BAB 1
PENDAHULUAN

BAB I

PENDAHLLUTAN

1.1. Latar Belakang.

Tujuan K3 diperusahaan adalah untuk mengeliminisasi, menghindari dan mengurangi risiko yang dapat terjadi di lingkungan kerja, maka setiap perusahaan harus memahami akan pentingnya penerapan manajemen risiko di perusahaannya masing - masing.

Risiko itu dapat diartikan dalam berbagai macam definisi, namun secara sederhana resiko dapat diartikan merupakan potensi terjadinya suatu peristiwa/kejadian yang dapat berdampak menimbulkan kerugian bagi perusahaan atau akan mengganggu kelangsungan hidup perusahaan. Jika suatu perusahaan dapat mengidentifikasikan risiko dan bahaya di tempat kerja masing masing, maka akan mudah didalam melakukan penilaian risiko, pengendalian risiko.

Dalam kita mengatur risiko agar tidak terjadi secara berkesinambungan, dapat kita lakukan sccara sadar dan tidak sadar, tetapi semuanya dilakukan secara sistematis. Tujuan kita untuk mengatur risiko ini adalah untuk mengurangi bahaya dan kemungkinan risiko yang terjadi hingga pada tingkat minimum yang dapat diterima sehingga nantinya diharapkan dapat mencegah atau meminimumkan kerugian jiwa dan materi bagi tenaga kerjanya dan kelangsungan hidup dari perusahaan.

Kebutuhan untuk mengelola risiko secara sistematis berlaku untuk scmua organisasi dan untuk semua fungsi fungsi dan aktifitasnya pada suatu organisasi. Serangkaian metodologi dan prosedur yang digunakan untuk mengelola risiko,
meliputi proses identifikasi, pengukuran risiko, pengendalian risiko dan pemantauan risiko yang sudah ada dan/atau yang akan timbul dari setiap kegiatan yang dilaksanakan oleh seluruh unit kerja, sehingga diharapkan kerugian dapat ditekan serendah mungkin atau bahkan diupayakan dapat menjadi suatu peluang untuk meningkatkan keuntungan perusahaan, hal ini disebut dengan manajemen risiko. Seperti manajemen pada umumnya, maka manajemen risiko juga terdiri dari fungsi - fungsi yang ada, yaitu fungsi perencanaan, fungsi pengorganisasian, fungsi penggerak, dan fungsi pengendalian.

Manajemen risiko haruslah sudah diterapkan pada setiap jajaran manager dan staf dari suatu perusahaan, seperti yang telah ditentukan dalam peraturan perundang - undangan dibidang Keselamatan dan Kesehatan Kerja (K3). Hal ini dimaksudkan untuk memperkecil tingkat bahaya dan risiko di perusahaan.

Salah satu unit kerja yang ada di PT Petrokimia Gresik ini adalah pabrik Urea, dimana pabrik ini merupakan pabrik yang menggunakan bahan baku ammonia (NH3), Karbondioksida (CO2), bahan kimia tambahan dalam proses produksinya juga membutuhkan suhu dan tekanan tinggi. Sehingga pabrik ini berpotensi atau memiliki potensi risiko yang tinggi.

Karakteristik dari bahan kimia seperti ammonia mempunyai sifat kimia yang sangat reaktil, basa dan merupakan pereduksi yang kuat. Bahaya dari ammonia ini antara lain bagi kesehatan cairan ammonia dapat menyebabkan luka pada kulit dan mata, uapnya terasa sakit jika terkena kulit, mata dan saluran pernafasan. Selain itu ammonia juga dapat menimbulkan bahaya kebakaran, dan pelcdakan. Sedangkan untuk Karbondioksida (CO2), juga dapat menimbulkan iritasi pada kulit, sesak nafas, dan sakit kepala.

Selain bahaya yang disebabkan karena karakteristik dari bahan kimia yang digunakan, juga adanya bahaya - bahaya yang lain seperti bahaya kebisingan, suhu tempat kerja, kebocoran - kebocoran, tumpahan bahan kimia dan lain-lain. Pabrik urca pernah mengalami peristiwa yang mengakibatkan seluruh aktivitas di pabrik ini berhenti, yaitu adanya ledakan kecil, kebocoran, Shut down/pabrik berhenti total tidak berproduksi. Apabila mengalami shut down/ledakan, proses produksi akan mengalami gangguan, kerugian yang besar, baik dari segi material, dan jumlah pupuk yang dihasilkan peristiwa tersebut dapat disebabkan karena beberapa hal antara lain adanya gangguan teknis pada proses produksi, mesin/peralatan rusak.

Mengingat peritiwa yang terjadi diunit kerja urea, PT Petrokimia Gresik berupaya untuk dapat meminimalkan terjadinya kecelakaan, ataupun dampak yang dapat merugikan perusahaan. Berdasarkan beberapa peristiwa kecelakaan kerja yang pemah terjadi di Jawa Timur seperti ; adanya peledakan dan kebakaran di PT Petrowidada yang terjadi pada bulan Januari, banyak menimbulkan kerugian perusahaan seperti korban jiwa, kerusakan property perusahaan, kerusakan lingkungan sekitar perusahaan. Pada bulan Febuari juga terjadi peledakan dan kebakaran yang menimpa PT Samator, PT Ispaindo, mengingatkan bahwa risiko - risiko bahaya yang mungkin terjadi di perusahaan - perusahaan yang lain.

Penerapan manajemen risiko dalam suatu perusahaan dapat membantu perusahaan itu dari suatu kerugian property, proses, tenaga kerja. Apabila perusahaan tersebut memiliki tingkat risiko yang sangat tinggi.

Kasus pabrik yang meledak atau terbakar, hal ini dapat merugikan perusahaan tersebut. Selain mereka kehilangan property pabrik, kehilangan jiwa dari para pekerjanya akibat dari ledakan atau kebakaran tersebut, kelangsungan proses produksi juga dapat terganggu maka akan mengakibatkan kerugian materi.

Dalam melakukan manajemen risiko ini juga harus memperhatikan segala aspek yang saling berpengaruh, seperti:

1. Pesiapan yang benar - benar matang meliputi dana yang dibutuhkan, sumber daya manusia yang tersedia, sarana dan prasarana penunjang penerapan manajemen resiko
2. Identifikasi risiko di perusahaan harus dilakukan secara sistematis dan berkesinambungan sehingga diharapkan tidak terjadi kesalahan kesalahan yang berarti.
3. Melakukan penilaian risiko yang benar dan sesuai dengan tingkat keparahan yang ditimbulkan dan memperhatikan potensial bahaya - bahaya yang dapat menimbulkan kerugian.
4. Melakukan evaluasi secara optimal terhadap penemuan yang ada
5. Pengendalian / pencegahan risiko harus benar sesuai dengan bahaya atau tingkat risiko yang telah diidentifikasikan dalam tahap sebelumnya, dan harus dilakukan dengan tepat.
6. Melakukan tahap pendokumentasian harus jelas, singkat dan mudah dimengerti sehingga dalam mengambil suatu tindakan dapat berjalan dengan baik dan sesuai dengan kebutuhan, dan yang terakhir dalam melakukan monitoring hendaknya dapat dilakukan secara kontinyu dan berkualitaas sehingga hasil - hasil temuan yang tidak berkenan dapat segera diatasi.

Didalam setiap kegiatan dapat terjadi risiko, risiko dapat menimbulkan dampak yang sangat merugikan. Risiko / bahaya dapat saja terjadi pada setiap waktu, dimana saja dan dapat menimpa semua orang. Dengan demikian selama orang melakukan kegiatan secara tidak disadari sudah menanggung risiko untuk terjadinya suatu peritiwa atau kejadian yang dapat menimbulkan kerugian.

Berdasarkan survey awal dapat digambarkan bahwa penerapan manajemen risiko di PT Petrokimia Gresik sudah ada, tetapi dijumpai ada beberapa kekurangan, antara lain : kerja dari tim manajemen risiko yang telah disahkan oleh direksi pada awal penerapan manajemen risiko ini masih belum berkerja dengan maksimal. Hal ini dikarenakan kesibukan mereka masing-masing. Anggaran dalam pensosialisasian manajemen risiko tidak ada.

Dari uraian diatas, dapat dilihat betapa pentingnya manajemen resiko di suatu perusahaan untuk menghindari, mengurangi bahaya - bahaya (kecelakaan kerja, penyakit akibat kerja, peledakan, keracunan, dan sebagainya) yang dapat menimbulkan kerugian jiwa dan materi, maka perlu dilakukan penelitian lebih mendalam tentang "Penerapan Manajemen Risiko di PT Petrokimia Gresik (Studi observasi di unit kerja Urea)."

1.2. Perumusan Masalah

Berdasarkan uraian latar belakang diatas, maka rumusan masalah dapat dikemukaan sebagai berikut , "Bagaimanakah Penerapan Manajemen Resiko di PT Petrokimia Gresik (Studi observasi di unit kerja Urea) ?'.

1.3. Tujuan Penelitian

1.3.1.Tujuan Umum

Untuk mempelajari Penerapan Manajemen Risiko di PT Petrokimia Gresik (Studi Obscrvasional di Unit Kerja Urea) .

1.3.2.Tujuan Khusus.

1. Mempelajari fungsi perencanaan dalam manajemen risiko yang meliputi : Kebijakan dan komitmen dalam penerapan manajemen risiko, sasaran yang akan dicapai, Program manajemen risiko, pendanaan untuk penerapan manajemen risiko, prosedur dalam penerapan manajemen risiko, pentahapan dan koordinasi dalam penerapan manajemen risiko.
2. Mempelajari fungsi pengorganisasian dalam manajemen risiko, yang meliputi : Struktur organisasi, keanggotaan, wewenang, tanggung jawab dan pendelegasian wewenang, Hubungan kerja terhadap penerapan manajemen risiko..
3. Mempelajari fungsi penggerakan dalam manajemen risiko, yang meliputi : pengambilan keputusan, penempatan staf, pengembangan, komunikasi terhadap penerapan manajemen risiko.
4. Mempelajari fungsi pengendalian dalam manajemen risiko, yang meliputi : identifikasi fakior pekerjaan, pengukuran/measurement, pembuatan standar/standard, Evaluasi dan Koreksi.
5. Mempelajari penerapan manajemen risiko di unit kerja urea, yang meliputi pengidentifikasian risiko, penilaian risiko, pengevaluasian risiko, pengendalian/penggurangan risiko.

1.4. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan memberikan Informasi dan manfaat yang berarti bagi :

1. Pemerintah, dapat digunakan sebagai bahan pertimbangan untuk mengambil langkah dalam perlindungan terhadap kerugian bagi perusahaan dan bagi tenaga kerjanya.
2. Perusahaan, dapat digunakan sebagai masukan dalam menentukan langkah langkah untuk meningkatkan perlindungan asset - asset perusahaan dan tenaga kerja dari bahaya yang dapat menimbulkan kerugian yang sangat besar.
3. Peneliti, merupakan tambahan ilmu pengetahuan dan pengalaman dalam melaksanakan penelitian ilmiah yang berkaitan dengan manajemen risiko di perusahaan.

BAB 2
TINJAUAN PUSTAKA

BAB II

TINJAUAN PUSTAKA

2.1. Risiko.

Kata risiko banyak dipergunakan dalam berbagai pengertian dan sudah biasa dipakai dalam percakapan sehari - hari oleh kebanyakan orang. Tetapi pengertian secara alamiah dari risiko sampai saat ini masih tetap beragam.(Djojosoedarso S.,2003).

Menurut Suwandi, T, 2001, mengatakan bahwa risiko adalah kombinasi dari frekuensi dan parahnya dari suatu kecelakaan dan masalah kesehatan yang (accident and heallh problem) diakibatkan adanya factor bahaya (hazard), sedangkan menurut Salim, A.A., 1993 mengatakan risiko adalah suatu ketidak pastian yang mungkin melahirkan peristiwa kerugian.

Dari definisi tersebut dapat disimpulkan bahwa risiko selalu dihubungkan dengan kemungkinan terjadinya sesuatu yang merugikan / Accident Loss. Berdasarkan definisi yang berbeda • beda, risiko selalu dihubung - hubungkan dengan adanya kemungkinan yang terjadi yang sifatnya merugikan, baik bagi diri sendiri maupun bagi orang lain. Karakteristik risiko adalah sebagai berikut : (Djojosoedarso S.,2003),

1. Merupakan ketidakpastian atas terjadinya suatu peristiwa.
2. Merupakan ketidakpastian bila terjadi akan menimbulkan kerugian.

Ketidakpastian adalah merupakan kondisi yang menyebabkan timbulnya risiko, kerena mengakibatkan keragu - raguan scscorang mengenai
kemampuannya untuk meramalkan kemungkinan terhadap hasil -hasil yang akan terjadi dimasa depan. Kondisi yang tidak pasti itu disebabkan oleh, antara lain :

1. Tenggang waktu antara perencanaan suatu kegiatan sampai kegiatan itu berakhir/menghasilkan, dimana makin panjang tenggang waktunya makin besar ketidakpastiannya.
2. Keterbatasan informasi yang tersedia diperlukan dalam penyusunan rencana.
3. Keterbatasan pengetahuan/kemampuan/teknik pengambilan keputusan dari perencanaan.

Risiko dapat dibedakan dengan berbagai macam cara (Djojosoedarso S., 2003), antara lain :

1. Menurut sifatnya risiko dapat dibedakan kedalam :
A. Risiko yang tidak disengaja (risiko murni), adalah risiko yang apabila terjadi tentu menimbulkan kerugian dan terjadinya tanpa disengaja; misalnya risiko terjadinya kebakaran, bencana alam, pencurian, penggelapan, pengacauan, dsb
B. Risiko yang disengaja (risiko spekulasi), adalah risiko yang sengaja ditimbulkan oleh yang bersangkutan, agar terjadinya ketidakpastian memberikan kcuntungan kepadanya, misalnya risiko utang-piutang, perjudian, perdagangan jangka panjang, dsb.
C. Risiko fundamental, adalah risiko yang penycbabnya tidak dapat dilimpahkan kepada seseorang dan yang menderita tidak hanya satu atau beberapa orang saja, tetapi banyak orang, seperti banjir, angin topan, tanah longsor, dsb.
D. Risiko khusus, adalah risiko yang bersumber pada peristiwa yang mandiri dan umumnya mudah diketahui penyebabnya, seperti kecelakaan mobil, pesawat jatuh, kapal kandas, dsb.
E. Risiko dinamis, adalah risiko yang timbul dikarenakan adanya perkembangan dan kemajuan (dinamika) masyarakat di bidang ekonomi, ilmu dan teknologi, seperti risiko penerbangan luar angkasa, risiko keusangan.
F. Risiko statis, adalah risiko yang timbul karena tidak adanya perkembangan dan kemajuan (dinamika) masyarakal di bidang ekonomi, ilmu dan teknologi, (kebalikan dari risiko dinamis), seperti risiko kematian, risiko hari tua, dsb.
2. Dapat - tidaknya risiko terserbut dialihkan kepada orang lain, maka risiko dapat dibedakan kedalam :
A. Risiko yang dapat dialihkan kepada pihak lain, dengan mempertanggungkan suatu obyek yang akan terkena risiko kepada perusahaan asuransi, dengan membayar sejumlah premi asuransi. Sehingga scmua kerugian menjadi tanggungan pihak asuransi tersebut.
B. Risiko yang tidak dapat dialihkan kepada pihak lain, umumnya meliputi semua jenis risiko spekulatif.
3. Menurut Sumber / penyebab terjadinya, risiko dapat dibedakan kedalam :
A. Risiko intern, yailu risiko yang berasal dari dalam perusahaan itu sendiri, seperti kerusakan aktiva karena ulah tenaga kerja sendiri, kccelakaan kerja, kesalahan manajemen, dan sebagainya.
B. Risiko ekstern, yaitu risiko yang berasal dari luar perusahaan, seperti risiko pencurian, penipuan, bencana alam, dan sebagainya.

Upaya untuk menanggulangi risiko harus selalu dilakukan, sehingga kerugian dapat dihindarkan atau diminimumkan. Sesuai dengan sifat dan objek yang terkena risiko (Djojosoedarso S.,2003), ada beberapa cara yang dapat digunakan perusahaan untuk dapat meminimumkan risiko kerugian antara lain :

1. Melakukan pencegahan dan pengurangan terhadap kemungkinan terjadinya peristiwa yang menimbulkan kerugian, misalnya membangun gedung dengan bahan - bahan yang antibakar untuk mencegah terjadinya bahaya kebakaran, melakukan pemeliharaan dan penyimpanan yang baik terhadap bahan dan hasil produksi untuk menghindari risiko kecurian dan kerusakan, memagari atau memberikan perlindungan dan pcrawatan terhadap mesin-mesin atau peralatan schingga menghindari risiko terjadinya kecelakaan kerja, mengadakan pendekatan kemanusiaan unutk mencegah terjadinya pemogokan, sabotase, dan sebagainya.
2. Mclakukan retensi, artinya mentolerir membiarkan terjadinya kerugian dan untuk mencegah terganggunya operasi perusahaan akibat tersebut disediakan sejumiah dana untuk menanggulanginya (contoh, pos biaya lain-lain atau tak terduga dalam anggaran perusahaan).
3. Melakukan pengendalian terhadap risiko, contohnya melakuan hedging (perdagangan berjangka) untuk menganggulangi risiko kelangkaan dan fluktuasi harga bahan baku/pembantu yang diperlukan.
4. Mengalihkan/memindahkan risiko kepada pihak lain, yaitu dengan cara mengadakan kontrak pertanggungan dengan perusahaan asuransi terhadap
risiko tertentu dengan membayarkan premi yang telah ditetapkan, sehingga perusahaan asuransi akan mengganti kerugian bila betul-betul terjadi kerugian yang sesuai dengan perjanjian.

2.2. Manajemen Risiko.

2.2.1. Batasan Manajemen

Menurut Stoner,1988, manajemen adalah proses perencanaan, pengorganisasian, kepemimpinan dan pengendalian upaya anggota organisasi dan proses penggunaan semua lain-lain sumber daya organisasi untuk tercapainya tujuan organisasi yang telah ditetapkan. Menurut (iR. Terry, 2003, manajemen merupakan suatu proses yang khas, yang terdiri dari perencanaan, pengorganisasian, penggerakan, pelaksanaan dan pengendalian yang dilakukan untuk menentukan serta mencapai sasaran yang telah ditentukan dengan memanfaatkan sumber daya manusia dan sumber daya lainnya. Penjabaran manajemen sebagai suatu fungsi dapat dijclaskan sebagai berikut :

1. Perencanaan (Plunning) :

Adalah proses yang sistematis berupa suatu pengambilan keputusan tentang pemilihan sasaran, tujuan, strategi, kebijakan, bentuk program, pelaksanaan program dan penilaian keberhasilan kegiatan. Atau dengan kata lain perencanaan berarti pengambilan keputusan dengan memperhitungkan perubahan apa yang akan terjadi.
2. Pengorganisasian (Organizing):

Adalah proses pengelompokan kegiatan yang diwujudkan dalam unit kerja (organisasi), untuk melaksanakan kegiatan yang direncanakan. Selanjutnya
dengan pengorganisasian menetapkan hubungan antara pimpinan dan bawahan, serta hubungan antar unit. Pengorganisasian mengatur struktur organisasi, pembagian tugas dan wewenang, tanggung jawab, mengatur sistem informasi dan koordinasi.
3. Penempatan (Staffing):

Adalah proses pengelolaan sumber daya manusia yang meliputi : perencanaan, penempatan, pengembangan, penctapan sistem pengelolaan yang terdiri dari penggajian, promosi, mutasi, terminasi dan penilaian kinerja staf dan karyawan (reward \& punished).
4. Pengarahan (Directing) :

Adalah proses bimbingan pelaksanaan pekerjaan, pemberian petunjuk, perintah dan motivasi bekerja. Proses pengarahan juga melibatkan pengawasan terhadap pelaksanaan pekerjaan dan tercapainya tujuan.
5. Pengkoordinasian (Coordinating) :

Adalah proses untuk menyelaraskan, perubahan dan menghubungkan berbagai kegiatan dalam suatu organisasi dan atau antar berbagai organisasi.

