kaneko, Gunma University Graduate School of Medicine, Maebashi, Japan
Yoshinori Kobayashi, Tokai University Hachioji Hospital, Tokyo, Japan
Koji Kumagai, Gunma Prefectural Cardiovascular Center, Maebashi, Japan
Koichiro Kumagai, Fukuoka Sanno Hospital, Fukuoka, Japan
Takashi Kurita, Kinki University, Osaka, Japan
Naomasa Makita, Nagasaki University, Nagasaki, Japan
Mitsunori Maruyama, Nippon Medical School Chiba Hokuso Hospital, Chiba, Japan
Takeshi Mitsuhashi, Saitama Medical Center and Jichi Medical University, Saitama, Japan
Masataka Mitsuno, Hyogo College of Medicine, Hyogo, Japan
Yasushi Miyauchi, Nippon Medical School, Chiba, Japan
Itsuro Morishima, Ogaki Municipal Hospital, Ogaki, Japan
Hiroshi Morita, Okayama University Graduate School of Medicine, Okayama, Japan
Norishige Morita, Tokai University Hachioji Hospital, Tokyo, Japan
Yuji Murakawa, Teikyo University and Mizonokuchi Hospital, Tokyo, Japan
Satoshi Nagase, National Cerebral and Cardiovascular Center, Osaka, Japan
Shiro Nakahara, Dokkyo Medical University Koshigaya Hospital, Koshigaya, Japan
Toshiko Nakai, Nihon University School of Medicine, Tokyo, Japan
Yuji Nakazato, Juntendo University Urayasu Hospital, Urayasu, Japan
Mitsuhiro Nishizaki, Kanto Gakuin University, Yokohama, Japan
Shinichi Niwano, Kitasato University School of Medicine, Tokyo, Japan
Takashi Noda, National Cerebral and Cardiovascular Center, Osaka, Japan
Seiko Ohno, Shiga University of Medical Science, Shiga, Japan
Kazuhiro Satomi, Tokyo Medical University, Tokyo, Japan
Yukio Sekiguchi, University of Tsukuba, Tsukuba, Japan
Tsuyoshi Shiga, Tokyo Womens Medical University, Tokyo, Japan
Akihiko Shimizu, Yamaguchi Graduate School of Medicine, Yamaguchi, Japan
Wataru Shimizu, Nippon Medical School, Tokyo, Japan
Kyoko Soejima, Kyorin University, Tokyo, Japan
Masahiko Takagi, Osaka City University Graduate School of Medicine, Osaka, Japan
Naohiko Takahashi, Oita University, Oita, Japan
Seiji Takatsuki, Keio University School of Medicine, Tokyo, Japan
Kaoru Tanno, Showa University, Tokyo, Japan
Hiroshige Yamabe, Kumamoto University, Kumamoto, Japan
Teiichi Yamane, Jikei University School of Medicine, Tokyo, Japan
Kohei Yamashiro, Takatsuki General Hospital, Osaka, Japan

Hisashi Yokoshiki, Hokkaido University Graduate School of Medicine, Sapporo, Japan
Yasuhiro Yokoyama, St.Lukes International Hospital, Tokyo, Japan

APHRS Editorial Board:

Kejiang Cao, Nanjing Medical University, Nanjing, China
Tae-Joon Cha, Kosin University Gospel Hospital, Busan, Korea
Ngai-Yin Chan, Princess Margaret Hospital, Hong Kong, Hong Kong
Minglong Chen, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
Yi-Jen Chen, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Chern-En Chiang, Taipei Veterans General Hospital, Taipei, Taiwan
Chi Keong Ching, National Heart Centre Singapore, Singapore, Singapore
David Foo, Tan Tock Seng Hospital, Singapore, Singapore
Nipon Ghattipakorn, Chiang Mai University, Chiang Mai, Thailand
Kui Hong, The Second Affiliated Hospital of Nanchang University, Nanchang, China
Dejia Huang, West China Hospital, Sichuan University, Chengdu, China
Jin-Long Huang, Taichung Veterans General Hospital, Taichung, Taiwan
Azlan Hussin, National Heart Institute, Kuala Lumpur, Malaysia
Alejandro Jimenez, University of Maryland School of Medicine and University of Maryland Medical Center, AbuDhabi, UAE
Jonathan Kalman, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia Peter Kistler, The Alfred Hospital, Melbourne, Australia
Pramesh Kovoor, Westmead Hospital, Sydney, Australia
Rungroj Krittayaphong، Siriraj Hospital, Mahidol University, Bangkok, Thailand
Saurabh Kumar, Westmead Hospital and University of Sydney, Sydney, Australia
Chi-Tai Kuo, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan
Dennis Lau, The University of Adelaide, Adelaide, Australia
Hsiang-Chun Lee, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
Kathy Lee, University of Hong Kong, Hong Kong, Hong Kong
Nigel Lever, Auckland City Hospital, Auckland, New Zealand
Jiunn-Lee Lin, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan

Yenn-Jiang Lin, Taipei Veterans General Hospital, Taipei, Taiwan
Li-Wei Lo, Taipei Veterans General Hospital, Taipei, Taiwan
Yash Lokhandwala, LTMG Hospita, Mumbai, India
Muhammad Munawar, Binawaluya Cardiovascular Center, Jakarta, Indonesia
Seil Oh, Seoul National University College of Medicine, Seoul, Korea
Yong-Seog Oh, Seoul St. Mary 's Hospital and The Catholic University of Korea, Seoul, Korea
Hui-Nam Pak, Yonsei University Health System, Seoul, Korea
Marcellus Francis L. Ramirez, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
Swee Chong Seow, National University Heart Centre, Singapore, Singapore

Dong-Gu Shin, Yeungnam University Hospital and Yeungnam University, Daegu, Korea
Jonathan R Skinner, The Starship Childrens Hospital and University of Auckland, Auckland, New Zealand Martin Stiles, Waikato Hospital, Hamilton, New Zealand

Stuart Thomas, Westmead Hospital, Westmead, Australia
Chia-Ti Tsai, National Taiwan University Hospital, Taipei, Taiwan
Hsuan-Ming Tsao, National Yang Ming University Hospital, Taipei, Taiwan
Chun-Chieh Wang, Chang Gung Memorial Hospital, Taoyuan, Taiwan
Yan Yao, Beijing Fuwai Hospital of PUMC-CAMS, National Center for Cardiovascular Diseases, Beijing, China
Hung-l Yeh, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
Yoga Yuniadi, Universitas Indonesia, Jakarta, Indonesia

International Associate Editors:

Toshio Akiyama, Professor Emeritus of Medicine (Cardiology), University of Rochester Medical Center, Nevada, USA

Angelo Auricchio, Director, Clinical Electrophysiology Unit, Fondazione Cardiocentro Ticino, Lugano, Switzerland; Professor of Cardiology, University Magdeburg, Magdeburg, Germany; President, European Heart Rhythm Association, Lugano, Switzerland
David G. Benditt, Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, USA Michele Brignole, Arrhythmologic Centre, Department of Cardiology, Ospedali del Tigullio, Tigulio, Italy

Joseph Brugada, Medical Director, Hospital Clínic, University of Barcelona, Barcelona, Spain
Peng-Sheng Chen, Medtronic Zipes Chair in Cardiology; Director, Krannert Institute of Cardiology; Chief, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indiana, USA
Ralph J. Damiano Jr, Division of Cardiothoracic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, Missouri, USA

