Widhiyanto, H., 2006, Monte Carlo Simulation to obtain solvation structure of Ni(II) in concentrated ammonia using two-body potential. The script guided by Drs. Faidur Rochman, MS. and Drs. Imam Siswanto, M.Si., Department of Chemistry, Mathematic and Science Faculty, Airlangga University, Surabaya

ABSTRACT

Monte Carlo simulation for Ni²⁺ in concentrated ammonia solution using two body potential was carried out in order to study preferential solvation. Interaction potential of H₂O – H₂O, NH₃ – NH₃, H₂O – NH₃, Ni²⁺ – H₂O, Ni²⁺ – NH₃ adopted from literatures used for simulation input. Simulation system consist of 1 ion Ni²⁺, 210 H₂O and NH₃ molecules whereas each quantity have been adjusted by the concentrations. The simulation is running at 293,15 K in order to keep the system in liquid state. The results show that first solvation shell of Ni²⁺ consist of 6 NH₃ molecules at 49,76% and 59,72% ammonia solution. Whereas at 69,67% and 79,62% ammonia solvation are 8 NH₃ molecules. The amount of H₂O and NH₃ molecules in the second solvation shell of Ni²⁺ ion are 3 and 8 at 49,62%; 1 and 19 at 59,72%; 2 and 19 at 69,67%; 0 and 21 at 79,62% respectively. Distribution data of angle, radial and solvation number indicate two geometry structure that are triangle antipiramidal and quadrangle antipiramidal.

Keywords: Monte Carlo simulation, Two-body potential, Preferential solvation.