Koordinasi dapat dilakukan dalam bentuk :
A Pembukuan
B Pclimpahan sumber-sumber produksi
C Penyelarasan kegiatan
D Pengembangan sistem informasi
E Pembentukan tim koordinasi.
6. Pelaporan (Reporting) :

Adalah usaha untuk selalu mengetahui apa yang sedang dilakukan untuk keperluan pimpinan dan anggota organisasi maupun kelompok yang lain, melalui sistem pencatatan, komunikasi informasi, penelitian dan supervisi. Pelaporan dikembangkan terutama untuk orientasi pada pengambilan keputusan.
7. Anggaran (Budgeting) :

Adalah usaha perencanaan, pengembangan sumber, pengclolaan dan pengawasan pembiayaan. Anggaran diawali dengan pengambilan keputusan tentang sistem dan kebijakan pembiayaan yang akan dikembangkan. Anggaran juga merupakan suatu upaya untuk mengendalikan dan mengawasi implementasi kegiatan program.
8. Penilaian (Evaluation) :

Adalah kegiatan yang sistematis dan terencana untuk mengukur dan menilai pelaksanaan dan keberhasilan program. Penilaian harus dikembangkan bersama perencanaan suatu program. Pengukuran pada kegiatan evaluasi dilakukan pada komponen Input - Proses -- Output

Selanjutnya penilaian selalu terkait dengan proses pengambilan keputusan.
Skema Fungsi Manajemen :

> Gambar $2.1 \quad$: Unsur Fungsi Manajemen Modifikasi dari Bird Jr.
> Sumber : Bird, FE, Jr., 1990 . Practical Losss Controll Leadership.

Menurut Harjuti, 2000, fungsi manajemen meliputi fungsi perencanaan (sasaran, kebijakan dan komitmen, progran, prosedur, anggaran, pentahapan, dan koordinasi), fungsi pengorganisasian (struktur organisasi, keanggotaan, pendelegasian, dan hubungan kerja), fungsi penggerak (pengambil keputusan, seleksi/penenpatan, pengembangan), fungsi pengendalian (menggariskan standar, stategi dan rencana pelaksanaan).

Dalam hubungannya dengan keselamatan dan kesehatan kerja, manajemen bukanlah berdiri sendiri, melainkan bagian dari manajemen perusahaan secara
keseluruhan. Karena itu perumusan masalah yang dihadapi adalah untuk memecahkan hambatan di bidang keselamatan dan keschatan kerja, dengan demikian akan mendorong sukses perusahaan.

Scpeti manajemen pada umumnya maka manajemen risiko terdiri dari fungsi perencanaan, fungsi pengorganisasian, fungsi penggerak dan fungsi pengendalian. Selain itu manajemen risiko merupakan suatu usaha untuk mengetahui, menganalisis serta mengendalikan risiko dalam setiap kegiatan perusahaan dengan tujuan untuk memperoleh efektifitas dan efisiensi yang lebih tinggi (Darmawi,2002).

Secara sederhana manajemen risiko adalah pelaksanaan fungsi - fungsi manajemen dalam penaggulangan risiko, lerutama risiko yang dihadapi olch organisasi/perusahaan, keluarga, dan masyarakat. Pentingnya mempelajari risiko, yaitu : Sebagai seorang manajer akan dapat mengetahui cara-cara / metode yang tepat untuk dapat menghindari atau mengurangi besarnya kerugian yang diderita perusahaan, sebagai akibat ketidakpastian terjadinya suatu peristiwa yang merugikan.

Menurut Rahman. S., 2004, mengatakan manajemen risiko adalah proses - proses manajemen dimana kemungkinan untuk mendapatkan keuntungan dan kerugian yang berhubungan denganh aktilitas diidentifikasikan, diukur, dievaluasi, dan dikendalikan atau dapat juga didefinisikan sebagai penerapan kebijakan - kebijakan manajemen dan prosedur untuk memaksimumkan kesempatan mendapat keuntungan dan meminimkan kerugian.

Adapun kegiatan dalam suatu sistem manajemen risiko adalah sebagai berikut : (Ichsan S., 2004).

Gambar 2.2. Manajemen Risiko bahaya Sumber : Pusat Hiperkes, Depnakertrans, Seminar nasionai K3 "Penilaian Risiko dalam bidang K3, 2004.

2.2.2. Tujuan Manajemen Risiko.

Tujuan yang ingin dicapai oleh manajemen risiko dapat dibedakan menjadi dua kelompok, yaitu : (Djojosocdarso S.,2003) :

1. Tujuan sebelum terjadinya peristiwa,

Tujuan yang ingin dicapai menyangkut hal-hal sebelum terjadinya peristiwa ada bermacam - macam, antara lain :
A. Hal - hal yang bersifat ekonomis, misalnya upaya untuk menaggulangi kemungkinan kerugian dengan cara yang paling ekonomis, yang dilakukan analisis keuangan terhadap biaya program keselamatan, besarnya premi asuransi, maupun biaya dari bermacam -- macam teknik penggulangan risiko
B. Hal - hal yang bersifat nonekonomi, yaitu untuk mengurangi kecemasan, sebab adanya kecemasan dan ketakutan yang sangat, sehingga dengan adanya upaya penanggulangan maka kondisi itu dapat diatasi.
C. Tindakan penanggulangan risiko dilakukan untuk memenuhi kewajiban yang berasal dari pihak ketiga, seperti : Memasang / memakai alat alat keselamatan kerja tertentu di tempat kerja pada waktu bekerja untuk menghindari kecelakaan kerja, misalnya pemasangan rambu - rambu, pemakaian alat pengaman untuk memenuhi ketentuan yang tercantum dalam undang - undang keselamatan.
2. Tujuan setelah terjadinya peristiwa.

Tujuan yang ingin dicapai menyangkut hal hal setelah terjadinya pcristiwa, dapat berupa :
A. Menyelamatkan operasi perusahaan, artinya manajer risiko harus mengupayakan pencarian strategi bagaimana agar kegiatan tetap berjalan setelah perusahaan mengalami suatu peristiwa, meskipun unluk sementara waktu yang beroperasi hanya sebagian saja.
B. Mencari upaya agar operasi perusahaan tetap berlanjut, sesudah perusahaan terkena suatu peristiwa. Hal ini penting terutama untuk perusahaan yang melakukan pelayanan terhadap masyarakat secara langsung.
C. Mengupayakan agar pendapatan perusahaan tetap mengalir, meskipun tidak sepenuhnya, paling tidak cukup untuk menutupi biaya variabelnya. Jika perlu dengan melakukan kegiatan usaha ditempat lain untuk sementara waktu.
D. Mengusahakan tetap berkelanjutnya pertumbuhan usaha bagi perusahaan yang sedang melakukan perkembangan usaha, misalnya yang sedang memproduksi barang baru, memasuki pasar baru dan sebagainya. Karena untuk melakukan perintisan tersebut sudah dikeluarkan biaya yang tidak kecil, diperlukan strategi sehingga pertumbuhan yang sedang dirintis tetap berlangsung.
E. Berupaya tetap dapat melakukan tanggung jawab sosial dari perusahaan. Artinya harus dapat menyusun kebijakasanaan yang membuat seminimum mungkin pengaruh buruk dari suatu peristiwa yang diderita perusahaan terhadap karyawannya, para pelanggan, par pemasok, dan scbagainya. Artinya akibat dari suatu peristiwa jangan sampai menimbulkan masalah sosial.

2.2.3. Manfaat Manajemen Risiko.

Manfaat manajemen risiko pada pokoknya mencakup:
(Djojosoedarso S.,2003)

1. Menemukan kerugian Potensial.

Yang artinya berupaya untuk menemukan/mengidentifikasi seluruh risiko murni yang dihadapi oleh perusahaan, yang meliputi :
A. Kerusakan fisik dari harta kekayaan perusahaan.
B. Kehilangan pendapatan atau kerugian lainnya akibat terganggunya operasi perusahaan.
C. Kerugian akibat adanya tuntutan hokum dari pihak lain.
D. Kerugian - kerugian yang timbul karena : penipuan, tindakan - tindakan kriminal, dan sebagainya.

Untuk cara cara yang dapat ditempuh oleh manajer risiko antara lain dengan melakukan inspeksi fisik di tempat kerja, mengadakan angket kepada semua pihak diperusahaan, menganalisis semua variable yang mencakup dalam peta aliran proses produksi dan sebagainya. Misalnya dengan :
A. Dengan menganalisis bahan baku dan pembantu dapat diidentifikasi bahwa kerugian mungkin disebabkan oleh pasokan yang tidak memadai, kerusakan pada saat penyimpanan, dan sebagainya.
B. Pada proses produksi dapat diidentifikasi bahwa kemungkinan kerugian karena proses, kerusakan alat produksi, dan sebagainya.
2. Mengevaluasi kerugian potensial.

Artinya dapat melakukan evaluasi dan penilaian terhadap semua kerugian potensial yang dihadapi olch perusahaan. Evaluasi dan penilaian akan meliputi perkiraan mengenai :
A. Besarnya kemungkinan frekuensi terjadinya kerugian artinya memperkirakan jumlah kemungkinan terjadinya kerugian selama suatu periode tertentu atau beberapa kali terjadinya kerugian tersebut selama suatu periode tertentu (biasanya 1 tahun).
B. Besarnya kegawatan dari tiap - tiap kerugian, artinya menilai besarnya kerugian yang diderita, yang biasanya dikaitkan dengan besarnya kerugian yang diderita, yang biasanya dikaitkan dengan besarnya pengaruh kerugian tersebut, terutama terhadap kondisi finansial perusahaan.
3. Memilih teknik/cara yang tepat atau menentukan suatu kombinasi dari teknik - teknik yang tepat guna menanggulangi kerugian.

Pada pokoknya ada empat cara yang dapat dipakai untuk menanggulangi risiko, yaitu : mengurangi kesempatan terjadinya risiko, meretensi, mengasuransikan, dan menghindari.

2.2.4. Prosedur Pelaksanaan Manajemen Risiko.

Menurut Suwandi. T., 2001, pada dasarnya dalam pelaksanaan manajemen risiko terdiri atas 7 tahap utama, yaitu :

I. Tahap Persiapan.

Tahap ini pada dasarnya bertujuan untuk mensosialisasikan tugas ini mulai dari bawah sampai dengan top manajemen. Disamping itu juga untuk menyakinkan bahwa pada jajaran supervisor dan mereka yang ditugasi sudah memahami betul program ini, langkah - langkah yang dikerjakan adalah :

1. Persiapan,

Semua devisi menyiapan formulasi perencanaan K3 setiap tahun yang didalammya juga terliput perencanaan manajemen risiko. Dalam perencanaan ini sudah diketahui jelas siapa yang bertanggung jawab dan hendaknya dapat mengikut sertakan banyak orang agar mereka merasa ikut memiliki program ini.
2. Penetapan / klasifikasi ruang lingkup,

Liputan risiko yang akan dievaluasi harus ditetapkan dahulu. Liputan yang melebar akan membutuhkan waktu yang lebih lama untuk diidentifikasi
masing - masing risiko yang berbuntut pada langkah berikutnya. Issue pokok yang menjadi pegangan dalam penetapan liputan ini adalah :
A. Tempat kerja mana yang akan diliput.
B. Mesin atau alatbahan atau cara kerja apa yang akan dievaluasi/assessment.
C. Evaluasi / assessment harus meliputi semua kegiatan yang ada ditempat kerja, termasuk: produksi, maintenunce, inspection, troubleshooting, dan sebagainya.
3. Pengumpulan informasi,

Pelaksanaan scdini mungkin membantu evaluasi risiko sehingga akan lebih efcktif. Informasi yang diperlukan dikumpulkan antara lain :
A. Tempat dimana kegiatan diadakan.
B. Siapa yang mengerjakan kegiatan di tempat kerja
C. Pelatihan apa yang telah diberikan.
D. Peralatan atau mesin yang dipakai.
E. Sifat fisik bahan yang dipakai dan yang dijumpat ditempat kerja.
F. Semua aluran / tcknik manajemen yang membantu.
G. Data kecelakaaan kerja, bahaya.
H. Hasil evaluasi risiko yang lalu.

II. Tahap Identifikasi Risiko.

Identifikasi risiko secara singkat adalah proses dimana suatu perusahaan secara sistematis dan terus - menerus mengidentifikasi property, liability, dan tenaga kerja sebelum terjadinya suatu risiko, (Djojosoedarso S.,2003).

Prinsip dasar dati tahap ini adalah identifikasi bahaya (hazard) yang berhubungan dengan semua kegiatan di tempat kerja. Identifikasi bahaya adalah suatu proses pencarian informasi terhadap semua jenis kegiatan, dan situasi, produk dan jasa yang dapat menimbulkan potensi cidera atau sakit. (IK3I, 2002).

Sedangkan pengertian lain dari identifikasi bahaya adalah menentukan kemungkinan ada tidaknya exposure atau pemaparan bahaya terhadap tenaga kerja di tempat kerja, melalui : (Petrokimia, tanpa tahun)

1. Monitoring:
A. Lingkungan kerja yaitu mengadakan pemantauan lerhadap adanya bahaya - bahaya ditempat kerja.
B. Biologi yaitu untuk mengetahui jumlah zat yang terabsorbsi oleh tubuh.
C. Kesehatan yaitu untuk mengetahui dan menentukan orang yang sensitive.
2. Survei lingkungan kerja:

Yaitu menetapkan potensi bahaya, adanya persoalan dan merupakan program K3 yang diperlukan, melalui :
A. Wawancara langsung dengan pimpinan tempat kerja tentang kegiatan yang dilakukan.
B. Pemeriksaan lingkungan secara manual dan menggunakan alat Bantu sederhana terhadap scluruh sumber bahaya yang ada.
C. Pengukuran atau pengujian yaitu menetapkan paparan bahaya terhadap tenaga kerja dan sarana pencegahan dan penanggulangan K 3 yang telah ada.

Yang diperlukan untuk membantu dalam pengidentifikasian bahaya adalah : (IK3I, 2002)

1. Konsultan

Orang yang mempunyai pengalaman atau berkompeten di bidang K3 atau yang berhubugnan dengan bahaya, sehingga pengalamannya dapat digunakan untuk mengidenifikasi bahaya.
2. Inspeksi.

Pemeriksaan secara fisik terhadap lingkungan kerja. Tujuan umum dari inspeksi yaitu:
A. Mengidentifikasi masalah yang potensial.

Masalah ini sering terjadi terutama karena lepas dari antisipasi yang dilakukan pada taraf perancangan dan analisa pekerjaan.
B. Mengidentifikasi kekurangan sarana kerja.

Diantara masalah yang menyangkut scbab - sebab dasar kecelakaan adalah terjadinya keausan, penuaan peralatan, salah pakai atau pemakaian yang disalah gunakan. Inspeksi keselamatan akan membantu kepala bagian mengetahui apakah peralatan yang ada masih baik atau berada pada kondisi dibawah standart, apakah kapasitasnya sudah tidak mencukupi lagi atau telah digunakan tidak sebagaimana mestinya.
C. Mengidentifikasi safety performance bagian tersebui.

Standar tertinggi keselamatan kerja sualu bagian adalah standar terendah yang diterapkan oleh pimpinan dibagian tersebut.
D. Mengidentifikasi akibat suatu perubahan.

Hal ini dapat terjadi baik yang menyangkut proses, maupun matcrial. Proses sering kali berubah dari rancangan awalnya. Adanya bahan baru sebagai bahan pengganti bahan yang lama yang dilarang misalnya, juga
akan menimbulkan perubahan. Hal ini perlu diketahui untuk melihat apa sebenarnya yang scdang terjadi.
E. Mengidentifikasi apakah adakah tindakan perbaikan yang memadai. Bila tindakan perbaikan tidak dilaksanakan secara memadai, maka masalah baru akan timbul. Inspeksi ini akan memberikan umpan balik tentang bagaimana masalah yang terdahulu telah diatasi.
3. Catatan sakit dan cidera,

Catatan insiden atau kejadian masa lalu yang menimbulkan cidera atau sakit dapat memberikan informasi sumber bahaya yang potensial.
4. Informasi atau nasehat dari ahli,

Identifikasi bahaya akan memerlukan naschat, penelitian, ataupun informasi dari seseorang ahli.
5. Analisis Pekerjaan.

Tujuan dari tahap identifikasi bahaya adalah : (Suwandi, T., 2001)

1. Identifikasi faktor bahaya di tempat kerja .
2. Identifikasi mereka yang terkena pengaruh bahaya.
3. Identifikasi pola risiko.

Tahan - tahap dari identifikasi bahaya terdiri dari langkah - langkah scbagai berikut : (Suwandi, T., 2001)

1. Identifikasi bahaya.

Bahaya dapat diklasifikasikan dalam kelompok:
A. Mechanical hazards : risiko karena adanya benda bergerak.
B. Cara kerja dan lay out tempat kerja : luka karena benda tajam atau jatuh dari ketinggian, dan sebagainya.
C. Electrical hazards : kontak dengan aliran listrik.
D. Bahan kimia berbahaya : gangguan kesehatan karena kontak dengan bahan kimia, atau kebakaran karena adanya bahan yang mudah terbakar.
E. Physical hazards : panas, bising.
F. Lingkungan kerja : penerangan, suhu, kelembaban, ventilasi.
G. Pelatihan dan penyuluhan : penyebaran informasi tentang K3, ketidaktahuan akan bahaya.
H. Dan lain-lain.
2. Identifikasi mereka yang terkena pengaruh bahaya,

Hal yang mesti di ingat :
A. Pusat perhatian pada yang terpajan baik secara langsung atau tidak langsung.
B. Perhatian khusus pada yang terpajan risiko tinggi.
C. Identifikasi pola risiko mereka yang terpajan

Hal yang harus dikerjakan untuk identifikasi ini adalah:
A. Pelajari apa yang sebenarnya terjadi di tempat kerja untuk menentukan siapa yang terpajan dengan risiko apa dan pada saat apa.
B. Manfaatkan apa yang ditemukan untuk menetapkan pola risiko. Human error dari operator dan kekeliruan lain masuk dalam pola ini.

Jenis jenis bahaya meliputi :

1. Bahaya benda bergerak (kinetic hazurd)
A. Benda bergerak lurus atau linear movement.

Misalnya : mesin penempa, ban berjalan, mobil, mesin pemotong, dll
B. Benda bergerak berputar atau rotation.

Misalnya : Roda gigi, crane, mesin bor, bor, gerida, katrol, dll.
C. Benda bergerak tak beraturan atau melayang.

Misalnya : debu, percikan metal, percikan bahan kimia, dll.
D. Pengangkatan dan pengangkutan.

Misalnya : beban terlalu berat, terlalu cepat, dll.
2. Bahaya benda diam (static hazard).
A. Bahaya perbedaan elevasi.
B. Bahaya air.
C. Bahaya kerusakan sarana

Misalnya : kunci rusak, jalan rusak, korosi, dll.
D. Bahaya pemasangan.

Misalnya : Penyambungan tidak kuat, dll.
3. Bahaya benda fisik (physical hazard)
A. Cahaya .
B. Bising.
C. Suhu (ruangan atau benda).
D. Tekanan (tinggi atau rendah).
E. Radiasi elektromagnetic (infra red atau ultraviolet)
F. Radiasi ionisasi .
G. Getaran.
4. Bahaya Listrik (electrical hazard).
A. Tersentuh.
B. Kcgagalan pengaman.
C. Kelebihan beban.
D. Loncatan bunga api.
E. Isolasi tidak sempurna.
5. Bahaya kimia (chemical hazard).
A. Bahaya kebakaran atau peledakan.
B. Bahaya keracunan (gas, uap,kabul-mist, uap-fume, asap, debu).
C. Bahaya korosif (bersifat asam atau basa alkali).
6. Bahaya biologi (biological hazard).
A. Bisa atau racun.
B. Kuman, bakteri, virus, jamur.
C. Cacing.
D. Tumbuh - tumbuhan.
7. Bahaya Psikologi.
A. Stres.
B. Jenuh.
C. Kelcbihan beban.
D. Hubungan kerja yang buruk.

III. Penilaian Risiko/ Risk Assessment.

Penilaian risiko adalah keseluruhan proses mengidentifikasi bahaya, memperkirakan besarnya risiko dan menentukan apakah risiko dapat ditoleransi atau diterima. (KEMA, 1999). Sedangkan menurut Permennaker Nomer: PER. 05 / MEN / 1996 lampiran 1, penilaian risiko adalah proses untuk menentukan prioritas pengendalian terhadap tingkat risiko kecelakaan atau penyakit akibat kerja .

Penilaian risiko, menurut Rahman S. dan Kurnialy A, 2004 adalah untuk mendapatkan suatu estimasi tingkatan risiko yang dapat digunakan untuk membantu mengambil keputusan mendapatkan informasi dan wawasan dalam pengendalian risiko..