Gerhard Hindricks, Professor of University Leipzig Heart Center, Leipzig, Germany
Fred Morady, McKay Professor of Cardiovascular Disease; Professor of Medicine, University of Michigan Health System, Miami, USA
Hiroshi Nakagawa, Director, Clinical Catheter Ablation Program; Director, Translational Electrophysiology Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma, USA
Andrea Natale, St David's Medical Center, Texas, USA
Stanley Nattel, Professor of Medicine, Paul-David Chair in Cardiovascular, Electrophysiology, University of Montreal; Director, Electrophysiology Research Program, Montreal Heart Institute, Montreal, Canada
Feifan Ouyang, Clinical Electrophysiology Laboratory in the Cardiology, Department of Asklepios Klinik St Georg, Hamburg, Germany
Douglas Packer, Mayo Clinic, Minnesota, USA
Silvia G. Priori, Associate Professor of Cardiology University of Pavia; Scientific Director, Director of Cardiology and Molecular Cardiology, IRCCS Fondazione Maugeri, Pavia Italy; Director of Cardiovascular Genetics, Langone Medical Center, New York University, Pavia, Italy
Eric Prystowsky, St. Vincent Hospital , Indiana, USA
David S. Rosenbaum, Professor of Cardiology, Chief, Division of Cardiology and Director, Heart \& Vascular Center for the MetroHealth System; Professor of Medicine, Biomedical Engineering, Physiology \& Biophysics, MetroHealth Campus, Case Western Reserve University, Ohio, USA

Richard B. Schuessler, Research Professor of Surgery and Biomedical Engineering; Director, Cardiothoracic Surgery Research Laboratory, Washington University School of Medicine, Washington DC, USA Dipen Chandrakant Shar, Service de Cardiologie, Hospital Cantonal de Geneve, Geneve, Switzerland
Arthur A.M. Wilde, Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
Bruce L. Wilkoff, Director, Cardiac Pacing \& Tachyarrhythmia Devices, Department of Cardiovascular Medicine; Professor of Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio, USA
Takumi Yamada, Distinguished Professor of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Alabama, USA
Douglas Zipes, Distinguished Professor, Indiana University School of Medicine, Krannert Institute of Cardiology, Indiana, USA

Tools

- Submit an Article
- Get content alerts

More from this journal
Virtual Issue: Guidelines/Consensus Reports
Editor's Choice Articles
Publishing with Journal of Arrhythmia
Author tips: Get read, shared \& cited
Author tips: Promotional Toolkit
Institutional and Funder Payments
Wiley Open Access

Stay Connected

Follow us on Twitter

Trending Articles

Click here to view the latest trending articles from Journal of Arrhythmia

About Wiley Online Library

Privacy Policy
Terms of Use
About Cookies
Manage Cookies
Accessibility
Wiley Research DE\&I Statement and Publishing Policies

Help \& Support
Contact Us
Training and Support
DMCA \& Reporting Piracy
Opportunities
Subscrintion Agents
Advertisers \& Corporate Partners
Connect with Wiley
The Witey Network
Wiley Press Room

Copyright © 1999-2022 John Wiey \& Sons, the All rights reserved

Volume 37, Issue 4

Pages: i-iii, 709-1122
August 2021
<Previous Issue | Next Issue >
: \equiv GOTO SECTION

```
# Export Citation(s)
```


ISSUE INFORMATION

BOpen Access
Issue Information
Pages: i-iii | First Published: 04 August 2021
PDF | Request permissions

GUIDELINES

Q Open Access
JCS/JHRS 2019 guideline on non-pharmacotherapy of cardiac arrhythmias
Akihiko Nogami MD, PhD, Takashi Kurita MD, PhD, Haruhiko Abe MD, PhD, Kenji Ando MD, PhD, Toshiyuki Ishikawa MD, PhD, Katsuhiko Imai MD, PhD, Akihiko Usui MD, PhD, Kaoru Okishige MD, PhD, Kengo Kusano MD, PhD, Koichiro Kumagai MD, PhD, Masahiko Goya MD, PhD, Yoshinori Kobayashi MD, PhD, Akihiko Shimizu MD, PhD, Wataru Shimizu MD, PhD, Morio Shoda MD, PhD, Naokata Sumitomo MD, PhD, Yoshihiro Seo MD, PhD, Atsushi Takahashi MD, PhD, Hiroshi Tada MD, PhD, Shigeto Naito MD, PhD, Yuji Nakazato MD, PhD, Takashi Nishimura MD, PhD, Takashi Nitta MD, PhD, Shinichi Niwano MD, PhD, Nobuhisa Hagiwara MD, PhD, Yuji Murakawa MD, PhD, Teiichi Yamane MD, PhD, Takeshi Aiba MD, PhD, Koichi Inoue MD, PhD, Yuki Iwasaki MD, PhD, Yasuya

Inden MD, PhD, Kikuya Uno MD, PhD, Michio Ogano MD, PhD, Masaomi Kimura MD, PhD, Shunichiro Sakamoto MD, PhD, Shingo Sasaki MD, PhD, Kazuhiro Satomi MD, PhD, Tsuyoshi Shiga MD, PhD, Tsugutoshi Suzuki MD, PhD, Yukio Sekiguchi MD, PhD, Kyoko Soejima MD, PhD, Masahiko Takagi MD, PhD, Masaomi Chinushi MD, PhD, Nobuhiro Nishi MD, PhD, Takashi Noda MD, PhD, Hitoshi Hachiya MD, PhD, Masataka Mitsuno MD, PhD, Takeshi Mitsuhashi MD, PhD, Yasushi Miyauchi MD, PhD, Aya Miyazaki MD, PhD, Tomoshige Morimoto MD, PhD, Hiro Yamasaki MD, PhD, Yoshifusa Aizawa MD, PhD, Tohru Ohe MD, PhD, Takeshi Kimura MD, PhD, Kazuo Tanemoto MD, PhD, Hiroyuki Tsutsui MD, PhD, Hideo Mitamura MD, PhD, on behalf of the JCS/JHRS Joint Working Group

Pages: 709-870 | First Published: 02 June 2021
First Page \| Full text \| PDF \| References $\|$ Request permissions

- Open Access

Expert consensus document on automated diagnosis of the electrocardiogram: The task force on automated diagnosis of the electrocardiogram in Japan. Part 1:
Nomenclature for diagnosis and abnormal findings
Takao Katoh MD, PhD, Masaaki Yashima MD, PhD, Naohiko Takahashi MD, PhD, Eiichi Watanabe MD, PhD, Takanori lkeda MD, PhD, Yuji Kasamaki MD, PhD, Naokata Sumitomo MD, PhD, Norihiro Ueda MD, PhD, Hiroshi Morita MD, PhD, Masayasu Hiraoka MD, PhD

Pages: 871-876 | First Published: 14 June 2021

[^0](See Table S1 in details)
As these terms should accurately represent the abnormal findings and conditions as much as possible, we propose to unify these terms into terminologies that are not confusing and easy to understand for everyone.

Abstract \| Full text | PDF \| References \| Request permissions

Electrocardiography on admission is associated with poor outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis

Mochamad Yusuf Alsagaff MD, PhD, Yudi Her Oktaviono MD, PhD, Budi Baktijasa Dharmadjati MD, Achmad Lefi MD, PhD, Makhyan Jibril Al-Farabi MD, MSc, Parama Gandi MD, Bagas Adhimurda Marsudi MD, Yusuf Azmi MD

Pages: 877-885 | First Published: 14 June 2021

Electrocardiography abnormalities on admission, including longer QTc interval and prolonged QTc interval, longer QRS duration, a faster heart rate, the presence of LBBB, PAC, PVC, T-wave inversion, and STdepression are significantly associated with an increased composite poor outcome in patients with COVID-19.