Menurut Nurtjahjo. Y, 2004, penilaian risiko adalah penggunaan informasi yang tersedia sccara sistematis untuk mencntukan frekuensi terjadinya peristiwa tertentu dan besarnya akibat yang mungkin timbul. Kemungkinan disini diartikan sebagai penjelasan kualitatif mengenai probabilitas dan frekuensi, sedangkan akibat disini adalah hasil dari suatu kcjadian atau situasi.

Proses penilaian risiko juga sering membantu mengidentifikasikan lebih detail tentang kesalahan apa yang dapat terjadi dan bagaimana terjadinya. Proses penilaian risiko ditunjukan pada gambar 2.3. berikut ini ;

Gambar 2.3. Penilaian risiko
Sumber : makalah scminar Nasional K3, "Penilaian Risiko dalam bidang
K3, Januari 2004, jakarta

Ada beberapa pengertian yang sama atau hampir sama dengan penilaian risiko yang banyak digunakan ialah: (Shahab, S., 2001)

1. Process hazard analysts
2. Process Hazard Review
3. Process Review Safety
4. Process Risk Review.
5. Predictive Hazards Evaluation.
6. Hazard Assessment.
7. Process Risk Survei.
8. Hazard Study.

Ada berbagai teknik yang dapat digunakan untuk melakukan penilaian risiko. Setiap teknik dapat digunakan untuk beberapa tahapan dari daur hidup sistem. Supaya dihasilkan suatu analisis yang baik, suatu tim dapat menggunakan lebih dari satu teknik. Pemilihan teknik yang akan digunakan selain tergantung pada bahan dan proses, tahapan dalam daur hidup sisitem juga keterampilan dn pengalaman para individu dalam suatu tim. (Sahab. S.,2001).

Menurut American Institute of Chemical Engineers ada 12 teknik yang dapat digunakan, yaitu :

1. Safety Review.
2. Checklist Analysis.
3. Relative Rangking.
4. Preliminary Hazard Analysis.
5. What if Analysis.
6. What if checklist Analysis.
7. Huzard and Operability Analysis.
8. Failure Mode and Effect Analysis.
9. Event Tress Analysis.
10. Cause Consequence Analysis.
11. Human Realiability Analysis.

Penilaian risiko akan juga berisi sebuah proses yang mungkin dan situasi darurat. Penilaian risiko akan memberikan informasi yang diperlukan untuk upaya pengendalian teknis dan organisasi Penilaian risiko bertujuan untuk memperkirakan nilai kerugian dalam berbagai kondisi dan kejadian yang mungkin terjadi, baik dari aspek keselamatan dan kesehatan kerja, finansial dan legal, (Sahab. S., 2001).

A. Karakteristik Suatu Penilaian Risiko.

Sesuai dengan karakteristik suatu penilaian risiko, ada beberapa kcterbatasan yang terkandung didalamnya, antara lain: (Sahab. S., 2001)

1. Completeness

Tidak dapat dijamin bahwa studi ini telah mempertimbangkan semua situasi kecelakaan, sebab scrta akibatnya.
2. Reproducibility.

Banyak hasil analisis yang sangat diwarnai oleh asumsi analis, ahli yang berbeda meskipun didukung oleh informasi yang sama mungkin memberikan hasil informasi yang berbeda.

3. Inscrutability.

Bcberapa teknik analisis karena sifatnya kadang - kadang sulit dipahami dan digunakan
4. Relevance of Experience.

Suatu tim eveluasi mungkin tidak memiliki basis pengalaman yang memadai sebagai dasar untuk menilai kemugkinan potensi kecelakaan.
5. Subjectivity.

Setiap analisis menggunakan pertimbangan profesional dalam menentukan seberapa pentingnya suatu masalah. Hal ini bersifat subyektif sesuai dengan pengctahuan dan pengalaman analis yang bersangkutan.
(Sumber : Amarican Institute of Chemical Engineer, $1992: 21$ dikutip dari Shahab. S., 2001)

Dalam pelaksanaan penilaian risiko diperlukan kerja sama dari suatu tim, yang anggotanya memiliki berbagai macam keahlian, seperti Engineering, proses, pencegahan kebakaran, kelistrikan, mekanik, ahli kimia, dll. Manajemen harus memberikan komitmen sepenuhnya dengan menyediakan fasilitas yang diperlukan, seperti informasi, anggaran, ruang rapat, sarana transportasi, perangkat keras, perangkat lunak, d11. (Sahab.S.,2001).

B. Kualifikasi Sumber Daya Manusia dalam Penilaian Risiko.

Anggota tim penilaian nisiko merupakan tenaga prolesional dari berbagai bidang, karena itu tentu harus memiliki kompetensi sebagai profesional. Selain pengetahuan, keterampilan dan pengalaman yang diperlukan, setiap anggota harus pula memiliki kompetensi sebagai profesional. Secara umum ada beberapa
kompetensi yang harus dimiliki oleh seorang profesional (Spencer \& Spencer : 163 dikutip dari Sbahab. S., 2001) sebagai berikut :

1. Achievement Orientation, berarti tim ingin menghasilkan suatu analisis yang sebaik - baiknya, tidak hanya sekedar menyclesaikan tugas. Mcreka ingin apa yang dihasilkan memberikan kontribusi maksimal kepada perusahaan. Karena itu perlu ada sinergi dalam tim.
2. Impact and Influence, adalah kemampuan untuk menyakinkan orang lain dengan adanya dukungan data dan fakta, contah konkritnya adalah mampu mengantisipasi reaksi dari yang hadir.
3. Conceptual and Analytical Thinking, meliputi kemampuan kognitif, menguraikan masalah agar lebih mudah dipecahkan serta menggunakan informasi secara tepat.
4. Inisiatif, ialah tidak bersifat menunggu, tetapi memanfaatkan setiap peluang untuk menyelesaikan tugas tim. Bersedia memberikan kontribusi terhadap kerja tim, kadang - kadang lebih dari yang diharapkan.
5. Self Confidence, (Rasa percaya terhadap kemampuan diri), dapat memberikan argumentasi yang kuat berdasarkan penguasaan terhadap masalah, tidak ragu ragu. Memberikan pertimbangan profesional secara menyakinkan. Rasa percaya diri ini harus didukung oleh pengetahuan dan keterampilan sesorang sedemikian sehingga betul - betul memahami persoalan, mampu belajar dari kesalahan, dan luwes.
6. Interpersonal Understanding, ialah memahami sikap, perilaku, kebutuhan dan pikiran orang lain, pelanggan dan anggota tim lainnya.
7. Information Seeking, selalu berusaha mendapatkan informasi, melalui pertanyaan biasa, informasi dari literatur dan bila perlu melalui penyelidikan atau riset.
8. Teamwork and Cooperation, merupakan suatu persyaratan kompentensi profesional, karena umumnya pekerjaan profesional dilakukan dalam bentuk kerja tim. Orang yang tidak bisa bckerja sama dalam satu tim mungkin akan menghambat penyelesaian kerja tim.
9. Expertise, adalah keahlian yang harus dimiliki setiap profesional. Keahlian merupakan ciri seorang profesional, didukung oleh cara berfikir yang konseptual dan analitis.

C. Diskripsi dari Langkah Penilaian Risiko.

Diskripsi dari langkah penilaian risiko adalah: (Suwandi. T., 2001)

1. Perkiraan hebatnya kecelakaan industri yang dapat diakibatkan bahaya (hazard).

Hebatnya kecelakaan dapat dikategorikan dengan : ringan, sedang, dan berat. Dalam menetapkan derajat ini yang perlu diperhatikan adalah :
A. Bagian tubuh mana yang terkena.
B. Deskripsi akibat kecelakaan secara rinsi mulai dari ringan sampai berat. Contohnya :
a. Ringan : Luka lecet, iritasi mata, gangguan (sakit kepala untuk sesaat), dll.
b. Sedang : Luka bakar, luka iris atau sayat dalam, keseleo, atau spains, kurang dengar, dll.
c. Berat : Patah tulang, keracunan, luka dalam, dll.
2. Perkiraan potensialitas dari bahaya untuk menimbulkan kecelakaan. Potensialitas dalam menimbulkan kecelakaan dapat dikategorikan menjadi 3 hal yaitu : tidak mungkin terjadi (Ekstremely Unlikely), tidak terjadi (Unlikely), mungkin terjadi (Possible). Sebelum menetapkan potensialitas tersebut hendaknyadipenuhi dahulu adanya upaya pencegahan yang nyata ada (Reliable), dan benar (Appropriate), dan faktor lain sepeti berikut ini :
A. Jumlah orang yang terpajan dengan risiko.
B. Frekuensi dan lama waktu pajanan (duration).
C. Penuaan alat.
D. Kerusakan sparepart mesin atau alat safety.
E. Pajanan dengan bahan kimia.
F. Adanya APD dan pemanfaatannya.
G. Adanya unsafe action karena orang yang :
a. Tidak mengerti adanya bahaya.
b. Tidak tahu, keterbatasan fisik atau skill dalam melaksanakan pckerjaan.
c. Tidak memperkirakan risiko yang dihadapi.
d. Merendahkan manfaat cara kerja yang aman sesuai dengan norma K3.

Kemudian hasil dari identifikasi risiko yang telah dilakukan maka penilaian risiko ini dikelompokan yang kemudian dilakukan penilaian risiko terhadap tiap - tiap temuan risiko tersebut. Penilaian nsiko ini menggunakan kriteria kejadian bahaya (occurrence hazard) dan konsckuensi bahaya (consequences of
hazard), yang berdasarkan standart yang telah dibuat oleh Tim Manajemen risiko yang bersumber dari berbagai macam literatur yang ada hubungannya dengan kondisi dan keadaan Perusahaan yang menggunakan Bahan berbahaya dan Beracun serta pabrik yang menghasilkan Pupuk.

Penilaian risiko yang digunakan oleh perusahaan sudah merupakan kesepakatan kerja tim dan manajemen puncak. Bcrikut ini adalah standar penilaian risiko perusahaan: Untuk menentukan apakah bahaya yang ada termasuk signifikan atau tidak, setiap kriteria mempunyai skor $1-5$ dengan ketentuan yang dapat dilihat pada tabel 2.1. dibawah ini :

Tabel 2.1. Kejadian Bahaya (Occurrence Hazard)

Category	Occurrence	Keterangan
I	Rare	Kemungkinan kejadian jarang
2	Unlikely	Kemungkinan kejadian cukup
3	Moderate	Kemungkinan kejadian sedang
4	Likely	Kemungkinan kejadian sering
5	Certain	Kemungkinan kejadian pasti

Sumber: Tim Manajemen Risiko PT Petrokimia Gresik
Tabel 2.2. Konsekuensi bahaya (Consequences of IIazard)

Category	Impact	Discription
1	Insignificant	Dampaknya tidak signifikan terhadap pencapaian tujuan operasional
2	Minor	Dampaknya kecil terhadap pencapaian tujuan operasional.
3	Moderate	Dampaknya sedang terhadap pencapaian tujuan operasional.
4	Major	Dampaknya besar terhadap pencapaian tujuan operasional.
5	Catastrophic	Dampaknya sangat besar terhadap pencapaian tujuan operasional.

Setelah ditentukan skor dari tiap - tiap kriterianya maka untuk menentukan besarnya risiko dilakukan kalkulasi/perhitungan dengan rumus :

Risk Potential Hazard = Occurrence \boldsymbol{x} Consequences of hazard.

Penilaian risiko menurut Australia standart, 4360, Risk Management, 1999, sebagai berikut :

Tabel 2.3. Kemungkinan Kejadian Bahaya (Occurrence Hazard)

Category	Occurrence	Keterangan
1	Rare	Peristiwa belum pernah terjadi, tetapi secara teoritis kemungkinan terjadi
2	Unlikely	Peristiwa dapat terjadi hanya pada keadaan tertentu.
3	Moderate	Suatu saat peristiwa dapat terjadi, jika ada faktor tambahan.
4	Likely	Peristiwa terjadi kadang-kadang, tidak pasti terjadi tapi faktor tambahan akan mengakibatkan kecclakaan
5	Almost Certain	Peristiwa bakal terjadi pada hampir semua keadaan.

Sumber: Australia Standard, 4360 Risk Management, 1999

Tabel 2.4. Keparahan Bahaya (Hazard Severity)

Category	Impact	Discription
(A)	Insignificant	
(B)	Luka dapat diabaikan, tidak ada cidera, tidak ada absen dari kerja, tidak ada dampak terhadap lingkungan, kerugian finansial	
	Minor	luka ringan diperlukan pertolongan pertama, adanya pelepasan bahan didalam pabrik, kerugian finansial sedang

3	Moderate	Diperlukan pertolongan medis, luka dapat (C)		
		meninbulkan kehilangan waktu kecelakaan, pelepasan bahan kimia didalam pabrik dengan bantuan penanggulangan dari luar,		
$\mathbf{4}$		Herugian finansial cukup besar	,	Melibatkan kematian tunggal/uka serius Luka bcrat,
:---				
(D)				

Sumber: Australia Standard, 4360 Risk Management, 1999.

Setelah dilakukan penentuan skor dari tiap kriteria maka perhitungan besamya risiko dengan menggunakan rumus:

Risiko (Risk) = Occurrence x Consequences of hazard.

Setelah dilakukan penilaian risiko, maka ditentukan kategori dari masing masing risiko tersebut. Untuk standart perusahaan ditetapkan bahwa nilai risiko yang signifikan adalah 12, sedangkan untuk kategori risiko berdasarkan Australia standart, 360, Risk Management, 1999 adalah sebagai berikut :

Tabel 2.5. . Penilaian Risiko

Likelihood of occurence	Hazard Severity				
	Insignificant	Minor	Moderate	Major	Almost certuin
(1) Rare	1	2	3	4	5
(2) Unlikely	2	4	6	8	10
(3) Moderate	3	6	9	12	15
(4) Jikely	4	8	12	16	20
(5) Almost Certain	5	10	15	20	25

Sumber : Austrahia Standard, 4360 Rish Management, 1999.

Untuk penentuan kategori risiko, didapatkan ketentuan sebagai berikut :
(Australia Standard, 4360 Risk Management, 1999)

1. 1-6 : Mungkin dapat diterima, bagaiman juga mengulang pekerjaan untuk melihat jika selanjutnya risiko dapat dikurangi.
2. 7-14 : Pekerjaan yang akan diteruskan dengan keputusan manajemen, yang baik setelah konsultasi dengan tenaga ahli dan tim penilaian. Bila memungkinkan pekerjaan akan ditetapkan ulang untuk memperhitungkan bahaya yang terlibat atau selanjutnya risiko direduksi dahulu sebelum memulai pekerjaan (Emergency Respon)
3. 15-25 : Pekerjaan tidak dapat diteruskan. Akan ditetapkan ulang, atau selanjutnya dilakukan pengendalian ditempat kerja untuk mereduksi risiko. Pengendalian akan dinilai ulang kesesuaian scbelum pekerjaan dimulai (Emergency Respon).

IV. Tahap Evaluasi Risiko.

Setelah mclalui tahapan penilaian risiko maka tahap berikutnya adalah menentukan tingkatan risiko, apakah masih dapat ditolerir atau sudah memerlukan koreksi tertentu. Skenario formulasi pengurangan risiko ditentukan dari evaluasi ini, disamping kemampuan dari sumber daya manajemen.

Prinsip dasar disini adalah menghilangkan sama sckali risiko adalah yang terbaik namun tidaklah realitis. Risiko yang masih ada dikurangi sampai dengan pada batas yang bisa ditolerir. Batas toleransi inilah yang harus ditetapkan oleh manajemen bersama dengan pekerja. Adapun langkah - langkah dalam pelaksanaannya (Suwandi. T., 2001):

1. Metode evaluasi risiko (risk Assessment).

Derajat risiko bisa dinyatakan secara kualitatif atau semi kuantitatif.
2. Risiko yang dapat diterima (Acceptable risk).

Ini adalah derajat risiko yang diperkirakan dapat ditolerir dalam suatu kondisi tertentu, selama nilai tersebut dapat diterima oleh masyarakat. Kondisi ini merupakan hasil keseimbangan dari berbagai faktor, termasuk keselamatan kerja absolut, kebuluhan yang harus dipenuhi dalam produksi, produk, dan pelayanan, dII. Secara ringkas risiko yang dapat diterima tergantung kepada titik keseimbangan antara sejumlah faktor dan ini bisa berubah sesuai dengan nilai sosial dan kemajuan iptek yang ada. Dengan demikian konstiten apa yang menjadi risiko dapat diterima, ini sepenuhnya diserahkan kepada hasil diskusi di tempat ketja yang diharapkan dapat menetapkan keputusan.
3. Penetapan derajat risiko di tempat kerja.

Pada saat team manajemen risiko melaksanakan evaluasi risiko dan menetapkan hasilnya biasanya terjadi opini yang berbeda - beda diantara anggota team. Pembahasan tentang penetapan derajat risiko sangat penting untuk dilaksanakan. Diharapkan hasil yang dicapai dan didapatkan respon semua pihak secara baik.

Dalam metode evaluasi, dapat dilakukan secara kualitatif dan semi kuantitatif. Apabila dengan metode semi kuantitatif, maka kita dapat menentukan skor dari tiap kriteria dan kriteria yang digunakan dalam penilaian risiko adalah kemungkinan kejadian (likelihood of occurrence) dan keparahan bahaya (hazard severity) dengan keterangan dari tiap kriteria, berikut :
I. Standar Perusahaan (PT Petrokimia Gresik), meliputi:

1. Assesment Requirements, yang meliputi :
a Likelihood Information
i. Jumlah adan jenis peralatan : Pressure Vassel, tank, reactor, dll.
ii. Plant fuction : storage, distilition unit, sysntesis unit, dll
iii. Plant Processes : Proses yang terjadi.
iv. Processes stability
v. Material of Construction : carbon steel, staintess steel, all
vi. Demage mechanisme : stress corr cracking, creep, fatique, dll
vii. Design standart : ASMF., API, dll
viii. Inspection
ix. Plant maintenance history : perbaikan yang dilakukan, modilikasi, dll
x. Processes protection devices : alat deteksi yang digunakan, kecukupan alat, dll.
2. Consequence Information
a Fire: apakah dibutuhkan bantuan pemadam kebakaran api dari luar jika terjadinya kebakaran?, apakah memiliki prosedur tanggap darurat?
b Icident miligation : gas detector systems, secure fire fighting systems, fire proofing of plant siructure \& cable available supplay of fire water, how many hours' Etc.
c Chemical Data
d Quality
e Chemical State ; Boling point, etc
f Chemical of damage potential : berapa biaya yang ditimbulkan jika terjadi kegagalan.
g Toxity: rate of toxity, akibat yang ditimbulkan terhadap lingkungan.
h Populution: jumlah orang di pabrik dan sekitarnya dalam radius jangkauan.
3. Iikelihood of Failure (LOF) : berdasarkan history peralatan, hasil inspeksi terakhir, pengalaman industri sejenis, pendapat para ahli dan hasil pemantauan selama operasi, dengan kriterian rangking dari lakelihood of Failure ini adalah sebagai berikut :

- Highly Probable : 5
- Probable :4
- Possible :3
- Unlikely :2
- Very Unlikely : 1

4. Consequency of Failure (COF)

Analisis konsekuensi dari kegagalan peralatan harus difokuskan pada kapasitas kegagalan dan kejadian selanjutnya yang mempengaruhi Keselamatan dan Kesehatan karyawan dan populasi sekitar, juga memperhitungkan konsekuensi dari kegagalan yang menyebabkan kerusakan lingkungan dan kegagalan bisnis (pabrik tidak dapat beroperasi, kerusakan peralatan terhadap peralatan lain, waktu perbaikan yang lama, d11). Adapun kriteria untuk COF ini adalah sebagai berikut :

- VeryHigh : 16-19 E
- High : 13. 15 D
- Moderate : 10-12 C
- Low :8-10 B
- Very Low : 6-8 A

Dampak ke produksi

- 4 : Pabrik mati, perbaikan lama
- 3 : Pabrik mati, perbaikan cepat
- 2 : Pabrik tidak mati, perbaikan tcrencana
- 1 : Pabrik tidak mati, tidak ada pengaruhnya.