Abstract \| Full text \| PDF \| References \| Request permissions

| EDITORIAL

〇Open Access

Editorial to "Electrocardiography on admission is associated with poor outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and metaanalysis"

Wen-Han Cheng MD, Yu-Feng Hu MD, Shih-Ann Chen MD
Pages: 886-887 | First Published: 14 July 2021
Full text \| PDF \| References | Request permissions

Journal of Arrhythmia ${ }^{\text {a }}$

country	SUBJECT AREA AND CATEGORY	PUBUSHER	H-INDEX
Netherlands Universities and research instilutiono in Neftheriands	Medicine Cardiology and Cardiovascular Medicine	John Wiley \& Sons Inc.	
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	18804276, 18832148	2005-2011, 2014-2020	Homepage
			How to publish in this journal JOAEO@wiley.com

SCOPE

Journal of Arrhythmia, the official journal of the Japanese Heart Rhythm Society and the Asia Pacific Heart Rhythm Society, aims to provide a scientific platform on which to promote excellence and advancement in the study and care of patients with cardiac rhythm disorders. The Journal publishes peerreviewed original clinical and basic research articles, along with case reports on all aspects of cardiac pacing and cardiovascular electrophysiology devoted to the ongoing developments of diagnosis and treatment of arrhythmia. Also included are reviews, editorials, ECGs for students and associated professionals, EPS and related devices for resident physicians, and basic science information for clinicians. Much of the contributed material is requested, but unsolicited submissions are welcome and will be given full consideration.

Q Join the conversation about this journal

析

09/04/22 16.28^{ε}
FIND SIMILAR JOURNALS

G ScImago Graphica

Source details

Journal of ArrhythmiaOpen Access (i)Scopus coverage years: from 2005 to Present
Publisher: Wiley-Blackwell SJR 2020
ISSN: 1880-4276 E-ISSN: 1883-2148 0.463
Subject area: Medicine: Cardiology and Cardiovascular Medicine
Source type: jourmal SNIP 20200.730

CiteScore 2020
1.9
0.730
CiteScore CiteScore rank \& trend Scopus content coverage
i Improved CiteScore methodology papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. Learn more >

CiteScore 2020
$19=1.001$ Citations 2017-2020

1. $9=\frac{}{523 \text { Documents 2017-2020 }}$

Calculated on 05 May, 2021

CiteScoreTracker 2021 (1)

1. $9=\begin{aligned} & \text { 1.033 Citations to date } \\ & 539 \text { Documents to date }\end{aligned}$

Last updated on 06 April, 2022 . Updated monthly

CiteScore rank 2020 ©

Category Rank Percentile

Medicine

- Cardiology and \#194/3IT 38th

Cardiovascular
Medicine

Electrocardiography on admission is associated with poor outcomes in coronavirus disease 2019 （COVID－19）patients：A systematic review and meta－analysis

Mochamad Yusuf Alsagaff MD，PhD ${ }^{1}{ }^{\text {© }}$｜Yudi Her Oktaviono MD， $\mathrm{PhD}^{1}{ }^{\text {© }}$｜ Budi Baktijasa D arnıadjati MD ${ }^{1}$｜Achmad Lefi ML， PhC^{1}｜Makinyan Jibri＇Aı Farabi MD，MSc ${ }^{1}{ }^{(0)}$ Parama Gandi MD ${ }^{1}$ ©｜Bagas Adhimurda Marsudi MD ${ }^{2}$｜Yusuf Azmi MD ${ }^{3}$ ©

${ }^{1}$ Ūeparcment of Cardiolugy＇and ．＇ascular Medicine，Faculcy of Medicine．Suetomo veneral ．uspital，universitas Airlangga， Surabaya，indunesia
${ }^{2}$ Deparcment of Cardiulogy and＇．ascular Medicine，Faculcy of Medicine，Harapan Kita National Heart Center，Universitas Indonesia，Jakarta，Indonesia
${ }^{3}$ Faculty of Medicine，Universitas Airlangga， Surabaya，Indonesia
\therefore－orıespondence
－Yudi Her Oktaviono，Department of Cardiology and Vascular Medicine，F－aculty of Medicine，Soetomo General Hospital， Universitas Airlangga，Mayjen Prof．Dr． Moestopo Street No．47，Surabaya 60132， Indonesia．
Email：yoktaviono＠gmail．com
Funding information
The author（s）received no financial support for the research，authorship，and／or publication of this article．

Abstract

Background：Electrocardiogram（ECG）i a wideiy acces ibie dia\％：ortic te vi that can ea illy be obta＇ieu on ad：．，issior，arid cani ieduce excessive contact vititi，coronavirus disease 2019 （COVID－19）patients．n systematic review and meta－analysis were per－ formed to evaluate the latest evidence on the association of ECG on admission and the μ oor outcomes in COVID－19． Methods：A ：iterature search was conducted on on：ine databases for observational studies evaluating ECG parameters and composite poor outcomes comprising ICU admission，severe iliness，and mortality in COVID－19 patients． Resuits：A total of 2，539 patients from seven studies were incl．ded in this analysis． Pooled analysis showed that a longer corrected QT（QTc）interval and more frequent prolonged QTc interval were associated with composite poor outcome（［WMD 6.04 ［2．62－9．45 $, \mu=001: I^{\kappa}: 0 \%$ ］and［RR 1.89 ［1．52－．36’，P＜0 J1，$I^{\kappa} .1^{\top} \%$ ］，respectively）． Patients witn poor outcome had a longer QRS duration and a faster heart rate com－ pared with patients with good outcome（［WMD 2.03 ［ $0.20-3.87$ ］，$P=.030 ; 1^{2} 46.1 \%$ ］ and［W＇MD 5.96 ［0．96－10．95］$\left.P=.019 ; l^{2}: 55.9 \%\right]$ ，respectively）．The incidence of left bundle branch block（LBBB），premature atrial contraction（PA．C），and premature ven－ tricular contraction（PVC）were higher in patients with poor outcome（［RR 2.55 ［1．19－ 5．47］，$P=.016 ; I^{2}: 65.9 \%$ ］；［RR 1.94 ［1．32－2．86］，$\left.P=001 ; I^{2}: \because 2.8 \%\right]$ ；and［RR 1.84 ［1．075－3．17］，$P=.026 ; I^{2}: 70.6 \%$ ］，respectively）．T－wave inversion and ST－depression were more frequent in patients with poor outcome（［RR 1.68 ［1．31－2．15］，$P<.001$ ； $I^{2}: 14.3 \%$ ］and［RR 1.61 ［1．31－2．00］，$P=.001 ;\left.\right|^{2}: 49.5 \%$ ］，respectively）． Conclusion：Most ECG abnormalities on admission are significantly associated with an increased composite poor outcome in patients with COVID－19．

KEYWORDS

CO：ID－19，electrocardiogrım，ICU admission，i．．rid．lit，seveルビ luncss

[^1]
1 | INTкODUCTON

On January 3৩, 202v, thie World Health Organizatıon (WHO) declared 2019 coronavirus disease (COIID-19; an infectious disease caused by Severe f.cute Respiratory Syndrome-coronavirus-2 (SAF ©-CoV-i), as a pandemic. ${ }^{3}$ As of November 22, 2020, it vas reported that more than 57.8 million people worldwide were infected with COVIU-19, causing more tnan 1.3 million fatalities. ${ }^{2}$. Vhile most 0 o the tocus is on diseases and complications of the lung, one cannot ignore myocardial injury as it can worsen the proznosis and increase mortality. ${ }^{0,4}$ SARS-CoV-2 binds to the host cell surface via the angiotensin-converting enzyme 2 (ACt 2) receptor, which causes pulmonary infection and cardiac complications of acute myocardial injury (21.8%) and arrhythmias (44.4\%). ${ }^{5-1}$

Due to the severe com lications in the heart, a diagnostic tool is needed to hell• predict the condition of the patients quic, ily during admission. Electrocardiography (ECG) is a widely available diagnostic tool that can ue done immediately and can reduce excessive contact with the patient. Previous studies have reported that many COVID-19 patients present with ECG alterations associated with cardiac involvement, such as a prolonged QTc interval, ST-segment abnormalities, atrial and ventricular arrhythmias, and conduction block. ${ }^{8,9}$ Therefore, we performed a systematic review and metaanalysis to evaluate the latest evidence on the association of ECG on admission and the poor outcomes in COVID-19.

2 | ME「HODS

2.1 | Eligibility criteria

We included all studies evaluating ECG parameters on admission and outcomes comprising ICU admission, severe illness, and mortality in patients who tested positive for SAKS-CoV-2 using the reverse transcription-polymerase chain reaction (RT-PCR) test. Unpublished studies, animal or in-vitro studies, review articles, case reports, nonEnglish articles, and studies with irrelevant or non-extractable results were excluded from the analysis.

2.2 | Search strategy and study selection

We conducted a systematic literature search for January 1, 2020, to November 1, 2020, from PubMed, the Cochrane Library Database, and Europe PMC using the search strategy shown in Table S1. After the initial search, duplicate articles were removed. The abstracts and titles of the remaining articles were screened by two authors (MJA and YA) independently. Subsequently, the relevant articles in the full text were assessed based on the eligibility criteria. Disagreements were resolved by conferring with the senior writer (MYA). This research was conducted following the Preferred Reporting Item for Systematic Reviews and MetaAnalysis (PRISMA) statement.

2.3 | Data collection rocess

Two authors (MJA and YA) conducted data extraction independently using standardized form extraction consisting of the author, date of publication, study design, number and characteristics of samples, ECG parameters, IC'J admission, severe illness, and mortality. The ECG parameters included corrected QT (QTc) interval, prolonged QTc interval, QRS duration, PR interval, heart rate, right bundle branch block (RBBB), left bundle branch block (LBBB), premature atrial contraction (PAC), premature ventricular contraction (PVC), T-wave inversion, ST-depression, and ST-elevation. The Bazett formula (QTc = QT/(VRR)) was used to calculate the QTc interval. ${ }^{10}$ The outcome of interest was composite poor outcomes, including ICU admission, severe illness, and mortality. The severity of the disease was defined in the diagnosis and treatment guidelines of adults with community-acquired pneumonia. ${ }^{11}$ We used mean \pm standard deviation (SD) and frequency (percentage) to present the distribution of the categorical and continuous variables, respectively.

2.4 | Quality assessment

The risk of bias and the quality of included studies were assessed using the Newcastle-Ottawa score (NOS) ${ }^{12}$ by all authors independently, and discrepancies were resolved through discussion. This scoring system consists of three domains: sample selection, comparability of cohorts, and outcomes assessment (Table S2).

2.5 | Data analysis

Stata software V.14.0 (College Station) was used for meta-analysis. Pooled effect estimates of the continuous and dichotomous variables were reported as weighted means differences (WMD) and relative risk (RR), respectively. We used the fixed-effects models for pooled analysis with low heterogeneity (I^{2} statistic $<50 \%$ or P-value $>.1$), while the random-effects models were used for pooled analysis with high heterogeneity (I^{2} statistic $>55 \%$ or μ-value $\leq .1$). For other analyses, P-value $<.05$ was determined as statistical significance. Subgroup analysis was performed for the parameter of the QTc interval. The publication bias was evaluated qualitatively using funnelplot analysis. To evaluate the small-study effects on dichotomous and continuous variables, we used the regression-based Harbord test and Egger test, respectively.

3 | RESULTS

3.1 | Study characteristics

Ne identified 775 articles from the initial search, and 674 articles remained after the duplication was removed. Screening on titles and abstracts excluded 661 articles, and the remaining 18 full-text
articles were assessed according to eligibility criterla. As a result, seven studies ${ }^{13-19}$ with a total of $253 \dot{y}$ patients were subje.ted to чualitative analysis anid ...eta aıalysis (risure 1, Iable 1). Uuality assessment witı NOS showed that inc!uded studies were of good quality (Tatle S1)

3.2 | Eiest ucardiogram paranete s and cutzome

Mieta-anal. sis s.owed that longer QTi inter al was :ound in patients wit:’ poor outconne (weighted ıneans difference :VVMD 6.04 [2.629.45], $\left.P=.001: i^{2} .0 \%\right)$ com,ared with ratients with good outcome. Prolonged Qic interval was associated with composite poor outcome
(relative risks, RR 1.89 [1.52-2.36], ${ }^{D}<.00_{1 ; 1_{1}}{ }^{2}: 17 \%$). Patient with poor outcome had also longer QRS duration and faster heart rate than those with good outcome ([WMD 2.03 [0.20-3.87], P - .030; $\left.{ }^{2}: 4 . .1 \%\right]$ and [WMD 5.96 [0.96-10.9」], $\stackrel{F}{ }=.019 ; r^{2}: 25.9 \%$, respectively). The incidence of LBEB, PAC, and PVC on admission ECG was higher in patients with poor outcome ([RR 255 [119-5.47], $\left.P=.016 ; F^{2}: 65.9 \%\right] ;$ iRR 1.94 [1.3?-2.86], $P=.001 ; I^{2}: 62 . \varepsilon^{* \%}$]; and [RR 1.84 [1.075-3.17], $P=.026$; $r^{2}: 70.6 \%$], respectively). ऽT-segment changes including T-wave inversion and ST-depression were also associated with composite poor outcome ([RR 1.68 [1.31-2.15], $\left.P<.001 ; I^{2}: 14.3 \%\right]$ and [RR 1.61 [1.312.00], $\left.P<.001 ; P^{2}: 49.5 \%\right]$, respectively; Figure 2). Other ECG parameters such as , R interval and incidence of RBBB and ST-elevation were not significantly associated with poor outcomes (Figure S1).