Dampak terhadap Lokasi :

- 3 : Lokasi padat penduduk
- 2 : Lokasi terpisah tetapi dapat mempengaruhi
- 1 : Lokasi terpisah tidak mempengaruhi

Karakteristik fluida :

- 3 : B3
- 2 : Hidrokarbon
- 1 : Inert/kurang dari 100 oC

Tekanan Fluida B3 :

- 3 : > 30 Bar
- $2:>7 \mathrm{Bar}<30 \mathrm{Bar}$
- $1 \quad:<7$ Bar.

5. Coensequensy of Failure (COF) didapatkan dengan menjumlahkan keseluruhan dampak yang terjadi selama proses berlangsung.
6. Untuk menentukan risikonya, dengan menggunakan rumus :

Risk Likelihood of Failure (IOF) X Coensequensy of Failure (COF)
7. Kategorisasi dan urutan Risiko

Kategorisasi dan urutan risiko menggunakan matrik 5×5 menetapkan kategori dan jumlah peralatan berdasarkan urutan risiko. Berikut gambar 2.3. matrik risiko, standar perusahaan :

Gambar 2.3. matrik risiko, standar perusahaan
II. (Ausiralia Standard 4360, Risk Management , 1999).

1. Kemungkinan kejadian (Likelihood of Occurrence) :

$1=$ Rare	: peristiwa belum pernah terjadi, tetapi
	secara teoritis kemungkinan terjadi,
$2=$ (/nlikely	: peristiwa dapat terjadi hanya pada keadaan
	tertentu..
$3=$ Moderate	: Suatu saat peristiwa dapat terjadi, jika ada faktor
	tambahan.
$4=$ Likely	: peristiwa terjadi kadang-kadang, tidak
	pasti terjadi tapi faktor tambahan akan
	mengakibatkan kecelakaan.
$5=$ Almost Certain	: peristiwa bakal terjadi pada hampir semua
	keadaan.

2. COF (Australia Standard, 4360, Risk Management, 1999) :

- VeryHigh : 20-25 E
- High :15.20 D
- Moderate : 12-15 C
- Low :9-12 B
- VeryLow :1-9 A

3. Keparahan/consequences

Menggunakan standart dari occupational safety and health management system, 2004.

Severity of danger

Severity of danger	Points
	10
Serious Injury	6
Bad Injury	2
Slight Injury	1

Sumber : OSH MS Japan for Chemical Industry.
Frequency of Exposure danger

Frequency	Points
Frequent	4
Occasional	2
Seldom	1

Sumber : ONH MS Japan for Chemical Industry

Potentiality of Occurrence

Potentiality	Points
Certain to occur	6
Highly likely	4
Possihility exests	2
Almost no possibility	1

Sumber : OSH MS Japan for Chemicol Industry

Setelah dilakuan penentuan skor dari tiap kritcria maka dilakukan perhitungan besamya risiko dengan menggunakan rumus :

Risiko (Risk) = Kemungkinan kejadian X Σ keparahan bahaya.

Dari hasil evaluasi risiko ini, kemudian digunakan untuk perpetaan risiko, dengan menggunakan kriteria risiko dari standart Australia Standard, 4360 Risk Management, 1999, maka didapatkan kriteria untuk perpetaan/matrik risiko seperti pada gambar 2.4. dibawah ini:

Gambar 2.4. Matrik Risiko, Australia Standard, 4360, Risk Management

Berikut ini, keterangan dari tiap-tiap kuadran dalam matrik risiko, yang berasal dari Australia Standart, 4360, Risk Management, 1999 :

1 Kuadran IV : Risiko Tinggi (High)
dengan ketentuan sebagai herikut :
a Kemungkinan Tinggi, Dampak tinggi ($\mathrm{L}>; \mathrm{C}>$)
b Kemungkinan Tinggi, dampak sedang ($L>; C=$)
c Kemungkinan Rendah, dampak tinggi. ($\mathrm{L}<; \mathrm{C}>$)
2 Kuadran II dan III: Risiko Sedang Tinggi (Medium High)
Dengan ketentuan sebagai berikut :
a Kemungkinan tinggi, dampak kecil. ($\mathrm{I}>; \mathrm{C}<)$
b Kemungkinan kecil, dampak besar ($\mathrm{L}<$; $\mathrm{C}>$)
c Kemungkinan sedang, dampak tinggi. ($\mathrm{L}=; \mathrm{C}>$)
3 Kuadran II dan III : Risiko Sedang (Medium)
Dengan ketentuan sebagai berikut :
a Kemungkinan sedang, dampak kecil. ($\mathrm{L}-; \mathrm{C}<$)
b Kemungkinan sedang, dampak sedang ($\mathrm{L}=; \mathrm{C}=$)
c Kemungkinan kecil, dampak sedang. $(\mathrm{L}<; \mathrm{C}=$)
4 Kuadran 1 : Risiko Rendah. (Low)
Dengan ketentuan sebagai berikut: Kemungkinan kecil, dampak kecil.

$$
(\mathrm{L} \ll \mathrm{C}<)
$$

V. Tahap Pengendalian Risiko.

Setelah kita melakukan evaluasi risiko pada semua kriteria, maka akan masuk pada tahap selanjutnya, yaitu tahap pengendalian/pengurangan risiko. Adapun tujuan dari pengendalian/pengurangan risiko ini adalah : (Suwandi. 'T.,2001)

1. Mendiskusikan cara - cara pengendalian/pengurangan risiko.
2. Menetapkan prioritas cara pengendalian/pengurangan risiko.
3. Melaksanakan cara pengendalian/pengurangan risiko.

Prinsip dasar dari tahap ini adalah berdasarkan hasil evaluasi risiko menetapkan formulasi dan mclaksanakan cara pengendalian/pengurangan risiko. Pendekatan yang paling sering digunakan, dan yang paling dianjurkan dalam perundangan untuk pengendalian/pengurangan risiko adalah dengan menggunakn hirarki pengendalian (IK3I,2002), yaitu sebagai berikut :

1. Eliminasi.

Prioritas utama didalam melakukan pengendalian adalah dengan cara mengeliminasi risiko yang dapat ditempuh dengan cara merubah perancangan atau proses kegiatan guna meniadakan risiko yang ada. (petrokimia, tanpa tahun), seperti :
A. Menghilangkan suatu hahan kimia yang dapat diduga sebagai penycbab kanker, methyl ethyl dari pembersih peralatan listrik
B. Hilangkan terpaparnya operator dari fume penggelasan dengan menggunakan lengan robot, dll.
2. Penggurangan (Reduksi).

Metode yang ideal dalam pengendalian bahaya adalah membuangnya. Kebebasan dalam memilih pengurangan yang telah didentifikasi harus dipertimbangkan dengan seksama. (1 lkon, tanpa tahum).

Pengurangan risiko dapat dilakukan dengan cara melakukan pengurangan salah satu atau kedua - duanya dari unsir kombinasi risiko, sehingga terjadinya suatu kecelakaan dengan tingkat keparahannya dapat ditekan pada batas tertentu.
3. Penggantian (Sub,situsi).

Metode pengendalian mengandalkan alternatif penggantian suatu yang berbahaya dengan yang kurang berbahaya. Jika ternyata suatu risiko bahaya tidak dapat dieliminasi maupun direduksi maka dilakukan subsitusi yaitu dengan cara penggantiannya dengan suatu yang tidak berbahaya atau tingkat bahayanya rendah.
4. Pengendalan risiko bisa juga dilakukan dengan jalan memberikan kepada orang lain untuk dapat melakukan pengendalian/pengurangan risiko. Seperti dengan memberikan asuransi baik bagi tenaga kerjanya maupun untuk keamanan tempat kerja, property, lingkungan kerja dan lingkungan sekitarnya.

Dalam melakukan pengendalian/pengurangan risiko ini, maka tentukan jenis pengendalian tersebut dengan mepertimbangkan tingkat yang paling atas dari hirarki pengendalian, jika tingkat atas tidak dapat dipenuhi oleh perusahaan maka upayakan melakukan pengendalian tingkat selanjutnya, demikian seterusnya sehingga pengendalian risiko dilakukan berdasarkan hirarki pengendalian. Tetapi mungkin juga dilakukan upaya gabungan dari pengendalian tersebut untuk mencapai tingkat pengendalian nisiko yang diinginkan. (IK31,2002).

Adapun tahapan cara pengurangan risiko adalah sebagai berikut ; (Suwandi. T., 2001)

1. Cara pengurangan/pengendalian risiko pada berbagai level.

Tabel 2.6. Pengurangan Risiko diberbagai level.

RiskLevel	Measures
Slight risk	Belum diperlukan pengendalian Acceptable risk
Disarankan mempetimbangkan cara pengendalian yang lebih menguntungkan atau dengan memperbaiki cara dengan tidak pelu menambah biaya. Monitor berkesinambungan perlu dilakukan, agar risiko tetap terkendali.	
Medium risk	Perlu program pengurangan/pengendalian risiko, tetap memperhitungkan biaya. Program dalam jangka waktu tertentu. Apabila terdapat kecelakaan

	/ masalah kesehatan serius mungkin perlu lagi assessment untuk lebih mempertegas adanya potensi timbulnya masalah. Hasilnya sebagai dasar untuk lebih meningkatkan program.
Serious risk	Dianjurkan untuk menghentikan operasional, sampai risiko berhasil dikurangi. Upaya pengurangan risiko bisa berulang kali atau perlu waktu bila manajemen belumsiap. Bila ada aktivitas kerja yang langsung menimbulkan bahaya/risiko, perlu \quad dilakukan tindakan emergency/darurat.
Unacceptahle risk	Kegiatan operasional dihentikan, sampai risiko berhasil dikurangi.

Sumber : Suwandi. T, 2001.
2. Pelaksanaan pengurangan risiko

Scbelum pelaksanaan dimulai, dianjurkan untuk mengecek kesempurnaan pelaksanaan dengan menjawab pertanyaan yang disediakan, seperti:
A. Dapatkah cara yang sudah disepakati menurunkan nisike sampai pada level dapat diterima?
B. Apakah pelaksanaan cara akan menimbulkan bahaya baru?
C. Bagaimanakah reaksi pekerja yang terkena pengendalian tersebut terhadap adanya cara pengendalian/perlindungan yang baru?
D. Apakah cara tersebut menawarkan cost-benefit-ratio yang optimal?
E. Adakah pekerja akan bersedia memakai cara pengendalian/pengurangan tersebut?

Setelah pelaksanaan cara pengurangan/pengendalian risiko, perlu dilakukan follow up dengan selalu mengadakan pertemuan/rapat/diskusi berkala ditempat
kerja. Sehingga diharapkan akan dipakai sebagai bahan pertimbangan atau penyempurnaan cara yang sudah disepakati sebelumnya. (Suwandi. T.,2001).

VI. Tahap Pendokumentasian.

Tujuan yang diinginkan pada tahap ini adalah untuk membuat rekaman semua kegiatan evaluasi/assessment risiko dan semua cara pengendalian/pengurangan risiko. Prinsip dasamya adalah dengan rekaman dapat ditunjukan kembali bagaimana risiko dievaluasi, tindakan apa yang telah diambil, dan standar/patokan apa yang digunakan.

Rekaman juga dapat dipakai sebagai tempat penyimpanan pengetahuan tentang K3. dengan rekaman bila ada alat baru yagn akan dipasang, cara pengamanan/safety yang mendasar dapat segera diintegrasikan kedalam alat tersebut. Dengan cara ini rekaman dapat menfasilitasi perkembangan teknik K3. (Suwandi, T., 2001)

Adapun tahapan pelaksanaannya adalah sebagai berikui : (Suwandi. T., 2001)

1. Dokumentasi evaluasi.

Dalam proses melakukan rekaman khususnya untuk evaluasi tidak hanya sckedar menyimpan catatan saja, tetapi harus mempunyai tujuan tertentu. Seperti contoh dokumentasi evaluasi harus dapat merekam/menjawab kebutuhan berikut :
A. Apakah rencana evaluasi risiko diformulasikan? Apakah dapat dilaksanakan seciara efektif,
B. Bagaimana pelaksanaan evaluasi risiko?
C. Adakah hal khusus muncul? Seperti kecclakan kerja atau penyakit akibat kerja?
D. Apakah semua orang mengalami risiko?
E. Bagaimana hasil evaluasi nisiko?
F. Rekomendasi apa yang telah dibuat dan diperbaikan perlindungan apa?
G. Persiapan apa yang dibuat untuk merivisi (bila ada) proses evaluasi risiko?
2. Tinjauan Keberhasilan.

Hasil rekaman yang menunjukan adanya keberhasilan pengurangan risiko perlu diinformasikan ke semua orang secara lengkap. Bagaimana proses mencapai keberhasilan dan tindakan apa yang diambil di masa mendatang akan bisa diharapkan berhasil apabila sudah diutarakan lebih dahulu.

VII. Tahap Manajemen Review.

Tahap ini bertujuan untuk menetapkan keuntungan / keberhasilan dari cara pengurangan risiko. Apabila dirasa ada masalah, perlu segera dilakukan review dari prosedur dan metode yang telah dipakai. Prinsip dasamya adalah perlunya pimpinan puncak, para supervisor dan perwakilan pekerja mendiskusikan cara pengurangan risiko ini. (Suwandi. T., 2001)

Adapun tahap pelaksanaan manajemen review adalah sebagai berikut : (Suwandi. T., 2001):

1. Memonitoring cfektivitas.

Monitor perencanaan dan pelaksanaan dari semua program preventive dan kewaspadaan yang didasarkan pada hasil evaluasi dan menetapkan efektivitas
dari cara pengendalian sampai ke batas yang dapat diterima harus selalu dikerjakan secara berkala. Semua informasi yang didapat merupakan bahan untuk manajemen riview.
2. Manajemen riview.

Satu upaya manajemen risiko untuk semua bagian tempat kerja tidaklah cukup. Harus ada upaya untuk review dan rivisi penyesuaian dengan kondisi terbaru, contoh :
A. Bila Proses kerja sudah berubah. Adanya bahan gas, lingkungan kerja berubah?
B. Bila evaluasi risiko harus diulang.
C. Bila ada informasi terbaru tentang cara pengurangan risiko yang lebih baik.
D. Bila hasil penyelidikan kecelakaan atau lainya menunjukan masalah yang menonjol di tempat kerja.
E. Manajemen review secara berkala.

2.3. Kecelakaan Kerja

Kccelakaan adalah kejadian yang tidak terduga dan tidak diharapkan. Tidak tcrduga oleh kerena dibelakang peristiwa itu tidak terdapat unsur kesengajaan, lebih - lebih dalam bentuk perencanaan (Sama'mur, 1997). Kecelakaan biasanya menimbulkan penderitaan baik yang paling ringan bahkan mungkin yang paling berat bagi yang mengalaminya, dan sering diikuti dengan kerugian material. Kecelakaan dapat dipandag sebagai suatu hasil atau keluaran yang tidak diinginkan atau dapat diartikan sebagai suatu kcjadian yang terencana dan tidak
terkontrol yang merupakan salah satu aksi dan reaksi dari obyek zat atau manusia (HW Heinrich, 1980).

2.3.1. Penyebab Kecelakaan

Kecelakaan dapat terjadi oleh beberapa faktor yang kompleks yang saling mempengaruhi satu dengan yang lainnya. Banyak cara dalam menggolongkan sebab - sebab kecelakaan, namun menurut buku Sama'mur, 1997 ada suatu kesamaan yang umum, yaitu kecelakaan disebabkan oleh 3 golongan penyebab yaitu :

1. Manusia.

Hasil riset menunjukan 85% kejadian kecelakaan disuatu perusahaan dapat bersumber pada manusia. Kecelakaan dapat terjadi sebagai akibat emosi tenaga kerja, factor psikologis dan kemampuan pekerja (umur, tingkat pendidikan, masa kerja, dan status kerja) atau bahkan disengaja guna memperoleh kompensasi cacat yang dideritanya. Tindakan manusia yang tidak aman (unsafe action) antara lain :
a. Kekurang pengetahuan
b. Kelalaian dan sikap meremehkan, kekurang mampuan
c. Kekurangan sarana dan peralatan
d. Bekerja tanpa diberi wewenang
2. Lingkungan

Yang dimaksud lingkungan disini adalah :
a. Lingkungan fisik, meliputi penerangan, suhu, kelembaban, cepat rambat udara, suara/kebisingan, radiasi, d11.
b. Lingkungan Kimia, meliputi gas, uap, debu, kabut, fume, awan, asap, cairan dan benda padat.
c. Lingkungan fisiologis, seperti konstruksi mesin atau peralatan yang tidak sesuai dengan mekanisme tubuh manusia, sikap kerja, dan cara kerja.
d. Lingkungan Psikologis, seperti proses kerja yang rutin dan membosankan, suasana kerja yang kurang aman, nyaman, dan hubungan kerja diantara sesama tenaga kerja dan atasan.
e. Lingkungan Biologi, meliputi lingkungan hewan dan lingkungan tumbuhan.
3. Manajemen.

Keberadaan manusia dan perangkat keras maupun lunak tidak akan terjadi begitu saja dalam suatu perusahaan tetapi ada sistem yang mengatur yaitu system manajemen, yang memuat :
a. Kebijakan manajemen
b. Organisasi
c. Pembinaan
d. Sistem dan prosedur
e. Sistem informasi dan standart-standart kerja.

Kelalaian dan salah fungsi ini akan menimbulkan ketimpangan/ketidak seimbangan pada dua unsur yang lain, yaitu manusia dan unsur lingkungan. Dimana ketidak seimbangan yang terjadi, antara lain :
a. Sikap manajemen yang tidak memperhatikan K_{3}
b. Organisasi yang buruk
c. Pejabat yang tidak berkompeten dan sistem pembinaan yang tidak terkoordinir secara baik.
d. Tidak adanya standart yang dapat diandalkan.
e. Dokumentasi tidak jelas.

2.3.2. Upaya Pencegahan Kecelakaan

Seperti diketahui selama ini bahwa keselamatan dan kesehatan kerja adalah pencegahaan kecelakaan. Salah satu yang dikemukakan oleh ILO (1983) bahwa untuk peningkatan keselamatan dan kesehatan kerja di tempat kerja perlu dibuat dan diadakan :

1. Peraturan - peraturan yaitu peraturan perudang-undangan yang berkaitan dengan syarat-syarat kerja umum, perencanaan, konstruksi, perawatan, pengawasan, pengujian, dan pemakaian peralatan industri, kewajiban pengusaha dan pekerja, latihan, pengawasan kesehatan kerja, $\mathrm{P}_{3} \mathrm{~K}$.
2. Standarisasi, yaitu penetapan standar-standar tehnis misalnya konstruksi yang memenuhi keselamatan jenis-jenis peralatan industri tertentu, praktck-praktek keselamatan dan hygiene umum, atau alat perlindung diri.
3. Pengawasan, yaitu pengawasan terhadap terpatuhinya ketentuan-ketentuan peraturan perundang-undangan yang diwajibkan ditempat-tempat kerja tertentu yang mungkin atau sering mengalami kecelakaan kerja.
4. Penelitian yang bersifat tehnis yang meliputi sifat dan ciri-cin bahan-bahan yang berbahaya dan beracun, pengujian terhadap alat pelindung diri, penelaah bahan dan desain yang paling tepat untuk alat angkut.
5. Riset medis, meliputi penelitian tentang efek fisiologis dan patologis, faktorfaktor lingkungan dan teknologis, keadaan fisik yang mengakibatkan kecelakaan.
6. Pendidikan, menyangkut pendidikan keselamatan dan kurikulum tehnik,.
7. Latihan-latihan, yaitu praktek bagi tenaga kerja yang baru dalam keselamatan kerja.
8. Persuasi yaitu penggunaan aneka cara penyuluhan atau pendekatan lain secara pribadi untuk menumbuhkan sikap selamat dan juga rotasi pekerjaan untuk pekerja yang bermasalah.

2.4. Inspeksi Keselamatan Kerja

Inspeksi keselamatan kerja merupakan suatu alat dalam keselamatan kerja dan sebagai alat, inspeksi harus selalu digunakan. Inspeksi bahaya - bahaya di tempat kerja merupakan tanggung jawab dari seorang pengawas (safety inspektor) didalam usaha menegakkan peraturan keselamatan kerja di perusahaan.

Tujuan dari inspeksi ini adalah untuk memelihara lingkungan kerja yang aman, selamat dan mengendalikan tindakan yang tidak aman dari para karyawan serta memelihara mutu produksi dan keuntungan produksi.