FIGURE 1 PRISMA flowchart
TAB LE 1 Characteristics of the included studies

Authors	Study design	Samples (good/ poor outcome group)	Age mean (C)	Male (\%	T me of ECC recording	FCC parameter-	Oitro me	NCS
C. Mr. $=$ r., $20.6 \mathrm{C}^{\prime 3}$	Ctservat $\mathrm{n}: 1$ 1ftresprcily	215. (95/124	611	64\%	At adm ssion	H : at rate IFirtfrva, OKs. ciurat on OTc intervai. Freir rgid O.c! ${ }^{\circ} 00 \mathrm{~ms}$). Sı depressicn, ${ }^{-}$-v ave irversion, KBBb	Severcillness	9
tan La, $^{2020}{ }^{14}$	Observational retrospective.	44/280	778 (9)	66\%	At admission	Heart rate PR irterval, QRS duration, Q1c interval, prosongec CTc ($>460 \mathrm{~ms}$ in worr en. $\geq 450 \mathrm{~ms}$ in nien), ST-depression, T-wave inversion, RBBB	Mortality	9
Li, 2020 ${ }^{\text {+ }}$	Observational retrospective	135 (23/112)	61.3 (18)	51\%	At admission	Heart rate, PR interval, QRS duration, QTc interval, prolonged QTc ($\geq 460 \mathrm{~ms}$ in women: $\geq 450 \mathrm{~ms}$ in men), PAC, $\backslash \backslash$, RBBB	ICl admission	9
McCi.llough, 2020 ${ }^{16}$	Observational retrospective	756 (666/90)	6 6. 3 (16)	63\%	At or near hospital admission	Heart rate, QTc interval, ST-elevation, Twave inversion, PAC, PVC, RBBB, LBBB	Mortality	9
Moe, , 2020 ${ }^{\text {1/ }}$	Observational retrospective	$95(51 / 44)$	60 (16.4)	41\%	At admission and durirg hospitalization	PR interval, QRS ..tration, QTc interval	. CU admission	8
Poteruci:a, $2020{ }^{18}$	Observational retrospective	ع 87 (556/331)	64.1 (17)	58\%	Within two days of admission or diagnosis	PR interval, QRS duration, QTc interval, rrolonged GTc ($>500 \mathrm{~ms}$), ST-denression, ST-elevation, PAC, PVC, RBBB, LBBB	Ventilator requirement, mortality	8
Rath, 2020 ${ }^{1-}$	Observational retrospective	123 (107/16)	68 (15)	63\%	At admission	Heart rate, QRS duration, QTc interval, STdepression, ST-elevation, T-wave inversion, RBBB, LBBB	Mortality	8

Abbreviations: ECG, electrocardiogram; LBBB, left bundle tranch block• ms, millisecond NOS, Newcastle-लttawa Scale; PAC, premature atrial contraction• PVC, premature ventricular contraction; QTc, corrected $Q T(Q T c)$ interval; RBBB, right bundle branch block.
（A）

Study Correcter	Corrected QT Interval（ms）	WMD（ $95 \% \mathrm{Cl}$ ）	\％ Weight
Barman， 2020	\square	3.80 （－3．95，11．55）	19.37
Lanza， 2020	－	1.00 （－10．13，12．13）	9.40
L， 2020		$\rightarrow 15.40$（－6．70，37．50）	2.39
McCullough， 2020	\square	11.00 （－3．50，25．50）	5.54
Moey， 2020		14.90 （－1．34，31．14）	4.42
Poterucha， 2020	－	6.00 （1．40，10．60）	55.03
Rath， 2020		7.00 （－10．41，24．41）	3.85
Overall（ 1 －squared $=0.0 \%, p=0.757$ ）	0．757）	6.04 （2．62，9．45）	100.00

Good outcoine ${ }^{\text {Pobob outcome }}$
（B）

Study ID	Incidence of Prolonged Corrected QT Interval	RR（95\％Cl）	\％ Weight
Barman， 2020	\cdots	1.81 （ $1.25,2.60$ ）	23.75
Lanza， 2020		1.70 （0．68，4．23）	11.20
U， 2020	．	3.47 （1．72，6．98）	10.08
Poterucha， 2020	\rightarrow	1.68 （1．25，2．25）	54.96
Overall（ 1 squared $=17.0 \%, p=0.306$ ）		1．89（1．52，2．36）	100.00
Prolonged QTe（ - －Prolonged QTe（ + ）			

（G）

${ }^{1}$ PAC（－）${ }^{1}$ PAC（＋）${ }^{10}$
\(\left.$$
\begin{array}{lllll}\begin{array}{l}\text { Study } \\
\text { ID }\end{array}
$$ \& \begin{array}{c}Incidence of Premature

Ventricle Contraction\end{array} \& RR（95\％CI）\end{array}\right)\)| \％ |
| :--- |
| Weight |

${ }^{1}$ PVC（ -$)^{1}$ PVC（ +$)^{10}$
（C）

Study ID	QRS duration（ms）	WMD（95\％Cl）	\％ Weight
Barman， 2020	1	$0.80(-4.85,6.05)$	11.35
Lanza， 2020	．	$\rightarrow 13.20$（4．45，21．95）	4.40
U， 2020	－	1.40 （－5．43，8．23）	7.21
Moey， 2020	［	0.70 （－4．81，6．21）	11.09
Poterucha， 2020	＊	1.30 （－1．05，3．65）	60.73
Rath， 2020		$8.00(-0.03,16.03)$	5.22
Overall（1－squared $=46.1 \%, p=0.098)$		2.03 （0．20，3．87）	100.00

（D）

Good ouitlome ${ }^{\text {P Poor }}$ 18utcome
（E）

| $\begin{array}{l}\text { Study } \\ \text { ID }\end{array}$ | $\begin{array}{c}\text { Incidence of Left } \\ \text { Bundie Branch Block }\end{array}$ | | RR（95\％Cl） |
| :--- | :--- | :--- | :--- | :--- | :--- |$)$

（H）

| Study |
| :--- | :--- | :--- | :--- | :--- |
| ID |

（I）

			\％ Weight
10	Incidence of ST－depression	R月（95\％cl）	
Barman， 2020	\ldots	1.41 （0．83，2．39）	48.80
McCullough， 2020		1.69 （0．29，9．85）	6.78
Potervaha， 2020		1.47 （0．85，2．54）	46.42
Overall（ 1 －squard $=0.0 \%, D=0.979$ ）		1.46 （1．00，2．12）	100．00
${ }^{1} \text { ST-fievation (t) }{ }^{1} \text { ST-部vation }(t){ }^{10}$			

FIGURE 2 Several ECG findings and the outcome of COVID－1）．COVID－19 patients presenting with（A）a longer corrected QT interval，（B） prolonged QTc，（C）a longer QRS duration，（D）a faster heart rate，（E）left bundle branch block，（＇）premature atrial contraction，（G）premature ventricular contraction，（H）T－wave inversion，and（I）ST－depression have an increased risk of composite poor outcome

3.3 ｜Publication bias

The visual assessment of the funnel plot showed an as，riii．．esri－ cal sharre for the anal，sis 0 ，the $\langle T \mathrm{~T}$ incerva，which indicated the possibilit；of publicacion bıas（ $\mathrm{FI}_{\mathrm{I}} \mathrm{ur} \approx$ 3）Howごv 2 ir，quantitacive anal－sis usıng rajiession based Egger＇s iest for the same vari－ able showed no siynificant result of small－stud；＇ fff ¿Lts（ $P=\angle\rangle 2$ ） Regression－based Haıbord＇s test tor other ECG paranneters and composite pooi outcome also showed no significant result of small－study effects．

4 ，DISCUSSION

Cardiac injury is one of the complications that represent severe COViD－1 $?^{3}$ and the ECG is still the simplest tool to assess myocardial involvement．This meta analysis revealed that，on admission ECG，pa－ tients，ith poor outcomes tend to have a longer QTc interval，more frequent prolonged QTc interval，longer 2ミう duration，faster heart rate，higher incidence of LBBB，PAC，PVC，T wave inversion，and jT－ depression compared with patients with a good outcome．several previous reviews have described the manifestations of COVID－19

FIGURE 3 Funnel-plot analysis. WMD, weighted mean differences
patients on ECG abnormalities and the effect of medications such as chloroquine, hydroxychloroquine, and azithromycin on QTc prolongation and its association to poor outcomes. Other studies in patients who were not treated with the drugs mentioned above have found that ECG findings associated with mortality and morbidity limited to PK interval changes, axis changes, unspecific ST-T abnormalities, and cardiac arrhythmias such as atrial fibrillation (A $\overline{r_{3}}$), supraventricular tachycardia (nVT), ventricular tachycardia (VT), and ventricular fibrillation (VF). ${ }^{20,21}$ To the best of our knowledge, this is the first systematic review and meta-analysis to describe the abnormality of each ECG parameter on admission and to evaluate its association with the outcomes of COVID-19 patients and adds several new findings, where prolonged QRS findings, LBBB, and PACs and PVCs are associated with worse outcomes in COVID-19 patients. Such findings should warrant caution in clinical practice as they reflect dysfunctional intracellular calcium release and eventual calcium overload resulting in after early after depolarizations (EADs) and delayed after depolarizations (DADs), which will be discussed in more depth later.