Untuk membantu dalam melaksanakan inspeksi keselamatan kerja terdapat tujuh kunci pokok yaitu :

1. Melihat dan memeriksa tempat kerja
2. Lakukan pemeriksaan secara tertib urut dan sistematis.
3. Catat dengan jelas dan tentukan serta apa saja yang peru diperbaiki.
4. Berikan tindak lanjut segera bagi yang pertu dan mendesak.
5. Buat laporan hal-hal yang tidak diinginkan untuk dapat ditelusuri dikemudian hari.
6. Bahaya-bahaya yang ada diklasifikasikan.
7. Cari sebab-sebab dasar dari bahaya-bahaya yang ada.

2.5. Urea.

2.5.1. Proses Pembuatan Urea.

Didalam proses pembuatan urea, digunakan bahan baku yang terdiri dari Amoniak Cair $\left(\mathrm{NH}_{3}\right)$ dan Gas Carbon Dioksida $\left(\mathrm{CO}_{2}\right)$. Dengan penjelasan lebih lanjut dapat di lihat pada gambar 2.5 dibawah ini :

Gambar 2.5. Diagram Alir Proses Produksi Pupuk urea. (Sumber : PT Petrokimia Gresik)

Maka secara umum proses produksi urea berdasarkan diagram alir diatas adalah sebagai berikut :

1. NH_{3} cair dimasukkan ke dalam reaktor sehingga terjadi reaksi pembentukan ammonium karbamat ($\mathrm{NH}_{2} \mathrm{CONH}_{4}$).
2. Ammonium Karbamat akan mengalami dehidrasi menjadi urea, dengan reaksi sbb:
$\mathrm{NH}_{2}(\mathrm{CO}) \mathrm{NH}_{4} \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ (urea) $+\mathrm{H}_{2} \mathrm{O}$
3. Produk yang ada dircaktor (urea cair, CO_{2}, Ammonium Karbamat, dan Kelebihan NH_{3}) dimasukkan ke dalam Stripper, fungsinya adalah untuk melepaskan gas-gas yang terlarut, dan selanjutnya produk tersebut dialirkan ke Dekomposer sehingga ammonium karbamat terurai menjadi CO_{2} dan NH_{3} yang dimana kemudian akan diserap dalam absorber.
4. Sehingga reaksi yang terjadi adalah :
$\mathrm{NH}_{2}(\mathrm{CO}) \mathrm{NH}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{3}$
Urea yang keluar dari Dekomposer dialirkan ke dalam concentrator untuk dipekatkan menjadi Cairan Urea, yang selanjutnya akan dialirkan ke dalam prilling tower sehingga didapatkan urea dalam bentuk butiran.

2.5.2. Karakteristik

1. Amoniak Cair ($\mathbf{N H}_{3}$).
2. Rumus Kimia : NH_{3}
3. Sifat Kimia : Sangat reaktif, basa dan pereduksi yang kuat. Berat Molekul 17.032

Konsentrasi $16 \%-25 \%$ diudara, terbakar. Amoniak bereaksi dengan zat organik maupun zat anorganik dan membentuk asap putih.
3. Sifal Fisik

Bentuk Fisik	$:$	Cair	Gas
Titik didih (1atm)	$:$	$-33.35^{\circ} \mathrm{C}$	-
Titik Leleh	$:$	-77.7 C C	-
Autoignition Temp.	$:$	-	$651^{\circ} \mathrm{C}$
Specific gravity	$:$	0.6819	0.5970
		$\left(-33^{\circ} \mathrm{C}\right.$ terhadap air $\left.4^{\circ} \mathrm{C}\right)$	$\left(0^{\circ} \mathrm{C}, \mathrm{atm}\right)$
Explosive limits	$:$	-	$16 \%-25 \%$
Warna	$:$	Tidak berwarna	Tidak berwarna.

Bahaya dari Amoniak

1. Terhadap Kesehatan : Amoniak cair dapat menyebabkan luka pada kulit dan mata, uapnya terasa sakit jika terkena kulit, mata dan jalan pernafasan.
2. Terhadap Kebakaran : Derajat penyala diudara adalah lebih tinggi daripada hydro karbon, tatapi semprotan amoniak cair akan mendatangkan suatu bahaya kebakaran. Kebakaran amoniak sngat sukar untuk dipadamkan.
3. Terhadap Peledakan : Amoniak cair atau uap pada konsentrasi yang tinggi jika bercampur dengan oksida dapat meledak oleh guncangan, panas atau lelupan listrik, dan jika bereaksi dengan air raksa membentuk senyawa yang dapat meledak.

II. Karbon Dioksida (CO_{2}).

1. Rumus Kimia : CO_{2}
2. Sifat Kimia : Karbon dioksida pada suhu dan tekanan atm adalah suatu gas, tidak berwarna, tidak berbau dan kira - kira 1.5 kali berat udara.
3. Sifat Fisik :

Berat molekul : 44.01
Titik Triple $\quad:-69.9{ }^{\circ} \mathrm{F}$ pada 60.4 psing
Suhu Sublimasi pada $1 \mathrm{~atm}:-109.4^{\circ} \mathrm{F}$
Suhu Kritis $: 87.8^{\circ} \mathrm{F}$
Tekanan Kritis : 1057.4 psing
Density uap pada 320 F dan $1 \mathrm{~atm} \quad: 0.12341 \mathrm{lg} / \mathrm{ft}_{3}$
Density cair pada 2oF $: 63.3 \mathrm{lb} / \mathrm{ft}_{3}$.

2.5.3. Tindakan Pengamanan

1. Jika terjadi kebocoran amoniak

1. Menjauhkan orang yang tidak berkepentingan dari daerah tempat kebocoran amoniak.
2. Memperhatikan arah angin. Kita selalu berada di tempat pangkal angin.
3. Memasuki daerah kebocoran amoniak harus menggunakan breathing apparatus dan alat pelindung diri.
4. Sumber kebocoran amoniak harus diamankan dengan manyiram air, menyumbat atau menutup tempat yang bocor dengan karung yang selalu dibasahi dengan air.
5. Segera pindahkan langki yang bocor tersebut di tempat yang aman.
6. Segera lapor kepada pemilik/pabrik segera.

H. Pengamanan untuk keselamatan.

1. Bila memasuki daerah yang erndah atau tertutup, dimana konsentrasi gas CO 2 tinggi, jangan menggunakan masker pernafasan udara dengan filter. Tetapi gunkaan airline respiratori atau self contain breating apparatus.
2. Tanda peringatan harus dipasang diluar daerah yang terdapat konsentrasi CO2 tinggi.
3. Gas CO 2 lebih berat daripada udara sehingga karenanya didalam penggunaan atau penyimpanan, bocoran gas CO 2 akan mengumpul dibagian bawah ruangan, sehingga pencegahaannya dapat dilakukan dengan membuat ventilasi yang baik.

BAB 3

KERANGKA KONSEPTUAL PENELITIAN

BAB III

KERANGKA KONSEPTUAL

3.1. Kerangka Konseptual Penelitian.

Gambar 3.1. Kcrangka konseptual.

Penjelasan Kerangka konseptual penelitian :
Penclitian ini bertujuan untuk mengetahui penerapan manajemen risiko di P'I Petrokimia Gresik (Studi obeservasional di unit kerja Urea). Berdasarkan kerangka konseptual diatas maka penjelasannya adalah sebagai berikut : Manajemen keselamatan dan kesehatan kerja merupakan bagian dari manajemen perusahaan yang menyeluruh, dan dengan mengacu pada peraturan menteri tenaga kerja dan transmigrasi No. Per. 05/Mcn/1996 lentang Sistem Manajemen Kesclamatan dan keschatan Kerja dan Undang - undang Nomer 1 tahun 1970 tentang Keselamatan kerja, maka dalam penelitian ini melihat penerapan manajemen risiko di unit kerja urea yang meliputi fungsi manajemen secara umum yaitu perencanaan, pengorganisasian, penggerak dan pengendalian didalam implementasinya di unit kerja urea dengan melihat standar / norma yang digunakan didalam penerapan manajemen risiko ini. Diharapkan dapat mengurangi atau menghilangkan risiko yang ada di satu unit kerja urea secara spesifik.

BAB 4
MATERI DAN METODE PENELITIAN

BAB IV

MATERI DAN METODE PENELITIAN

4.1. Rancangan Penelitian

Penelitian ini merupakan penelitian observational dengan pendckatan deskriptif kualitatif, yaitu penelitian yang menggambarkan pencrapan manajemen risiko di PT Petrokimia Gresik (Unit kerja Urea). Penelitian ini merupakan penelitian jenis Expost facto, karena tidak melakukan perlakuan tetapi meneliti keadaaan yang sudah ada, sedangkan cara pengumpulan data penelitian ini dilakukan secara cross sectional.

4.2. Unit Analisis dan Responden

4.2.1. Unit Analisis

Scbagai unit analisis adalah PT Petrokimia Gresik (pada unit kerja Urea).

4.2.2. Responden

Pengambilan responden pada penclitian ini dengan menggunakan metode Purposive sampling, dimana pengambilan responden tidak sccara acak akan tetapi pemilihan responden ini berdasarkan kriteria/syarat tertentu sesuai dengan tujuan penelitian (Singarimbu, 1987). Sehingga responden pada penelitian ini sebanyak 6 orang yang meliputi, para Karu, Kasi, Kabag, dan Tim Manajemen Risiko.

4.3. Kerangka Operasional

Sedangkan kerangka operasional dalam melakukan penelitian ini adalah sebagai berikut :

Gambar 4.1. Kerangka Operasional

4.4. Variabel Penelitian .

Variabel penelitian yang digunakan adalah sebagai berikut :

1. Fungsi manajemen risiko yang meliputi :
A. Fungsi Perencanaan.
B. Fungsi Pengorganisasian.
C. Fungsi Penggerak.
D. Fungsi Pengendalian.
2. Pelaksanaan/Implementasi dari Manajemen Risiko:
^. Identifikasi risiko:
B. Penilaian risiko:
C. Evaluasi risiko
D. Pengendalian/ pencegahan risiko

4.5. Definisi Operasional

Untuk memperjelas pemahaman dan lingkup penelitian, maka berikut ini penjelasan tentang variable yang berkaitan dalam penelitian:

1. Manajemen risiko : Manajemen Risiko adalah proses yang berupaya agar risiko atau masalah yang ada ditempat kerja dapat diidentifikasi, dievaluasi, dan kemudian dikendalikan.
2. Kebijakan manajemen Risiko: suatu pernyataan secara tertulis yang ditanda tangani oleh pengusahan dan atau pengurus yang memuat keseluruhan dalam penerapan manajemen resiko di perusahaan.
3. Fungsi Perencanaan adalah pembuatan keputusan mengenai kegiatan yang akan dilakukan, cara melakukan, waktu pelaksanaan, siapa yang melakukan, dan sasaran yang diinginkan.

Indikator yang digunakan dalam penelitian ini adalah sebagai berikut :

1. Sasaran yang diinginkan oleh manjemen.
2. Kebijakan dan komitmen dalam penerapan manajemen risiko.
3. Program manajemen risiko yang sesuai dengan kebijakan manajemen risiko yang telah dibuat oleh perusahaan.
4. Anggaran yang disediakan untuk pelaksanaan program manajemen risiko
5. Prosedur dalam penerapan manajemen risiko
6. Pentahapan dalam penerapan manajemen risiko.
7. Koordinasi ditempat kerja didalam pelaksanaan program manajemen risiko.
8. Fungsi pengorganisasian, adalah kegiatan penetapan struktur peran melalui penentuan aktivitas yang dibutuhkan untuk mencapai tujuan organisasi. Indikator yang digunakan dalam penelitian ini adalah scbagai berikut :
9. Struktur organisasi
10. Keanggotaan dalam struktur organisasi.
11. Wewenang, Tanggung Jawab, dan pendelegasian wewenang dalam penerapan manajemen risiko.
12. Hubungan kerja, dengan membuat uraian tugas pada setiap unit kegiatan
13. Fungsi penggerakan / pclaksanaan, adalah tindakan untuk mengusahakan agar organisasi menjadi berjalan untuk mencapai sasaran sesuai dengan rencana yang telah ditetapkan.

Indikator yang digunakan dalam penelitian ini adalah sebagai berikut :

1. Pengambilan keputusan didalam menghadapi suatu masalah.
2. Penempatan staf yang sesuai dengan keahliannya.
3. Pengembangan, melalui pendidikan.
4. Komunikasi mingguan tentang penerapan manajemen risiko
5. Fungsi Pengendalian, adalah kegiatan pengukuran dan koeksi dari kinerja untuk menjamin bahwa kegiatan yang dilakukan sesuai dengan rencana dan mencapai tujuan yang diinginkan dan dilakukan secara keseluruhan di perusahaan .

Indikator yang digunakan dalam penelitian ini adalah sebagai berikut:
A. Melakukan identifikaso faktor - faktor pekerjaan
B. Standart pemantauan pada unit kerja : Pemilihan prioritas dan cara pengurangan risiko. Pelaksanaan cara pengurangan/pengendalian risiko.
C. Pengukuran lingkungan kerja, pemeriksaan kesehatan.
D. .Evaluasi hasil kegiatan.
E. Koreksi.
7. Dalam implementasi/pelaksanaan manajemen risiko ada beberapa tahapan yaitu :
A. Identifikasi Risiko : Merupakan proses penganalisisan untuk menemukan secara sistematis dan secara berkesinambungan resiko yang menantang perusahaan. Atau dapat ditimbulkan di dalam proses produksi , lingkungan kerja dan sekitarnya. Indokator yang digunakan dalam penelitian ini, adalah : bahaya karena benda bergerak, bahaya karena factor fisik, bahaya karena paparan bahan kimia dan lingkungan.

B Estimasi / Penilaian Risiko : tim yang dibentuk untuk bertugas mengidentifikasikan tingkat keparahan dari suatu kecelakaan dan tingkat potensial bahaya yang dapat menimbulkan kecelakaan/bahaya.

Indikator yang digunakan dalam penelitian : tingkat keparahan kecelakaan akibat kerja dan tingkat potensial bahaya yang menimbulkan kecelakaan kerja.

Untuk penilaian risiko pada data sekunder menggunakan skor penilaian standar dari perusahaan, sebagai berikut :

Tabel 4.1. Occurrence Hazard (Kcjadian Bahaya)

Category	Occurrence	Keterangan
1	Rare	Kemungkinan kejadian jarang
2	Unlikely	Kemungkinan kejadian cukup
3	Moderate	Kemungkinan kejadian sedang
4	Likely	Kemungkinan kejadian sering
5	Ceriain	Kemungkinan kejadian pasti

Sumber: Tim Manajemen Risiko PT Petrokimia Gresik
Tabel 4.2. Consequences of Hazard (Konsekuensi bahaya)

| Category | Impact | Discription |
| :---: | :---: | :--- | :--- |
| 1 | Insignificant | Dampaknya tidak signifikan terhadap pencapaian
 tujuan operasional |
| 2 | Minor | Dampaknya kecil terhadap pencapaian tujuan
 operasional. |
| 3 | Moderate | Dampaknya sedang terhadap pencapaian tujuan
 operasional. |
| 4 | Major | Dampaknya besar terhadap pencapaian tuyuan
 operasional. |
| 5 | Catastrophic | Dampaknya sangat besar terhadap pencapaian tujuan
 operasional. |

Sumber: Tim Manajemen Risiko PT Petrokimia Gresik

Risk Potential Hazard $=$ Occurrence \boldsymbol{x} Consequences of hazard.

Scdangkan untuk penilaian risiko pada data primer menggunakan standar dari Australia Standart, 4360, Risk Management, 1999, sebagai berikut :

Tabcl 4.3. Occurrence Hazard (Kemungkinan Kejadian Bahaya)

Calegory	Occurrence	Keterangan
1	Jarang	peristiwa belum pernah terjadi, tetapi secara teoritis kemungkinan terjadi
$\mathbf{2}$	lidak mungkin	peristiwa dapat terjadi hanya pada keadaan tertentu..
$\mathbf{3}$	Sedang	Suatu saat peristiwa dapat terjadi, jika ada faktor tambahan
$\mathbf{4}$	Kemungkinan besar	peristiwa lerjadi kadang-kadang, tidak pasti terjadi tapi faktor tambahan akan mengakibatkan kecelakaan
5	Pasti terjadi	peristiwa bakal terjadi pada hampir semua keadaan.

Sumber: Australia Standard, 4360 Risk Management, 1999
Tabel 4.4. Keparahan Bahaya (Hazard Severity)

Category	Impact	Discription
1 (A)	Tidak berarti	Luka dapat diabaikan, tidak ada cidera, tidak ada absen dari kerja, tidak ada dampak terhadap lingkungan, kerugian finansial
$\begin{gathered} 2 \\ (\mathrm{~B}) \end{gathered}$	Kecil	luka ringan diperlukan pertolongan pertama, adanya pelepasan bahan didalam pabrik, kerugian finansial scdang
$\begin{gathered} 3 \\ \text { (C) } \end{gathered}$	Sedang	diperlukan pertolongan medis, luka dapat meninbulkan kehilangan waktu kccclakaan, pelepasan bahan kimia didalam pabrik dengan bantuan penanggulangan dari luar, kerugian finansial cukup besar

4	Tinggi	Melibatkan kematian tunggal/uka serius (D)
		Luka berat, melibatkan kematian tunggal, kehilangan kemampuan berproduksi, pelepasan bahan keluar tetapi tidak merusak lingkungan, kenugian finansial besar.
5	Bencana besar	Banyak kematian, Kematian, pelepasan bahan toxic keluar pabrik, kerugian (E)

Sumber: Australia Standard, 4360 Risk Management, 1909.

Risk Potential Hazard $=$ Occurrence \boldsymbol{x} Consequences of hazard.

C Monitoring Evaluasi risiko: mengukur, memantau, dan mengevaluasi dari hasil penilai risiko

Indikator yang digunakan adalah kemungkinan kejadian dan dampak yang ditimbulkan terhadap semua aspek yang ada, untuk menentukan keberhasilan dan melakukan identifikasi dalam perbaikan yang diinginkan bersama.

Untuk evaluasi risiko digunakan metode secara kuantitatif dan kualitatif untuk data sekunder dan data primer.

* Untuk data sckunder skor dampak/consequency dan kategori dampak/consequency menggunakan standar perusahaan, sebagao berikut:

Assesment Requirements, yang meliputi : likelihood of failure

- Highly Probable : 5
- Probable : 4
- Possible : 3
- Unlikely :2
- Very Unlikely : 1
kriteria untuk COF ini adalah sebagai berikut :
- Very High : 16-19 E
- High : 13-15 D
- Moderate : 10-12 C
- Low : 8-10 B
- VeryLow :6-8 A

Dampak ke produksi :

- 4 : Pabrik mati, perbaikan lama
- 3 : Pabrik mati, perbaikan cepat
- 2 : Pabrik tidak mati, perbaikan terencana
- 1 : Pabrik tidak mati, tidak ada pengaruhnya.

Dampak terhadap Lokasi :

- 3 : Lokasi padat penduduk
- 2 : Lokasi terpisah tetapi dapat mempengaruhi
- 1 : Lokasi terpisah tidak mempengaruhi

Coensequensy of Failure (COF) didapatkan dengan menjumlahkan keseluruhan dampak yang terjadi selama proses berlangsung.

Untuk menentukan risikonya, dengan menggunakan rumus :
Risk $=$ Likelihood of Failure (LOF) X Coensequensy of Failure (COF)
Kategorisasi dan urutan risiko menggunakan matrik 5×5 menetapkan kategori dan jumlah peralatan berdasarkan urutan risiko, pada gambar 5.1. sebagai berikut :

Gambar 4.2. Matrik Risiko, Standar perusahaan.

* Untuk data primer, skor dampak menggunakan gabungan dari standar OSH management Japan, Australia Standari, 4360, Risk Management dan standar perusahaan, scbagai berikut :

Tabel 4.5. Severity of danger

Severity of danger	points
Fatal	10
Luka yang berat	6
Luka sedang	2
Luka ringan	1

Sumber : OSH MS Japan for Chemical Industry; 2004
Tabel 4.6. Frequency of Exposure danger

Frequency	Points
Sering	
Kadang - kadang	4
Jarang	
Sumber : OSH MS Japan for Chemical Inchistry	

Tabel 4.7. Potentiality of Occurrence

Potentiality	Points
Pasti terjadi	6
Kemungkinan terjadi tinggi	4
Mungkin terjadi	2
Hampir tidak terjadi	1

Sumber: OSH MS Japan for Chemical Industry
Tabel 4.8. Dampak ke produksi

Points	Keterangan
4	Pabrik mati, perbaikan lama
3	Pabrik mati, perbaikan cepat
2	Pabrik tidak mati, perhatian terencana
1	Pabrik tidak mati, tidak ada pengaruh.