The QT interval is the ventricular period of depolarization and repolarization, depicted from the beginning of the Q wave to the end of the T wave. ${ }^{22}$ Abnormal prolongation of this period can cause lifethreatening ventricular arrhythmias, especially torsade de pointes (TdP). ${ }^{29}$ Preexisting prolonged QTc (>500 ms) is prevalent in patients with COV!D-19. In New York City hospital, prolonged QTc was found on 260 of 4250 patients (6.1%) at admission. ${ }^{24}$ Another study reported that nearly 10\% of 623 COVID-19 patients were admitted with a prolonged QTc interval (QTc $>480 \mathrm{~ms}$), and prolonged QTc was significantly associated with higher fatality rates. ${ }^{25}$ The present meta-analysis showed that COVID-19 patients with preexisting prolonged QTc tend to have poor outcomes.

Many factors contribute to a prolonged QTc interval in the patient with COVID-19, but it is likely due to the inflammation and the over-expression of Angiotensin 2 (AnglI) as a result of SARSCOV2 infection. In COVID-19 patients, inflammation can be either localized to the heart in the form of myocarditis/endocarditis ${ }^{26}$ or spread systemically, causing a more severe systemic inflammatory
response. Elevated pro-inflammatory interleukin-6 levels due to systemic inflammation response have a potential electrophysiological effect on ion channels that can alter the duration of action potential and the QTc interval. ${ }^{27}$ Additionally, SARS-COV2 viral load and increased virus endocytosis may also play a role in the development of this finding. Endocytosis of SAriS-COV2 is mediated by Angiotensin-converting enzyme 2 receptor (ACE2R) in the cell membrane, which is expressed abundantly on pulmonary epithelial cells, cardiomyocytes, and vascular endothelial cells. ${ }^{23}$ Utilization of these receptors leads to downregulation of ACE-2R, which results in a pathway shift toward increased production of angiotensin II that binds to Angiotensin II type 1 receptor (AT1R) and Endothelin 1 receptor (ET1). ${ }^{29}$ These pathways result in the formation of reactive oxygen species (ROS) through the activation of Nox2 and subsequent NADPH oxidase enzyme. ${ }^{0,31}$ Increased ROS can directly affect the heart by inducing apoptosis of several cardiac tissues, causing worsening heart failure, vascular damage, and sinus node dysfunction. Increased ROS can also directly influence CAMK-II regulation. Pathological CAMK-II regulation triggers the spontaneous release of electrogenic Ca^{2+} via extrusion $\mathrm{Na}^{+} / \mathrm{Ca}^{2-}$ exchanger, phosphorylation of RyR2 resulting in further calciuminduced calcium release, and gain-of-function of L-type calcium channels and sarcoplasmic endoplasmic reticulum calcium channel (SERCA). ${ }^{32}$ The net effect of these pathways results in Ca^{2+} overload within the cardiomyocyte, causing an increased propensity toward developing EAD and DAD, both of which are prerequisites for developing arrhythmias such as premature ventricular complex (PVC), premature atrial complex (PAC), and even more life-threatening arrhythmias like VT or VF. ${ }^{2,33}$ In addition, the use of pharmacological treatments for COVID-19, such as antimalarial agents (hydroxychloroquine/chloroquine) and anti-viral agents (lopinavir/ritonavir), has been shown to further prolong the QTc interval through inhibition of the hERG-potassium channel and inhibition of the enzyme cytochrome 450, thereby increasing the risk of QT-related lifethreatening ventricular arrhythmias, particularly TdP. ${ }^{34}$ Macrolides such as azithromycin and clarithromycin, which are frequently administered to prevent lung bacterial superinfection, have also been reported to prolong the QT interval and increase the risk of TdP. ${ }^{34,35}$ Given the wide variety of pharmaceutical and medical approaches in treating COVID-19 infection, pharmacokinetic and pharmacodynamic drug interactions are needed to be considered to minimize the risk of cardiac arrhythmias.

COVID-19 patients experienced increased heart rate as the most common finding of rhythm disturbances on hospital admission. ${ }^{36,37}$ The increased heart rate also the most common ECG abnormalities in the patient with SARS, with the incidence of around $72 \%{ }^{38}$ The present meta-analysis showed that COVID-19 patients with increased heart rate tend to have a poor outcome. Consistent with this finding, a previous study showed that COVID-19 patients who need to be treated in the ICU have a faster heart rate compared with the general ward. ${ }^{37} \mathrm{~A}$ study related to COVID-19 mortality also showed that non-survivor have significantly faster baseline heart rates on admission compared with survivors. ${ }^{39}$ The
increased heart rate might be related to the increased risk of atrial tachyarrhythmias, which were common in COVID-19 patients admitted to the ICU and often followed by hemodynamic deterioration, thus leading to poor outcomes. ${ }^{4}$ The mechanisms that underlie atrial tachyarrhythmias and tachycardia in these patients may be due to systemic infection, direct viral cardiomyocyte injury, hypoxia, and natural susceptibility of aged, comorbid-laden individuals. ${ }^{40}$ Hypoxia has been shown to directly cause tachycardia in human studies involving spectral analysis of R-to-R interval series. Hypoxia was shown to attenuate autonomic nervous system activities with the sympathovagal balance leaning more heavily toward sympathetic dominance. ${ }^{41}$

The present meta-analysis showed that COVID-19 patients with longer QRS duration and incidence of LbBB tend to have poor outcomes. In COVID-19 patients, longer QRS duration and the presence of LBBB may indicate intraventricular conduction delay, which can be a sign of myocardial injury and led to pump failure, which is independently associated with death. ${ }^{14,17}$ Similarly, patients with myocarditis with a prolonged QRS complex was associated with lower left ventricular function and higher cardiovascular mortality. ${ }^{42}$

The present study also showed that the presence of PAC and PVC on admission ECG was more frequent in COVID-19 patients with poor outcomes. As previously explained, infection of SARS-COV2 triggers overexpression of Angll, which subsequently causes dysfunctional CAMCK-II activity downstream and eventually PAC and PVCs. ${ }^{25-30}$ Besides this, the appearance of PAC may also be caused by transient systolic and diastolic dysfunction due to cytokine hypersecretion in COVID-19 patients. ${ }^{43}$ The presence of a PAC detected on baseline ECG recording was associated with an increased risk of developing AF , which could increase the risk of congestive heart failure, ischemic heart disease, and sudden cardiac death. ${ }^{43,44}$ Aside from that, the presence of PVC has been detected in 4.4% up to 5% of COVID-19 patients undergoing standard 12-leads ECG on admission. ${ }^{13,15}$ The inflammatory process in COVID-19 is also considered to play a role in the incidence of PVC. A retrospective study of 264 patients undergoing ambulatory Holter ECG monitoring showed that the neutrophil-lymphocyte ratio (NLR) was found higher in the PVC group and was independently associated with the presence of PVC, suggesting the role of the inflammatory cytokine storm. ${ }^{45}$ The PVC existence may also represent an underlying disease that indirectly explains the role of PVC in increasing poor outcomes in COVID-19 patients through the involvement of heart failure. A cohort study conducted by Atherosclerosis Risk in Communities (ARIC) shows that PVC is associated with the prevalence of heart failure. ${ }^{46}$ Other than these mechanisms, PVC will eventually increase the risk of more malignant dysrhythmias such as sustained VT or VF, which leads to sudden cardiac death. ${ }^{47}$