Tabeal 4.9. Lokasi pabrik

Points	Keterangan
3	Lokasi padat penduduk
2	Lokasi terpisah tetapi dapat berpengaruh
1	Lokasi terpisah tidak terpengaruh
	Sumber : Sundat PT Peitokimia Gresik

COF (Australia Standard, 4360, Risk Management, 1999) :

- VeryHigh :20-25 E
- High :15-20 D
- Moderate :12-15 C
- Low :9-12 B
- VeryLow :1-9 A

Matrik risiko Australia Standart, 4360, Risk Management, 1999, sebagai berikut :

Gambar 4.3. Matrik Risiko, Australia Standart, 4360, Risk Management, 1999

$$
\text { Risk }=\text { Likelihood of Failure (LOF) } X \Sigma \text { Coensequensy of Failure }
$$

C. Pengendalian/Pencegahan risiko: melakukan suatu tindakan untuk dapat mengurangi bahaya atau tingkat risiko atau bahaya.

Indikator yang digunakan dalam penelitian adalah: berdasarkan hasil evaluasi risiko, antara lain dengan cara dieliminasi, substitusi, retensi dan transfer risiko, serta pengendalian berdasarkan tingkatan risiko.

4.6. Instrumen Penelitian

Penelitian ini menggunakan instrmen yang terdiri dari :

1. Lembar Observasi : media pengamatan terhadap segala sesuatu yang berhubungan dengan potensial terjadinya risiko atau bahaya di tempat kerja yang berdasarkan data sekunder dan dengan menggunakan acuan Inspeksi K3 (Balai Hiperkes dan Keselamatan Kerja, 2000)
2. Pedoman wawancara : yang berisikan pertanyaan tentang manajemen risiko di perusahaan, pelaksanaan program manajemen risiko. Dengan menggunakan acuan audit Sistem Manajemen Keselamatan dan Kesehatan Kerja (Peraturan Mennaker No. 05 / MEN / 1996).
3. Dokumentasi, yang berhubungan dengan pelaksanaan manajemen Risiko di tempat kerja, dalam hal ini di unit kerja Urea..

4.7. Lokasi dan Pengambilan data

1. Lokasi Penelitian : Penelitian akan dilakukan PT Petrokimia Gresik, (Pada satu unit kerja).
2. Waktu Pengambilan data : Dilaksanakan pada bulan Mei s/d Juni 2004.

4.8. Prosedar Pengambilan Data

Adapun teknik pengambilan data disesuaikan dengan jenis data yang dibutuhkan, antara lain :

1. Data Primer : Mengenai pelaksanaan dan penerapan manajemen resiko beserta program dengan cara observasi, wawancara tertulis, wawancara mendalam.
2. Data Sekunder : Data ini bersifat dokumentasi / tercatat yang bersumber dari perusahaan dan melakukan wawancara langsung dengan para responden. Adapaun data sekunder mengenai :
a. Gambaran Umum Pcrusahaan.
b. Implementasi manajemen Risiko : Identifikasi Risiko, Penilaian Risiko, Pengevaluasian Risiko, dan Pengendalian Risiko
c. Angka Kecelakaan kerja di unit Urea
d. Pengukuran lingkungan kerja di Urea

4.9. Teknik Pengumpulan Data

Yaitu dengan cara melakukan :

1. Wawancara, dimaksudkan untuk mengumpulkan keterangan yang dapat menemukan fenomena yang ada di PT Petrokimia Gresik dalam hal ini di unit kerja Urea, yang dapat menggambarkan pola penerapan manajemen risiko di unit kerja Urea. Adapaun jenis wawancaranya adalah scbagai berikut :
a. Secara terstruktur.
b. Secara tidak terstruktur.
c. Secara mendalam.
2. Observasi melalui ckeklist, dimaksudkan untuk mengamati penerapan manajemen risiko dan lingkungan kerja yang dapat menimbulkan risiko di tempat kerja, dalam hal ini di Urea.

4.10. Cara Analisis Data.

Analisis data dilakukan dengan analisis isi (contents analysis) yaitu hasil informasi penelitian yang telah diolah, dianalisis dan dikonfirmasikan dengan fakta - fakta dan peraturan perundangan yang berlaku. Data selanjutnya akan dideskripsikan dalam bentuk telaah dokumen.

BAB 5
ANALISA HASIL PENELITIAN

BAB V

ANALISIS HASIL PENELITIAN

5.1. Gambaran Umum Perusahaan

5.1.1. Sejarah Singkat Perusahaan

PT Petrokimia Gresik merupakan Badan Usaha Milik Negara didalam lingkup Departemen Perindustrian dan Perdagangan. Perusahaan ini bergerak di bidang usaha yang menghasilkan pupuk (Amoniak, Urea, Zwevelzuur Amonium (ZA), Super Phospate (SP-36) dan Phospka, bahan - bahan kimia, dan jasa lainnya.

PT Petrokimia Gresik juga sebagai pabrik pupuk kedua yang dibangun setelah PT PUSRI Palembang, pemerintah telah merancang keberadaan pabrik ini sejak tahun 1956 melalui Biro Perancangan Negara (BPN). Pada mulanya pabrik pupuk ini hendak dibangun di Surabaya dengan nama Projek Petrokimia Surabaja. Nama Petrokimia ini diambil dari "Petroleum Chemical" yang disingkat menjadi Petrochemical, yaitu bahan - bahan kimia yang dibuat dari minyak bumi dan gas.

Projek Petrokimia Surabaja ini dibentuk berdasarkan ketetapan MPRS No. II/1960 dan Kepres No. 260/1960. pembangunan proyeknya atas konstruksi Presiden No. 1/Instr/1963 dan dinyatakan Proyek Vital sesuai dengan Surat Keputusan Presiden No. 225 tahun 1963.

PT Petrokimia Gresik mulai berproduksi pada maret 1972, dan baru diresmikan oleh Presiden Soeharto pada tanggal 10 Juli 1975 dalam bentuk Perusahaan Umum (Perum). Kemudian pada tanggal 1 Mei 1975 bentuknya berubah menjadi Perseroan Terbatas (Persero) Petrokimia Gresik. Dan sejak
tahun 1997, PT Petrokimia Gresik membentuk Iolding Company dengan PT PUSRI Palembang.

5.1.2. Lokasi Perusahaan

Lokasi PT Petrokimia Gresik terletak di Jalan Raya Ahmad Yani Gresik, dan kawasan industri PT Petrokimia Gresik menempati area seluas 450 Ha , sementara area tanah yang telah ditangani seluas 300 Ha . Dacrah yang ditempati meliputi 10 desa yang tercakup didalam 3 kecamatan, yaitu Kecamatan Gresik, Kecamatan Kebomas, dan Kecamatan Manyar .

PT Petrokimia Gresik terbagi menjadi 3 unit pabrik. Untuk unit kerja Urea terletak pada Pabrik I. Urea memiliki luas bangunan, seluas $4.896 \mathrm{M}^{2}$. Dengan rincian panjang bangunan 96 M , lebar bangunan 51 M dan tinggi bangunan 84,1 M. Namun luas bangunan Urea belum termasuk untuk gedung bulk storage, conveyor dan control room, dengan jumlah tenaga kerja sebanyak 55 orang terdiri dari 44 tenaga kerja tetap (Sumber tenaga kerja tetap berdasarkan ijasah saat ini di PT Petrokimia Gresik), 15 orang tenaga kerja harian atau kontrak.

5.1.3. Proses Produksi Urea

PT Petrokimia Gresik memiliki 3 unit produksi (Departemen Produksi I, II dan III) yang mengelola ± 13 pabrik, Pabrik Urca adalah salah satu pabrik yang berada pada Departement Produksi I dimana menghasilkan pupuk sebanyak 460.000 ton/tahun, dan selain itu juga menghasilkan Amoniak Cair sebanyak 445.000 ton/tahun, Karbondioksida cair sebanyak 10.000 ton/tahun, dII

5.1.3.1. Bahan Baku, Utilitas dan Bahan Penolong

1. Bahan Baku

Bahan baku didalam pembuatan atau produksi Urea ,adalah sebagai berikut

1. Amoniak Cair (NI_{3} cair)

Dengan komposisi sebagai berikut :
Tabel 5.1. Komposisi Amoniak Cair

- Bahan Baku	Spesifikasi
1. NH_{3}	$99,95 \%$ berat min
2. $\mathrm{H}_{2} \mathrm{O}$	$0,5 \%$ berat min
3. Oil	5 ppm berat \max
4. Insolube gas tekanan	$18 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ min
	$20 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ min
5. Suhu	$30^{\circ} \mathrm{C}$
6. Design	$23 \mathrm{Kg} / \mathrm{cm}^{2}, 70^{\circ} \mathrm{C}$
7. Lokasi	Design pada titik Battery Limit Urea

Sumber: PT Petrokimia Gresik, unit Urea
2. Karbon Dioksida Gas (CO_{2} Gas)

Dengan komposisi scbagai berikut :
Tabel 5. 2. Komposisi Gas Karbon Dioksida

Balan Baku	Spesifikasi
1. CO 2	99% vol min
2. Hidrogen	$0,8 \%$ vol max
3. N2 + Inert gas	0,2 Vol max
4. Total S	1 ppm vol max
5. H 2 O	Saturated
6. Tekanan	$0,8 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g} \mathrm{min}$ $0,8{\mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g} \text { nor }}^{2}$
7. Suhu	$35^{\circ} \mathrm{C}$
8. Design	$1,8 \mathrm{Kg} / \mathrm{cm}^{2}, 70^{\circ} \mathrm{C}$

Sumber: PT Petrokimia Gresik, unit Urea

2. Bahan Utilitas

Bahan Utilitas ini merupakan bahan - bahan yang membanstu didalam proses pembuatan Urea, antara lain :

Tabel 5.3. Bahan - Bahan Utilitas

Bahan - Bahan Utilitas	Spesifikasi
1. Steam	
a. Tekanan	$65 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
b. Suhu	$460{ }^{\circ} \mathrm{C}$
c. Design	$73.8 \mathrm{Kg} / \mathrm{cm}^{2}, 490{ }^{\circ} \mathrm{C}$
2. Air Demin	
a. Conduclivity	2 microhos max
b. SiO 2	o,2 ppm max (sebagai SiO2)
c. Tekanan	$5,3 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
d. Suhu	$\pm 30^{\circ} \mathrm{C}$
e. Design	$7 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}, 60^{\circ} \mathrm{C}$
3. Cooling Water:	
a. PH	7,0-8,5
b. Ca Hardness	1000 ppm max (Sebagai SiO2)
c. Phosphate	2,8-6 ppm max
d. Zn	3,5-225 ppm max
e. SiO 2	200-225 ppm max
f. Turbidity	20 ppm max (Sebagai SiO2)
g. TDS	2100 ppm max
h. Chloride	300 ppm max
i. Tekanan	$5 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}$
j. Suhu	$32^{\circ} \mathrm{C}$
k. Design	$7 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}, 70{ }^{\circ} \mathrm{C}$
4. Portable Water:	
a. Tekanan	$3,5 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
b. Suhu	ambient
c. Design	$5 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}, 40^{\circ} \mathrm{C}$

5. Fire water : a. Kualitas raw water b. Tekanan c. Design	Digunakan sebagai air pemadam kebakaran $\begin{aligned} & 10 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}, 30^{\circ} \mathrm{C} \\ & 7 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}, 20^{\circ} \mathrm{C} \\ & 14 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}, 50^{\circ} \mathrm{C} \end{aligned}$
6. Insirument Air a. Kualitas b. Tekanan c. Suhu d. Design	Oil free, dew point 40 $7 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ min (pada line header) ambient $10 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}, 65^{\circ} \mathrm{C}$
7. Plant Air : a. Tekanan b. Suhu c. Design	$7,5 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ (pada linc header) Ambient $10 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}, 65^{\circ} \mathrm{C}$
8. Gas $\mathrm{N}_{2}:$ a. N_{2} b. O_{2} c. H_{2} d. CO_{2} e. $\mathrm{H}_{2} \mathrm{O}$ f. Tekanan g. Suhu h. Design	99.9% vol min 10 pprn vol max 10 pprn vol max 10 ppm vol max 60 ppm vol max $20 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g} \mathrm{min}$ (pada line heoder) Ambient $22 \mathrm{Kg} / \mathrm{cm}^{2} \cdot \mathrm{~g}, 70^{\circ} \mathrm{C}$
9. Listrik : a. Power untuk pabrik Urea i. Voltage ii. Frequensi iii. Electric System iv. Fault level ฯ. Grounding System b. Motor : i. Diatas ii. Dibawah c. Motor Space Heater	$\begin{gathered} 6000 \mathrm{~V}, \pm 5 \% \\ 50 \mathrm{~Hz}, \pm 5 \% \end{gathered}$ 3 Phase, 3 wire 250 MVA pada 6000 V Non - Grounded System $149 \mathrm{KW} 6000 \mathrm{~V}, 3$ Phase, 50 Hz $149 \mathrm{KW} 6000 \mathrm{~V}, 3$ Phase, 50 Hz

3. Baban Penolong Kimia

Bahan penolong kimia dibutuhkan untuk menjaga keberlangsungan didalam proses pembuatan Urea, antara lain :

Tabel 5. 4. Rahan Penolong Kimia

Bahan Penolong	Spesifikasi
1. Caustic Soda (NaOH) :	
a. Konsentrasi	40% berat
b. \quad Tekanan	$2 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{G}$
c. \quad Suhu	ambient
2. Sulfuric Acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right):$	
a. Konsentrasi	98% berat
b. \quad Tekanan	$2 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{G}$
c. \quad Suhu	ambient

[^0]
5.1.3.2. Bagan Alir Pembuatan Pupuk Urea

Pada proses produksi pupuk Urea, bahan baku yang digunakan adalah amoniak cair dan gas karbondioksida. Adapun tahapan dalam proses pembuatan pupuk Urea, seperti yang dijelaskan sebagai berikut :

1. Unit Kompresor (Compressor Unii)

Unit ini berfungsi menghisap CO_{2} dari bagian Amoniak tekanan $0.8 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ menjadi tekanan $185 \mathrm{Kg} / \mathrm{cm}^{2}$.g dan dikirim ke unit Sintesa.
2. Unit Pompa (Pump Station Unt)

Unit pompa ini terbagi dalam 2 jenis pompa dengan fungsi yang berbeda beda, yaitu :
A. Pompa Ammonia : berfungsi memompa cairan Ammonia dari bagian Ammonia tekanan $15 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ menjadi $185 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ dan dimasukkan ke Unit Sintesa.
B. Pompa Karbamat : berfungsi memompa larutan daur ulang karbamat (Recycle Carbamate) dari unit udaur ulang ke unit Sintesa.
3. Unit Sintesa (Synthesis Unit)

Seksi ini adalah scksi terpenting dalam pabrik Urea, disini Urea sintesis dibuat dengan reaksi antara Ammonia Liquid dan Gas CO_{2} dari pabrik Ammonia dan reycle larutan karbamat dari unit reycovery. Larutan Urea Sintesia dikirim ke Unit Purifikasi untuk selanjutnya diambil kembali Ammonium Karbamat dari Excess Ammonia setelah dilakukan Stripping dengan Gas CO_{2}.
4. Unit Pemurnian (Purification Unit)

Di unit ini Ammoniu Karbamat yang tidak terkonversi didalam unit Sintesa dan lixcess Ammoia, diuraikan dan dipisahkan dari larutan Urea dengan pemanasan dan penurunan tekanan dalam 2 tingkat Dekomposer dan dikirim ke unit Recovery. Sedangkan larutan Urea yang tclah dimurnikan dikirim ke unit Concentrator.
5. Unit Daur Ulang (Reycovery Unit)

Gas Ammonia dan CO_{2} yang dipisahkan pada unit Purifikasi diambil dalam Absorber 2 tingkat dengan menggunakan proses kondensat sebagai penyerap, kemudian di daur ulang (reycle) kembali ke unit Sintesa.
6. Unit Konsentrasi (Concentration Unit)

Unit ini untuk pemekatan larutan Urea sampai 99.7 \% berat Urea termasuk biuret dengan Vacuum Evaporasi. Molten Urea dengan kemumian tinggi dikirim ke unit Prilling.
7. Unit Pembutitan (Prilling Unit)

Produk Urea Prill diproduksi didalam Menara Pembutiran (Prilling Tower) dari Produk Molten Urea pada unit Konsentrasi

Tinggi dan diameter Prilling Tower ditetapkan dengan pertimbangan unluk memproduksi Urea yang mempunyai Crushing Strenght yang tinggi dan pendingin yang cukup dalam Tower, sclanjutnya "Acoustic Granulator" dipakai unluk mendapatkan ukuran distribusi yang tepat. Peralatan dan fasilitas yang digunakan pada Unit ini juga efektif untuk menurunkan emisi debu.
8. Unit Pengolahan Air Kondensat Proses (Condesate Treatment Process Unit) Uap air hasil penguapan pada unit Concentrator didinginkan dan dikondensasi. Scbagian kecil Urea, Ammonia, dan CO_{2} dalam proscs kondensat diolah dan dipisahkan dengan Atropping dan Hydrolisa dalam unit ini dan selanjutnya dikinim kembali ke Unit Purifikasi untuk Recovery. Sedangkan Steam Kondensal dan proses kondensat di Polish dengan Mixed Bed Ion Exhanger dan dikirim ke acrator pada unit I/tility.
9. Unit Pcngantongan (Bagging Unit)

Pupuk Urea dari unit Pembutiran dimasukan kedalam bak penampung oleh Belt Conveyor di bagian pengatongan yang mempunyai 4 buah mesin jahit untuk menjahit kentong pupuk Urea masing - masing seberat 50 Kg . Bila di unit mesin jahit terjadi gangguan demi kelancaran operasi dibagian proses Urea maka produksi dapat dicurahkan kegudang curah (Bulk Strorage). Selanjutnya bila unit mesin jahit sudah normal kembali produksi dapat dikembalikan dari gudang curah ke bak penampung mesin jahit, sehingga proses menjahit dapat dilakuan secara normal kembali.

5.1.3.3. Fungsi dan Spesifikasi Peralatan Penting

Dalam proses pembuatan pupuk Urea ada bebarapa peralatan dan Mesin yang sangat berperan penting didalam proses pembuatan pupuk Urea ini, antara lain :

1. Kompresor GB 101

Kompresor ini berada pada di Unit Kompresor pada tahapan pertama, dengan spesifikasi adalah sebagai berikut :

A. Tingkat I :

a. Type :Centifugal
b. Kapasitas: $23176 \mathrm{NM}^{3} / \mathrm{jam}$
c. Tekanan: - isap (section) $: 0.08 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}$

- Buang (discharge) : $5.33 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}$
d. Material : Staintess Steel
e. Daya : 1359 KW
f. Penggerak : Steam Turbin
B. Tingkat II
a. Type : Centifugal
b. Kapasitas: $23574 \mathrm{NM}^{3} / \mathrm{jam}$
c. Tekanan :- Isap (section) $: 4.83 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
- Buang (discharge) : $22.0 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
d. Material : Stainless Steel
e. Daya : 1611 KW
f. Pengerak: Steam Turhin
C. Tingkat III
a. Type : Centufugal
b. Kapasitas: $26092 \mathrm{NM}^{3} / \mathrm{jam}$
c. Tekanan :- Isap (section) : $21 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
- Buang (discharge) : $102.3{\mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}}^{2}$
d. Material : Stainless Steel
e. Daya : 2029 KW
f. Penggerak: Steam Turbin
D. Tingkal IV
a. Type : Centifugal
b. Kapasitas: $26214 \mathrm{NM}^{3} / \mathrm{jam}$
c. Tekanan : - Isap (section) : $101.1 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
- Buang (discharge) ; $185 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
d. Material : Stainless Steel
e. Daya : 675 KW
f. Penggerak:Steam Turbin

2. Pompa Ammonia GA 101

Pompa ini berfungsi untuk mempompa Ammonia Cair dari bagian Ammonia tekan ke Reaktor di unit Sintesa, dengan spesifikasi sebagai berikut :
a. Type Centifugal
b. Kapasitas $: 62 \mathrm{M}^{3} / \mathrm{jam}$
c. Tekanan :- Isap (section) : $25 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$

- Buang (discharge) : $185 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
d. Material : CS/13 Cr
e. Daya : 466.2 KW
f. Head : 2644 m
g. Penggerak :Steam Turbin

3. Pompa Carbamate GA 102

Pompa ini berada di unit Daur Ulang yang berfungsi mengirim larutan Carbamate dari unit Daur Ulang ini ke unit Sintesa (Reaktor DC 101), spesifikasi dari pompa ini adalah sebagai berikut :
a. Type : Centifugal
b. Kapasitas $: 54 \mathrm{M}^{7} / \mathrm{jam}$
c. Tekanan :- Isap (section) : $25 \mathrm{Kg} / \mathrm{cm}^{2}$.g

- Buang (discharge) : $185 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
d. Material : SCS - 11 M OR Ferralium 255
e. Daya : 404.6 KW
f. Ilead : 1388 M
g. Penggerak : Steam Turhin.