Another ECG manifestation of cardiac involvement in COVID-19 with poor outcome in the present study is ST-segment/ T-wave abnormalities. Generally, ST-segment depression and T-wave inversion represent myocardial ischemia, whereas STsegment elevation represents an ongoing myocardial injury. ${ }^{46}$ COVID-19 patients reveal that mononuclear cells infiltration in the
myocardium, suggesting the role of cytokine storm toward myocarditis in COVID-19 infection. T-wave inversion might be an early warning of myocarditis, as the appearance of T-wave inversion has been associated with myocardial edema on cardiac MRI of myocarditis patients. ${ }^{47}$ Meanwhile, ST-segment depression detected on the ECG is both markers of cardiac injury and poor prognosis for COVID-19 patients. ${ }^{48}$ A cohort study of COVID-19 patients with a follow-up up to 45 days shows that T-wave inversion ($\geq 1 \mathrm{~mm}$) and ST-depression ($\geq 0.5 \mathrm{~mm}$) as independent predictors of death. ${ }^{49}$ Interestingly, several studies have shown a link between severe COVID-19 infection with electrolyte imbalance, namely hypokalemia, and hypomagnesemia, possibly mediated through gastrointestinal and renal loss..50,51 Both of these electrolyte imbalances have been shown to attenuate cardiomyocyte depolarization and result in QTc prolongation and ST waveform changes, as seen in the poor outcome arm of this cohort. ${ }^{52,53}$

5 | LIMITATION

There are several limitations to this study. Firct, all included studies had a retrospective study design, and the data were not sufficiently matched or adjusted for confounders. Therefore, the ECG parameters may be affected by differences in patients' severity at admission. Second, there are some variations of cut-off points for prolonged QTc intervals in different studies and the limitation of Bazett's formula in correcting the QT-interval. Bazett's formula may lead to overcorrecting the QTc value when used at high heart rates. ${ }^{54}$ Since both higher heart rates and prolonged QTc intervals are significantly associated with increased poor outcomes in COVID-19 patients, the effect of prolonged QTc intervals in poor outcomes may be exaggerated by Bazett's formula overcorrecting the QT interval.

6 | CONCLUSION

This meta-analysis showed ECG abnormalities on admission, including longer QTc interval and prolonged QTc interval, longer QRS duration, a faster heart rate, the presence of LBBB, PAC, PVC, T-wave inversion, and ST-depression are significantly associated with an increased composite poor outcome in patients with COVID-19.

7 | CLINICAL IMPLICATION

- Several ECG abnormalities on admission (longer QTc interval, prolonged QTc interval, longer QRS duration, faster heart rate, LBBB, PAC, PVC, T-wave inversion, and ST-depression) are associated with poor outcome in COVID-19 patients.
- Risk stratification of COVID-19 patients must be done early, and admission ECG can be used to identify the underlying disease.
- In patients with prolonged QTc intervals at the baseline and
patients with inherited arrhythmic syndromes, ECG should be evaluated and monitored regularly.

CONFLICTING uF INTēRéSTS

The authors declare no conflict of interest for this article.

ETHICS APPROVAL

Not applicable.

ORCID

Müchamad Yusuf Alsaga, f (D) ittps://o.cid.org/0000-0003-2194-6850 Yudi Her Oktaviono (D) http:://orciA.A.org/0000-0002-2350-2789 Makhyan Jibril Al-Farabi (iD https://orcid.org/0000-0002-8182-2676 Paran a jandi (iD i :tps://orcid.org/0000-0002-4481-3877
Yusu, Azmi (D) https://orcid.org/0000-0001-7841-8149

REFERENCES

1. Worl Health Cerganization. Timu:ne: WH: co CCV D 19 responje 20こ0
¿: World Healı, Organiцstıo veer..y E_{r} :idem ological Jpdate on LCVID-19 - < U 20:1.4.
2. Azevedo RB, Botelho 3^, ce Hollanda JV 〕, Ferreira LVL, Junqueira de Andrace __, Oei SM.- et al. Covid 19 and the cardiova_culars s tem: a compre: ensive review. - iHum .Hypertens. 2020;35(1):4-11.
3. Wang Y,WangZ,T=eG,Zhang L,Wan EY,Guo Y,etal. Cardiacarrhyth mias in patients with CUVIL-19. J arrhythmia. 2020,30(5):E27-3j.
4. Zheng YY, iva YT, v.hang JY, :itie covid-19 and the cardiovascular system. ivature Reviews Cardiology. 2020;17(5):259 60.
5. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications o, fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8.
6. In-iardi RM, Lupi L, Zaccone G, Italia L, Raffo M, Tomasoni D, et al. Cardiac involvement in a patient v.ith coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819.
7. Leertini M, Ferrari K , Guardigli G, Malagù M, Vitali F, Zucchetti O , et al. Electrocardiographic features of 431 consecutive, critically ill COVID-19 patients: an insight into the mechanisms of cardiac involvement. EP Eur. 2020;22(12):1848-54.
8. He J, Wu B, Chen Y, Tang J, Liu Q, Zhou S, et al. Characteristic electrocardiographic manifestations in patients with COVID-19. Can J Cardiol. 2020;36(6):966.e1-4.
9. Luo S, Michler K, Johnston P, Macfarlane PW. A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J Electrocardiol. 2004;37:81-90.
10. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers !., et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med. 2019;200(7):E45-67.
11. Wells GA, Shea B, Oconnell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality if Nonrandomized Studies in Meta-Analyses. 2015.
12. Barman HA, Atici A, Alici G, Sit O, Tugrul S, Gungor B, et al. The effect of the severity COVID-19 infection on electrocardiography. Am J Emerg Med. 2020;6757(20).
13. Lanza GA, De Vita A, Ravenna SE, D'Aiello A, Covino M, rranceschi F , et al. Electrocardiographic findings at presentation and clinical outcome in patients with SARS-CoV-2 infection. EP Eur. 2020;23(1):123-9.
14. Li Y, Liu I, Tse G, Wu M, Jiang J, Liu M, et al. Electrocardiograhic characteristics in patients with coronavirus infection: a singlecenter observational study. Ann noninvasive Electrocardiol. 2020; 25(6):e12805.
15. McCullough SA, Goyal P, Krishnan U, Choi JJ, Safford MM, Okin PM. Electrocardiographic findings in coronavirus disease-19: insights on mortality and underlying myocardial processes. J Card Fail. 2020;26(7):626-32.
16. Moey MYY, Sengodan PM, Shah N, McCallen JD, Eboh O, Nekkanti R, et al. Electrocardiographic changes and arrhythmias in hospitalized patients with COVID-19. Circ Arrhythm Electrophysiol [Internet]. 2020;13(10)::009023. https://europepmc.org/articles/ PMC7566299
17. Poterucha TJ, Elias P, Jain SS, Sayer G, Redfors B, Burkhoff D, et al. Admission cardiac diagnostic testing with electrocardiography and troponin measurement prognosticates increased 30-day mortality in COVID-19. J Am .Heart Assoc. 2021;10(1):e018476.
18. Rath D, Petersen-Uribe Á, Avdiu A, Witzel K, Jaeger P, Zdanyte M, et al. Impaired cardiac function is associated with mortality in patients with acute COVID-19 infection. Clin Res Cardiol. 2020;109(12):1491-9.
19. Mehraeen E, Seyed Alinaghi SA, Nowroozi A, Dadras O, Alilou S, Shobeiri P, et al. A systematic review of ECG findings in patients with COVID-19. Indian Heart J. 2020;72(6):500-/.
20. Long B, Brady WJ, Bridwell RE, Ramzy M, Montrief T, Singh M, et al. Electrocardiographic manifestations of COVID-19. Am J Emerg Med. 2021;41:96-103.
21. Postema PG, Wilde AAM. The measurement of the UT interval. Curr Cardiol Rev. 2014;10(3):287-94.
22. El-Sherif N, Turitto G, Boutjdir M. Acquired long QT syndrome and electrophysiology of torsade de pointes. Arrhythmia Electrophysiol Rev. 2019;8(2):122-30.
23. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052-9.
24. Farré N, Moón D, Llagostera M, Belarte-Tornero LC, CalvoFernández A, Vallés E, et al. Prolonged QT interval in SARS-CoV-2 infection: prevalence and prognosis. J Clin Med. 2020;9(9):2712.
25. Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, et al. Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Hear Rhythm. 2020;17(9):1463-71.
26. Aromolaran AS, Srivastava U, Alí A, Chahine M, Lazaro D, El-Sherif N , et al. Interleukin-6 inhibition of hERG underlies risk for acquired long QT in cardiac and systemic inflammation. PLoS One. 2018;13(12):e0208321.
27. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;323(18):1824-36.
28. Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ , et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456-74.
29. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal. 2013;19(10):1110-20.
30. Violi F, Oliva A, Cangemi R, Ceccarelli G, Pignatelli P, Carnevale R, et al. Nox2 activation in Covid-19. Redox Biol. 2020;36:101655.
31. Sattar Y, L'llah W, Rauf H. COVID-19 cardiovascular epidemiology, cellular pathogenesis, clinical manifestations and management. Int J Cardiol Hear Vasc. 2020;29:100589.
32. Vincent KP, McCulloch AD, Edwards AG. Toward a hierarchy of mechanisms in CaMKII-mediated arrhythmia. Front Pharmacol. 2014;5:110.
33. Lazzerini PE, Boutjdir M, Capecchi PL. COVID-19, arrhythmic risk, and inflammation: mind the gap! Circulation. 2020;142(1):7-9.
34. Albert RK, Schuller JL, Network CCR. Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med. 2014;189(10):1173-80.
35. Chen Q, Xu L, Dai Y, Ling Y, Mao J, Qian J, et al. Cardiovascular manifestations in severe and critical patients with COVID-19. Clin Cardiol. 2020;43(7):796-802.
36. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirusinfected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061.
37. Yu C-M, Wong RS-M, Wu EB, Kong S-L, Wong J, Yip GW-K, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006;82(964):140-4.
38. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62.
39. Russo V, Rago A, Carbone A, Bottino R, Ammendola E, Della Cioppa N, et al. Atrial fibrillation in COVID-19: from epidemiological association to pharmacological implications. J Cardiovasc Pharmacol. 2020;76(2):138-45.
40. Zhang D, She J, Zhang Z, Yu M. Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization. Biomed Eng Online. 2014;13(1):1-12.
41. Ukena C, Mahfoud F, Kindermann I, Kandolf R, Kindermann M, Bíhm M. Prognostic electrocardiographic parameters in patients with suspected myocarditis. Eur J Heart Fail. 2011;13(4):398-405.
42. Hoesel LM, Niederbichler AD, Ward PA. Complement-related molecular events in sepsis leading to heart failure. Mol Immunol. 2007;44(1-3):95-102.
43. O'Neal WT, Kamel H, Judd SE, Safford MM, Vaccarino V, Howard VJ, et al. Usefulness of atrial premature complexes on routine electrocardiogram to determine the risk of atrial fibrillation (from the REGARDS Study). Am J Cardiol. 2017;120(5):782-5.
44. Yildiz A, Oylumlu M, Yuksel M, Aydin M, Polat N, Acet H, et al. The association between the neutrophil-to-lymphocyte ratio and the presence of ventricular premature contractions in young adults. Clin Appl Thromb. 2015;21(5):475-9.
45. Agarwal SK, Simpson RJ Jr, Rautahar;u P, Alonso A, Shahar E, Massing M , et al. Relation of ventricular premature complexes to heart failure (from the Atherosclerosis Risk In Communities [ARIC] Study). Am J Cardiol. 2012;109(1):105-9.
46. Sheldon SH, Gard JJ, Asirvatham SJ. Premature ventricular contractions and non-sustained ventricular tachycardia: Association with
sudden cardiac death, risk stratification, and management strategies. Indian Pacing Electrophysiol J. 2010;10(8):357-71.
47. Unudurthi SD, Luthra P, Bose RJC, McCarthy JR, Kontaridis MI. Cardiac inflammation in COVID-19: lessons from heart failure. Life Sci. 2020;260:118482.
48. De Vita A, Ravenna SE, Covino M, Lanza O, Franceschi F, Crea F, et al. Electrocardiographic findings and clinical outcome in patients with COVID-19 or other acute infectious respiratory diseases. J Clin Med. 2020;9(11):3647.
49. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262-5.
50. Sarvazad H, Cahngaripour SH, Roozbahani NE, Izadi B. Evaluation of electrolyte status of sodium, potassium and magnesium, and fasting blood sugar at the initial admission of individuals with COVID-19 without underlying disease in Golestan Hospital, Kermanshah. New Microbes New Infect. 2020;38:100807.
51. Chua CE, Choi E, Khoo EYH. ECG changes of severe hypokalemia. QJM An Int J Med. 2018;111(8):581-2.
52. Kallergis EM, Goudis CA, Simantirakis EN, Kochiadakis GE, Vardas PE. Mechanisms, risk factors, and management of acquired long QT syndrome: a comprehensive review. Sci World J. 2012;2012.
53. Vandenberk B, Vandael E, Robyns T, Vandenberghe J, Garweg C, Foulon V, et al. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc. 2016;5(6):e003264.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Alsagaff MY, Oktaviono YH, Dharmadjati BB , et al. Electrocardiography on admission is associated with poor outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. J Arrhythmia. 2021;37:877-855. https://do:.org/10.1002/ joa3:2:73

[^0]: [Axis] right axis deviation, marked right axis deviation, left axis deviation, marked left axis deviation, indeterminate axts
 IQ wave/R wavel abnormal Q wave, Ieft ventricular high voltage, poor R wave progression
 [PR/QT interval] short PR interval, prolonged QT interaval, short QT interval
 [ST-T] Brugada type ST-T abnormality (coved type), Brugada type ST-T abnormality (saudeleback typc), ST elevation, ST elevation (moderate), ST depression. ST depression (moderate), early repolarization, J wave, T wave abnormality (high amplitude). T wave abnormality (low amplifude), T wave abnormality (inversion)
 [U wave! prominent U wave, inverted U wave

[^1]: This is an open access article under the terms of the Creative Commons Attribution License，which permits cise，distribution anc．re，rod：ction in a．iy med．um tro vide．ihe or．ginal work is ，roperly c．ted
 $\mathbb{E} 2021$ The Authors ，ourisul of Aırhythm：a published vy ，ohn ㄱilley \＆Sons．Austraila Ltd on behali of the Japanese riearc Rhythm society．