4. Reaktor DC 101

Spesifikasi untuk reaktor DC 101 ini adalah sebagai berikut :
a. Dimensi $: 2550 \times 28000 \mathrm{~mm}$ (ID x TT height)
b. Tebal $: 90 \mathrm{~mm}$
c. Tekanan $: 184 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
d. Suhu $: 220^{\circ} \mathrm{C}$
e. Material : CS + 316. SS UG LINING
5. Stripper DA 101

Alat ini berada di unit Sintesis, yang berfungsi untuk memisahkan Ammonia ikutan dalam larutan Urea dan Carbamat, spesifikasi alat ini scbagai berikut :
a. Type : V-SPECIAL
b. Dimensi : 2400/2300/900/11035 mm (ID \times TT heightt)
c. Tebal : SHELL $-\mathbf{1 0 0} \mathrm{mm}$ dan TUBE $=90 \mathrm{~mm}$
d. Kapasitas : SHELL $-11.08 \mathrm{~m}^{3}$ dan TUBE $=30.1 \mathrm{~m} 3$
e. Tekanan : SHELL $-25 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ dan TUBE $=184 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
$\begin{array}{lll}\text { f. } & \text { Suhu } & \text { : SHELL }=240^{\circ} \mathrm{C} \text { dan TUBE }=220^{\circ} \mathrm{C} \\ \text { g. } & \text { Matcrial } & \text { : SIIILL }=\text { A } 516, \text { GR } 70 \text { dan Head DP-12 }\end{array}$
6. Carbamate Condensor No. 1 (EA 101)

Alat ini berada pada unit Sintesis, yang berfungsi untuk mengkondensasikan hasil reaksi antara gas CO_{2} dan Ammonia yang menjadi larutan carbamat, spesifikasinya adalah sebagai berikut :
a. Type : V-SPECTAL
b. Dimensi $\quad: 1300 \times 10300 \mathrm{~mm}(\mathrm{ID} \times$ Tube Length $)$
c. Tebal $:$ SIIELL $=90 \mathrm{~mm}$ dan TUBE $=90 \mathrm{~mm}$
d. Surface Area : $1302 \mathrm{~m}^{2}$
e. Tekanan $\quad:$ SHELL $-8 \mathrm{Kg} / \mathrm{cm}^{2} \cdot \mathrm{~g}$ dan TUBF $=184 \mathrm{Kg} / \mathrm{cm}^{2} \cdot \mathrm{~g}$
f. Suhu \quad SHELL $-200^{\circ} \mathrm{C}$ dan TUBE $=220^{\circ} \mathrm{C}$
g. Material : SHFTL -CS dan TUBE $=\mathrm{DP}-12$
7. Carbamate Condensor No. 2 (EA 102)

Fungsinya hampir sama dengan Carbamate Condensor No 1, akan tetapi panas yang dihasilkan dari reaksi ini digunakan untuk memanaskan condensat menjadi uap kukus tekanan $5 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$, spesifikasinya adalah sebagai berikut :
a. Type : V-SPECIAL
b. Dimensi $\quad: 1030 \times 10300 \mathrm{~mm}$ (ID \times Tube Length)
c. Tebal $:$ SHELL -90 mm dan TUBE $=90 \mathrm{~mm}$
d. Surface Area : $803 \mathrm{~m}^{2}$
c. Tekanan $\quad:$ SHEL $L=21 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ dan $\mathrm{TUBE}=184 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
f. Suhu \quad SHEI $L=190^{\circ} \mathrm{C}$ dan $\mathrm{TUBE}=220^{\circ} \mathrm{C}$
g. Matcrial $:$ SHELL $=316 \mathrm{~L}-$-SS dan TUBE $=\mathrm{DP}-12$
8. HP Decomposer (DA 201)

Masih dalam unit Sintesa, HP Decomposer ini berfungsi memisahkan karbamat menjadi CO 2 dan Gas Ammonia dengan cara penurunan tekanan dan pemanasan, spesifikasinya sebagai berikut :
a. Type : Distributor Vertical
b. Dimensi $: 1600 / 1050 \times 6160 / 750 \mathrm{~mm}$ (ID \times TT height)
c. Tebal $:$ SHELL -90 mm dan $T I T B E=90 \mathrm{~mm}$
d. Kapasitas \quad SHELL $=0.496 \mathrm{~m}^{3}$ dan $T U B E=7.91 \mathrm{~m}^{3}$
e. Tekanan $\quad: S H E L L-24 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ dan $T U B E=19 \mathrm{KG} / \mathrm{cm}^{2} . \mathrm{g}$
f. Suhu $\quad:$ SHEI $I=240^{\circ} \mathrm{C}$ dan $T U B E=190^{\circ} \mathrm{C}$
g. Material $:$ SIIELL $=\mathrm{A} 240$ TP 329
9. LP Decomposer (DA 202)

Fungsi alat ini hampir sama dengan fungsi dari DA 201, dengan penambahan adanya Stripping, spesilikasi alat ini sebagai berikut :
a. Type : SIEVE TRAY/RACHIO RING
b. Dimensi $\quad: 1900 / 1450 \times 15430 / 1100 \mathrm{~mm}$ (ID \times TT height)
c. Tebal $: 90 \mathrm{~mm}$
d. Kapasitas $\quad: 20.9 \mathrm{~m}^{3}$
e. Tekanan $: 8 \mathrm{Kg} / \mathrm{cm}^{2} \mathrm{~g}$
f. Suhu $\quad: 200^{\circ} \mathrm{C}$
g. Material $:$ SHELL $=\Lambda 516$ GR 60/A 31 GR TP 316
10. Vacuam Concentrator Upper (FA 202 A)

Fungsinya adalah untuk memekatkan larutan Urea dengan cara memisahkan antara cairan Urea dan Air memakai penghisap sistem Vacuum (Evaporasi), spesifikasinya sebagai berikut :
a. Type : VERTICAL SILINDER
b. Dimensi $: 4800 \times 9230 \mathrm{~mm}$ (ID \times TT height)
c. Tebal $\quad: 75 \mathrm{~mm}$
d. Kapasitas $: \mathbf{1 4 3 . 9} \mathrm{m}^{3}$
e. Tekanan $: 150 \mathrm{~mm} . \mathrm{Hg}$
f. Suhu $\quad: 170^{\circ} \mathrm{C}$
g. Material : A 240 TP 304
11. Vacuum Concentrator Lower ($\mathrm{F} \wedge 202 \mathrm{~B}$)

Fungsinya adalah untuk memekatkan larutan Urea dengan cara memisahkan antara cairan Urea dan Air memakai penghisap Vacuum (Evaporasi) dengan menggunakan panas dari unit Recovery, spesifikasi sebagai berikut :
a. Type : VERTICAL SIIINDER
b. Dimensi $\quad: 5000 \mathrm{D} / 7000 \mathrm{ID} \times 13070 \mathrm{TL} / \mathrm{BL} \mathrm{mm}$
c. Tebal $: 50 \mathrm{~mm}$
d. Kapasilas $\quad:$ SIIEL $_{2}=114.8 \mathrm{~m}^{3}$ dan $J A C K E J=7.5 \mathrm{~m}^{3}$
e. Tckanan $\quad: 150 \mathrm{~mm} . \mathrm{Hg}$
f. Suhu $\quad:$ SHELI $=110^{\circ} \mathrm{C}$ dan $J A C K E T=120^{\circ} \mathrm{C}$
g. Material : A 240 TP 304
12. Final Concentrator (FA 203)

Fungsinya hampir sama dengan FA 202 B hanya tanpa adanya penggunaan panas unit Recovery, sehingga konsentrasi cairan Urea menjadi 99.7%, spesifikasinya :
a. 'Typc : VERTICAL SILINDER
b. Dimensi $: 3700$ ID $/ 500$ ID mm
c. Tebal $: 75 \mathrm{~mm}$
d. Kapasitas $\quad: 81.4 \mathrm{~m} 3$
e. Tekanan : $25 \mathrm{~mm} . \mathrm{Hg}$
f. Suhu $: 170^{\circ} \mathrm{C}$
g. Material : A 240 TP 304
13. HP Absorber (EA 401)

Fungsi untuk menangkap Gas CO_{2} dan Gas Ammonia dari unit Pemurnian yang selanjutnya akan dikirim ke Reactor $D(101$, spesifikasinya sebagai berikut :
a. Type : H-NKN
b. Dimensi $\quad: 540 / 1500 \times 6000 \mathrm{~mm}$ (SHELL II) \times TUBL leng h)
c. Tebal $:$ SIIELL $\cdot 75 \mathrm{~mm}$ dan $T U / B \Gamma=75 \mathrm{~mm}$
d. Surface Area : $573 \mathrm{~m}^{2}$
e. Tekanan $: S H E L L-20 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$ dan $T\left(/ H \mathrm{E}=4 \mathrm{Kg} / \mathrm{cm}^{2} \cdot \mathrm{~g}\right.$
f. Suhu \quad SHLELL $-120^{\circ} \mathrm{C}$ dan $T U B L=120 / 120 / 70^{\circ} \mathrm{C}$
g. Material $\quad: S H E L L=A 516$ GR dan $T / B E E-\mathrm{A} 213 \mathrm{GR}$
14. IIP Absorber (E \wedge 402)

Fungsi untuk menangkap Gas CO_{2} dan Gas Ammomia dari unit Pemurnian yang sclanjutnya akan dikirim ke IIP' Decomposer, spesifikasinya sebagai berikut :
a. Type : H-AEM
b. Dimensi $\quad: 1900 \times 7200 \mathrm{~mm}$ (SHELL ID \times TUBE length $)$
c. Surface Area : $847 \mathrm{~m}^{2}$
d. Tekanan $\quad:$ SHLLLL $=4 \mathrm{Kg} / \mathrm{cm}^{2} \cdot \mathrm{~g}$ dan $T L I B \mathrm{~F}=7 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
e. Suhu $\quad:$ SHEIL $=800 \mathrm{C}$ dan $T U B E=700 \mathrm{C}$
f. Material $\quad: \mathrm{SHELL}-\mathrm{A} 240 \mathrm{TY}$ dan $T J B E=\mathrm{A} 213 \mathrm{GR}$
15. Prilling Tower (IA 301)

Fungsinya adalah untuk merubah cairan Urea menjadi butiran Urea, spesifikasi sebagai berikut:
a. Type \quad : VFRTICAI
b. Dimensi $: I \mathrm{D}=13.100 \mathrm{~mm}$ dan $\mathrm{H}^{-} 77500 \mathrm{APP}$
c. Kapasitas : $70 \mathrm{Ton} / \mathrm{jam}$
d. Tekanan : alm
e. Suhu $\quad: 100^{\circ} \mathrm{C}$
16. Process Condensale Siripper (DA 501)

Berfungsi untuk memisahkan partikel Urea menjadi CO 2 dan Gas Ammonia dengan cara di Stripping Uap Kukus, yang selanjutnya dikirim ke unit Pemurnian, spesifikasinya sebagai berikut :
a. Type $\quad:$ SIEVE TRAY TOWER
b. Dimensi : $1250 \times 28100 \mathrm{~mm}$
c. Tebal $\quad: 75 \mathrm{~mm}$
d. Kapasitas $: 35 \mathrm{~m}^{3}$
e. Tekanan $: 5 \mathrm{Kg} / \mathrm{cm} 2 . \mathrm{g}$
f. Suhu $\quad 175^{\circ} \mathrm{C}$
g. Material : A 240 TP 304
17. Urea Ilydrolizer (DA 502)

Berfungsi untuk memisahkan partikel Urea menjadi gas CO 2 dan Ammonia dengan cara pemanasan Uap Kukus selanjutnya gas hasil pemisahan ini dikirim ke DA 501 , spesilikasinya sebagai berikut :
a. Type : VERTICAL ELIIPSE HEAD
b. Dimensi $: 1500 \times 13800 \mathrm{~mm}$
c. Tebal $: 90 \mathrm{~mm}$
d. Kapasitas $: 25.3 \mathrm{~m}^{3}$
c. Tekanan $\quad: 22 \mathrm{Kg} / \mathrm{cm}^{2} . \mathrm{g}$
f. Suhu $\quad: 240^{\circ} \mathrm{C}$
g. Material : A 240 TP 316

5.2. Fungsi Perencanaan.

Dalam fungsi perencanaan manajemen risiko di PT Petrokimia Gresik pada unit kerja Urea ini, dengann pedoman wawancara yang bersumber dari SMK3 dan modifikasi. Pedoman wawancara ini digunakan untuk mengatahui tentang fungsi perencanaan dalam penerapan manajemen risiko di unit kerja urea, terhadap para responden yang tclah ditentukan.

Berdasarkan pedoman wawancara tentang fungsi perencanaan manajemen risiko, yang didapat para responden antara lain dari Kepala Regu, Kepala Seksi, Kepala Bagian dan Tim Manajemen risiko serta dari data dokumen yang ada. Maka didapatkan gambaran bahwa fungsi perencanaan sudah ada yang meliputi, sasaran, kebijakan dan komitmen, prosedur, program, pentahapan, dan pendanaan dalam penerapan manajemen risiko. Penjelasan tentang indikator dari fungsi perencanaan Manajemen Risiko adalah sebagai berikut :

5.2.1. Sasaran

Dalam penerapan manajemen risiko, sasarannya antara lain :

1. Untuk mencegah dan mengurangi atau menghilangkan adanya kccelakaan, peledakan dan penyakit akibal kerja,
2. Mengamankan mesin, alat kerja, dan bahan baku.
3. Memberikan perlindungan terhadap tenaga kerja agar selalu terjamin keselamatan dan kesehatan kerja,
4. Memberikan perlindungan terhadap orang lain (tamu) yang berada di tempat kerja, dan masyarakat sekitar pabrik,
5. Menghindari perusahaan mengalami kerugian yang dapat mengganggu kelangsungan proses produksi di perusahaan.
mari hasil wawancara diperoleh gambaran bahwa manajemen telah mempunyai sasaran yang ingin dicapai dalam penerapan manajemen risiko. Hal ini seperti diungkapkan oleh para responden di unit kerja Urea. Berikut ini kutipan hasil wawancara, menurut MW

Sasaran dalam penerapan manajemen risiko adalah untuk meminimalkan kerugian baik kerugian finansial, property, dan
proses produksi. Hal serupa juga diutarakan oleh selunuh responden

Sehingga sasaran dalam penerapan manajemen risiko ini sudah diketahui oleh seluruh tenaga kerja yang ada di unit kerja urea.

5.2.2. Kebijakan dan Komitmen, Dasar Hukum Penerapan Manajemen

Risiko di PT Petrokimia Gresik

Didalam pelaksanaan penerapan manajemen risiko, pihak manajemen dalam hal ini pihak perusahaan sudah mengeluarkan komitmen bersama untuk menunjang penerapan manajemen risiko di seluruh unit kerja di PT Petrokimia Gresik. Adapun isi dari komitmen ini adalah sebagai berikut

1. Penetapan organisasi manajemen risiko yang bertugas untuk mengelola risiko yang ada pada setiap aktivitas di seluruh unit kerja perusahaan.
2. Penyediaan anggaran, tcnaga kerja yang mempunyai kwalifikasi tertentu serta penyediaan sarana penunjang lainnya.
3. Penyusuman rencana kerja yang baik dan terkoordinasi dengan seluruh unit kerja pelaksanaan manajemen risiko, meliputi proses identifikasi, pengukuran, pengendalian, dan pemantauan risiko.
4. Penilaian kinerja dan penyempurnaan yang berkesinambungan untuk pengelolaan setiap risiko yang berkesinambungan untuk pengclolaan setiap risiko yang ada pada aktivitas diseluruh unit kerja perusahaan.

Hal ini dapat dilihat berdasarkan hasil wawancara tentang komitmen perusahaan/pemimpin dalam pelaksanaan penerapan manajemen risiko, sebagai berikut, Menurut MR :

> Komitmen perusahaan sangat penting didalam pelaksanaan manajemen risiko, seperti adanya penyedian dana, sarana dan fasilitas perusahaan, Hal serupa juga diungkapkan oleh seluruh responden

Komitmen dari manajemen puncak sangat berpengaruh didalam kelancaran dari pelaksanaan penerapan manajemen risiko di perusahaan, dalam hal ini khusus unit kerja Urea.

Selain dalam itu pihak manajemen sudah mengeluarkan kebijakan khusus untuk penerapan manajemen risiko yang dikcluarkan oleh Direksi PT Petrokimia Gresik dan ditetapkan pada tanggal 31 Desember 2003. Adapun isi dari kebijakan manajemen risiko adalah sebagai berikut :

1. Mendeteksi atau mengidentifikasi risiko sedini mungkin pada setiap aktivitas yang ada.
2. Melakukan pengukuran tingkat/besarnya setiap risiko yang ada, seberapa besar dampak dan kemungkinan terjadinya.
3. Melakukan evaluasi terhadap sumber risiko dan penyebab risiko, sebagai dasar untuk memetakan dan menetapkan prioritas risiko significant yang harus dikendalikan.
4. Menyusun rencana strategi pengendalian terhadap risiko yang ditetapkan sebagai prioritas risiko.
5. Melaksanakan kegiatan pengendalian risiko, yang dapat membahayakan kelangsungan hidup perusahaan.
6. Melakukan pemantauan risiko, khususnya yang dampaknya cukup significant terhadap kondisi perusahaan.

Berikut cuplikan dari salah satu responden tentang kebijakan manajemen risiko, yaitu menurut MW :

Dengan adanya kebijakan yang pasti dari Direksi, maka kejelasan dalam bekerja seperti wewenang, tugas, tanggung jawab di unit kerja masing - masing dapat terlaksana. Hal serupa juga diungkapkan olch seluruh responden.

Kebijakan untuk penerapan manajemen risiko ini dibuat oleh manajemen puncak, sehingga kebijakan ini merupakan kebijakan pokok, dan sudah dijalankan di unit kerja urea.

Dasar hukum yang digunakan oleh perusahaan didalam penerapan Manajemen Risiko ini adalah sebagai berikut :

1. Undang - Undang Dasar Republk Indonesia Nomer 1 tahun 1995 tanggal 7 Maret 1995, tentang Perseroan Terbatas.
2. Undang - Undang Dasar Republik Indonesia Nomer 19 Tahun 2003, tanggal 19 Juni 2003, tentang Badan Usaha Milik Negara.
3. Keputusan Menteri Badan Usaha Milik Negara

Nomer Kep-117/M-MBU/2002, tanggal 1 Agustus 2002, tentang Penerapan
Praktek Good Corporate Governance Pada Badan Usaha Milik Negara
4. Nota Dinas Direksi PT Petrokimia Gresik Nomer 0179/01/TU.04.02/30/ND/2003, tanggal 23 Januari 2003, tentang Penugasan Tim Penerapan Good Corporate Governance di PT. Petrokimia Gresik.
5. Nota Dinas Direksi PT Petrokimia Gresik, Nomer 1943/08/NK. $01.04 / 04 / \mathrm{ND} / 2003$, tanggal 20 Agustus 2003, tentang Pembentukan Tim Manajemen Risiko.
6. Surat Keputusan Direksi PT Petrokimia Gresik Nomer............, tanggal........, tentang Pedoman Penerapan Manajemen Risiko di PT Petrokimia Gresik.

5.2.3. Program penerapan manajemen risiko.

Dalam pembuatan rencana program penerapan manajemen risiko di unit Urca, sudah disesuaikan dengan situasi dan kondisi dari lingkungan kerja di Urea. Program kerja dalam penerapan menajemen risiko di unit Urea meliputi tahap-tahap dari pelaksanaan manajemen risiko pada umumnya, yaitu :

1. Pengidentifikasian risiko

Dalam proses ini identifikasi risiko dilakukan hampir setiap hari baik dari mulai shift pertama sampai dengan shift ketiga. Hal ini dilakukan oleh semua pekerja yang bekerja di shift tersebut. Dan kemudian laporan dari indentifikasi bahaya/risiko itu dilaporkan kepada ketua regu dan selanjutnya akan diberikan kepada karu, kasi dan kepada kabag yang selanjutnya akan ditindak lanjuti.
2. Penilaian Risiko

Setelah identifikasi bahaya dilakukan selanjutnya akan dilakukan penilaian bahaya, hal ini dilakukan berdasarkan hasil musyawarah dengan para tenaga kerja dimasing - masing shift yang selanjutnya akan dibicarakan lagi ke tingkat manajemen, sehingga nantinya akan didapatkan keseragaman.

Adapun nilai - nilai yang digunakan dalam proses penilaian risiko berdasarkan kesepakatan manajemen.
3. Pengevaluasian Risiko

Pada tahap ini para Kepala Regu, Kepala Kasi dan Kepala Bagian membuat perencanaan tentang perioritas dari hasil penilaian risiko. Dalam penentuan tingkat atau prioritas risiko juga pihak perusahaan sudah mempunyai ketentuan tersendiri sesuai dengan karakteristik perusahaan pupuk

4. Pengendalian risiko

Pada proses ini, para kasi dan kabag membuat perencanaan secara jelas tentang tindak lanjut dari hasil pengukuran dan priontas risiko yang telah ada. Hal ini dimaksudkan untuk memberikan gambaran kepada pihak manajemen tentang risiko bahaya yang dapat membuat rugi perusahaan. Hasil wawancara menyebutkan untuk selama ini perusahaan selain mengendalikan risiko sendiri scperti melakukan eliminasi, substitusi, retensi dan selain itu perusahaan juga melakukan pengendalian yang diserahkan kepada pihak ketiga dalam hal ini dengan cara memberikan asuransi kepada seluruh peralatan dan tenaga kerja, serta property perusahaan jika terjadi risiko bahaya di tempat kerja, dan juga untuk tenaga kerjaya.
5. Pemantauan Risiko

Pada tahap ini para karu, kasi dan kabag melakukan perencanaan tentang jadwal untuk melakukan audit internal ditempat kerjanya. Dalam hal ini audit internal sudah dilakukan kurang lebih enam bulan sekali yang dilakukan oleh pihak Urea sendiri, pihak K3, dan pihak luar dalam hal ini untuk audit limbah cair dan limbah emisi.
6. Program pendidikan/pelatihan untuk mengsosialisasikan program manajemen nisiko ini kescluruh tenaga kerja yang berada di unit kerja urea berlaku berdasarkan kerjasama dengan pihak manajemen risiko dan diklat.

Berikut ini adalah salah satu hasil wawancara tentang program penerapan manajemen risiko di unit kerja Urea menurut WH :

Program manajemen risiko dalam pelaksanaannya dilakukan secara fungsional dalam bekerja, seperti identifikasi risiko,
penilaian risiko, prioritas risiko dan pengendalian risiko.untuk pelatihan tenaga kerja biasanya dilakukan setiap 6 bulan sekali dan diikuti oleh 2 orang tenaga kerja, program untuk pensosialisasiannya berikut dengan jadwalnya. Hal serupa juga diungkapkan oleh seluruh responden

Pada unit kerja Urea didapatkan sudah melaksanakan program - program tesebut. Baik mulai dari melakukan identifikasi sampai dengan pengendalian risiko

5.2.4. Anggaran dalam pencrapan manajemen risiko

Untuk mempelancar kelangsungan program - program kerja yang telah dibuat oleh pihak unit kerja Urea. Berikut ini salah satu hasil wawancara tentang anggaran dalam pelaksanaan manajemen risiko di unit kerja Urea menurut Bapak SY:
"Untuk anggaran yang dikaitkan dengan risiko sendiri masih belum ada. Hal serupa juga diungkapkan olch scluruh responden.

Maka perusahaan belum menyediakan dana atau anggaran khusus untuk risiko itu, baik untuk anggaran taktis dalam keadaan darurat maupun untuk kebutuhan operasional, seperti untuk perbaikan mesin, peralatan dan proses lainnya.

5.2.5. Prosedur

Dalam penerapan Manajemen Risiko periu diatur tata cara untuk melaksanakan proses/tahapan dari Manajemen Risiko yang terintegrasi dalam suatu sistem dan prosedur yang komprehensif, meliputi :

1. Akuntabilitas serta penjenjangan delegasi tugas dan tanggung jawab secara jelas.
2. Pelaksanaan kaji ulang sebagai upaya penyempurnaan terhadap sistem dan prosedur secara terus menerus.
3. Seluruh prosedur termasuk harus didokumentasikan dalam bentuk prosedur atau Instruksi Kerja yang disusun secara tertulis untuk menjadi petunjuk pelaksanaan Manajemen Risiko.

Agar tidak terjadi kesimpangsiuran dalam pelaksanaan penerapan manajemen risiko di unit kerja Urea, sudah terdapat :

1. Prosedur kerja untuk masing masing jabatan yang telah diberikan dalam daftar induk dokumen uraian pekerjaan. Dalam dokumen ini menjelaskan secara detail tentang urai pekerjaan, tanggung jawab dan wewenang bagi para tenaga kerja tersebut.
2. Adanya prosedur didalam membuat pelaporan kerja didalam penerapan Manajemen risiko yang harus disampaikan oleh Unit Kerja Manajemen Risiko kepada Direksi dan Komite Manajemen risiko, yang meliputi beberapa macam laporan, yaitu :
a Laporan rencana kegiatan penerapan Manajemen Risiko
b Laporan Realisasi kegiatan penerapan Manajemen Risiko.
c Laporan Profil Risiko Perusahaan .
d Laporan Produk dan Aktivitas Baru (bila ada)
e Laporan penunjang lainnya.
Dari semua bentuk pelaporan ini ada format dan prosedural yang menunjang didalam pelaksanaan pelaporan ini, menjadi lebih baik dan terkoordinasi.
3. Prosedur Kegiatan (SOP) dalam pelaksanaan manajemen risiko, ada dalam daftar induk dokumen "PROSEDUR" untuk bagian Urea Departement

Produksi I. Berikut ini salah saru hasil cuplikan wawancara tentang prosedur pelaksanaan program manajemen risiko di unit kerja Urea, menurut Bapak MR :

Semua sudah ada prosedur kerjanya dalam bentuk SOP (Standart Operasional Prosedure). Hal scrupa juga diutarakan oleh selunuh responden.

Tujuan dari dibuatnya prosedur kerja program manajemen risiko ini agar program manajemen risiko yang telah dibuat dapat dilaksanakan oleh semua tenaga kerja di unit kerja Urea dan sesuai dengan standart yang berlaku.

5,2.6. Pentahapan dalam pelaksanaan program

Dalam melakukan pentahapan ini, pihak manajemen Urea sudah mempunyai jadwal tersendiri didalam melaksanaakan setiap program yang akan dilaksanakan. Berikut ini salah satu hasił hasil wawancara tentang pentahapan dalam pelaksanaan program manajemen risiko di unit kerja Urea menurut IM :

Unit Urea saya rasa dalam melaksanakan tahapan manajemen risiko ini sudah dilakukan sesuai dengan urutan dalam tahapan manajemen risiko, seperti melakukan identifikasi risiko sampai tahap pengendalian. Hal serupa juga diutarakan oleh seluruh responden.
.Untuk unit kerja Urea sudah melakukan pentahapan dalam pelaksanaan program manajemen risiko ini, yaitu dari mulai persiapan, sampai pada tahapan pelaksanaan manajemen risiko.

52.7. Koordinasi

Proses untuk menyelaraskan, perubahan dan menghubungkan berbagai kegiatan dalam suatu organisasi dan atau antar berbagai organisasi, antar unit kerja yang satu dengan yang lainnya.

Semua kegiatan sangat membutuhkan koordinasi dengan unit kerja lainnya. Koordinasi dapat dilakukan dalam bentuk : pelimpahan sumber-sumber produksi, penyelarasan kegiatan, pengembangan sistem informasi, dan pembentukan tim koordinasi.

Koordinasi yang ada di unit kerja Urea sudah ada . Sebagai contoh didalam pelaksanaan perbaikan mesin atau peralatan yang rusak maka pekerja tersebut akan melimpahkannya kepada bagian pemeliharaan untuk segera mclakukan perbaikan, unit kerja urea dalam berproduksi membutuhkan bahan baku dari beberapa pabrik yang lain, seperti pabrik ammonia, CO2 sehingga akan terjadi pelimpahan dalam proses produksi, dan lain-lain.

Dengan adanya koordinasi yang baik ini, maka semua kegiatan akan berjalan dengan baik. Berikut ini hasil wawancara tentang sistem koordinasi dalam penerapan manajeemn risiko di unit kerja urea, menurut Bapak SP berikut ini :
"koordinasi juga sudah ada baik antar tenaga kerja dan antar unit kerja seperti Untuk perbaikan mesin/peralatan yang rusak dapat dilakukan langsung oleh bagian pemeliharaan dan merupakan kerjasama dengan unit kerja Urea. Hal serupa juga diungkapkan oleh seluruh responden.

Fungsi perencanaan di unit kerja urea, sudah memiliki indikator - indikator didalam fungsi perencanaan manajemen. sehingga didapatkan gambaran bahwa fungsi manajemen risiko khususnya fungsi perencanaan sudah ada .

5.3. Fungsi Pengorganisasian

Fungsi Pengorganisasian dimaksudkan untuk mengatur tugas yang akan dilakukan dan hubungan antara tugas sehingga dapat dilaksanakan dengan efektif. fungsi pengorganisasian yang ada di PT Petrokimia Gresik antara lain meliputi :

5.3.1.Struktur Organisasi.

Dalam rangka pelaksanaan program penerapan manajemen risiko yang efektif, maka perlu dibentuk organisasi yang bertanggung jawab untuk pelaksanan manajemen risiko Gambar 5.1. Organisasi manajemen risiko ada pada lampiran 5. Untuk membantu didalam pelaksanaannya, perusahaan dibentuknya menjadi 2 organisasi utama yaitu :

1. Komite Manajemn Risiko (KMR)

Komite Manajemen Risiko (KMR) ini dibentuk sebagai organisasi "Non Struktural" yang berfungsi sebagai badan pengarah dan nara sumber dalam pelaksanaan program manajemen risiko, yang beranggotakan :

Ketua : Direktor Kcuangan
Wakil Ketua 1: Kakomp Adminstrasi keuangan
Wakil Ketua II: Kakomp Pemasaran.
Sekretaris : Kepala Divisi manajemen risiko
Anggota : Kakomp Pabrik I
Kakomp Pabrik II
Kakomp Pabrik III
Kakomp Pengembangan
Kakomp Teknologi \& Permesinan

Kakomp Sumber Daya Manusia

Sekertaris Perusahaan.

2. Unit Kerja Manajemen Risiko (UKMR)

Unit Kerja Manajemen Risiko dibentuk sebagai organisasi yang bersifat
"Struktural" dalam organisasi perusahaan yang dipimpin oleh seorang pejabat setingkat esclon II yang bertanggung jawab langsung kepada Direktur Utama yang ditunjuk dan ditugaskan secara khusus. Bentuk organisasi UKMR adalah berupa sebuah Divisi yang membawahi beberapa staf manajemen risiko dan kelompok kerja manajemen risiko yang bertugas secara berkelompok berdasarkan fungsi kegiatannya. Susunan organisasi ini dapat dilihat pada gambar 5.2. pada lampiran 6.

Berikut ini adalah salah satu cuplikan hasil wawancara tentang struktur organisasi di PT Petrokimia Gresik, menurut Bapak MW :

Perusahaan mempunyai struktur organisasi untuk manajemen risiko ini, yang terdiri dari organisai formal (UKM) dan informal (KMR) yang dimana mempunyai fungsi dan tugas serta tanggung jawab yang berbeda. Hal senada juga diungkapkan oleh seluruh responden.

5.3.2. Keanggotaan

Dalam susunan organisasi untuk masing - masing organisasi baik yang bersifat struktural maupun non-struktural telah ditetapkan dengan surat keputusan Direksi yang akan ditinjau ulang setiap 1 tahun sckali sesuai kebutuhan perusahaan.

Untuk keanggotaan Komite Manajemen Risiko (KMR) hampir semuanya merupakan pajabat tingkat tinggi dijajaran manajemen perusahaan, sedangkan
untuk keanggotaan Unit Kerja Manajemen Risiko merupakan pejabat setingkat eselon II di perusahaan atau yang telah memenuhi persyaratan yang diberikan oleh perusahaan, seperti dijelaskan dibawah ini :

1. Sekurang - kurangnya setingkat pejabat eselon II sebagai kepala divisi manajemen risiko.
2. Sekurang - kurangnya setingkat eselon III sebagai staf divisi manajemen risiko.
3. Sekurang - kurangnya setingkat pcjabat eselon IV/V sebagai anggota pokja divisi manajemen risiko.
4. Memahami pengetahuan tentang manajemen risiko secara komprehensif.
5. Memahami proses bisnis yang ada di perusahaan secara terintegrasi.
6. Mempunyai kompetensi dan integritas yang tinggi.
7. Menjunjung tinggi kebenaran, kejujuran, dan bersifat obyektif.
8. Mampu menjadi pendorong/mitra kerja bagi unit kerja operasional maupun unit kerja yang melaksanakan fungsi pengendalian internal (SPI) untuk senantiasa melaksanakan fungsinya dengan berbasis pada risiko.

Berikut ini ada salah satu cuplikan tentang keanggotaan/pengurus dalam penerapan manajemen risiko, adapun menurut bapak Mw :

Anggotanya dari seluruh fungsi yang ada diperusahaan dan biasanya dari golongan eselon II dan cselon III. Hal serupa juga diungkapkan olch seluruh responden.

5.3.3. Wewenang, Tangung Jawab dan Pendelegasian Wewenang Dalam Penerapan Manajemen Risiko

1. Wewenang.

Perusahaan telah menetapkan wewenang dan tanggung jawab yang jelas pada setiap jenjang jabatan yang terkait dengan penerapan manajemen risiko. Wewenang dan tanggung jawab dari Direksi dalam penerapan manajemen risiko, sebagai berikut :

1. Penyusunan dan menetapkan kebijakan, strategi dan pedoman penerapan manajemen risiko
2. Bertanggung jawab atas pelaksanaan kebijakan manajemen risiko;
3. Mengembangkan budaya manajemen risiko pada seluruh jenjang organisasi perusahaan;
4. Memastikan telah dilaksanakannya peningkatan kompetensi sumber daya manusia yang terkait dengan manajemen risiko;
5. Melaksanakan kaji ulang secara herkala untuk memastikan :
a. Keakuratan metodologi penilaian risiko
b. Kecukupan implementasi sistem informasi manajemen
c. Ketetapan kebijakan, prosedur dan penetapan limit risiko.

Wewenang dan tanggung jawab dari komisaris perusahaan, antara lain :

1. Mengevaluasi dan memberikan persetujuan tentang kebijakan manajemen risiko;
2. Mengevaluasi dan memberikan saran perbaikan terhadap pertanggungjawaban Direksi atas pelaksanaan kebijakan manajemen risiko;

Untuk wewenang dan tanggung jawab dari Komite Manajemen risiko (KMR) adalah bertanggung jawab secara langsung kepada Direksi Utama dan berwewenang untuk memberikan rekomendasi kepada Direktur Utama terhadap hal - hal sebagai berikut :

1. Penyusunan kebijakan, strategi dan pedoman penerapan Manajemen Risiko.
2. Memberikan evaluasi serta saran perbaikan atau penyempurnaan secara terus menerus terhadap pelaksanaan manajemen risiko, melipuli proses identifikasi, pengukuran, pengendalian dan pemantauan risiko.
3. Penetapan hal - hal yang terkait dengan keputusan bisnis yang menyimpang dari prosedur normal antara lain pelampauan anggaran untuk ekspansi/investasi yang significnt dari rencana kerja dan anggaran perusahaan (RKAP) yang telah ditetapkan dan pengambilan/penerimaan tingkat risiko dari suatu aktivitas yang menyimpang/melebihi limit yang telah ditetapkan.
4. Penyusunan sistem pelaporan yang mencakup pengendalian internal untuk seluruh fungsi kegiatan yang ada di perusabaan.
5. Menjamin sistem manajemen risiko telah berjalan secara efektif.
6. Menjamin kepatuhan perusahaan terhadap peraturan yang berlaku dan sikap sesuai dengan standar etika yang berlaku.

2. Tanggung Jawab

Untuk tangung jawab dari organisasi Unit Kerja Manajemen Risiko (UKMR) langsung bertanggung jawab kepada Direksi Utama dan secara operasional melaporkan hasil kegiatannya kepada Direktor keuangan yang ditunjuk sebagai Ketua Komite Manajemen Risiko (KMR).

Unit Kerja Manajemen Risiko (UKMR) dalam menjalankan fungsinya sebagai pelaksana dalam program penerapan manajemen risiko bersifat "Independen", baik terhadap unit kerja operasional maupun terhadap unit kerja yang melaksanakan fungsi pengendalian internal (SPI). Wewenang yang dimiliki oleh Unit Kerja Manajemen Risiko untuk melaksanakan tugasnya adalah sebagai berikut:

1. Menyusun dan mengusulkan kebijakan manajemen risiko, limit risiko atau batasan toleransi yang dapal diterima kepada Direksi.
2. Memastikan kecukupan sistem, prosedur dan kebijakan manajemen risiko, pengendalian internal serta perangkat sistem informasi manajemen.
3. Melakukan pemantauan terhadap pelaksanaan kebijakan manajemen risiko yang telah disetujui oleh Direksi dan Komite Manajemen Risiko.
4. Memastikan pelaksanaan proses identifikasi risiko pada unit kerja, kemudian mengkompilasi dan menyusun daftar risiko dan dikelola menjadi suatu profil risiko perusahaan secara keseluruhan.
5. Melakukan pemantauan terhadap posisi risiko secara keseluruhan, jenis risiko dan fungsi risiko, serta melakukan penilaian guna mengetahui dampak dari implementasi kebijakan dan strategi manajemen risiko terhadap kinerja unit kerja opersional atau fungsi kegiatan terkait ssuai proses bisnis yang ada.
6. Melakukan kaji ulang secara berkala terhadap proses manajemen risiko anatara lain berdasarkan temuan audit internal dan/atau perkembangan praktek - praktek manajemen risiko dalam dunia usaha.
7. Melakukan kajian terhadap usulan aktivitas dan/atau produk baru serta kajian terhadap usulan perubahan sistem dan prosedur.
8. Melakukan evaluasi terhadap akurasi model dan validitas data yang digunakan untuk mengukur risiko.
9. Memberikan rckomendasi terhadap besaran paparan risiko yang wajib dipelihara kepada unit kerja operasional dan/atau kepada KMR, sesuai kewenangan yang dimiliki.
10. Menyusun dan menyampaikan laporan profil risiko secara menyeluruh kepada Direksi Utama dan KMR secara berkala sekurang - kurangnya 1 (satu) tahun sekali sesuai kebutuhan perusahaan.

3. Pendelegasian Wewenang.

Pendelcgasian wewenang di unit kerja urea sudah ada, dan juga untuk pelaksanaan dari program - program manajemen risiko yang telah direncanakan. Dimana kepala bagian akan mendelegasikan wewenangnya kepada kepala seksi, selanjutnya kepala seksi akan mendclegasikan wewenangnya ke kepala regu.

Berikut ini salah satu hasil wawancara tentang pendelegasian wewenag dan tanggung jawab, seperti yang dituturkan oleh SY:

Wewenang dan tanggung jawab sudah dijelaskan secara rinci dalam uraian pckerjaan, untuk pendelegaisan wewenang, tanggung jawab dan tugas sudah ada, seperti dalam pelaksanaan unit kerja Urea, mereka sudah mengetahui wewenang, tanggung jawab dan tugasnya masing-masing. Hal serupa juga diungkapkan oleh seluruh responden.

5.3.4. Hubungan Kerja

Hubungan kerja yang diunit kerja urea ini, sudah ada dan terkoordinasi. Hal ini disebabkan adanya interaksi yang baik antar tenaga kerja di unit ini, adanya hubungan kerja yang baik antar unti kerja yang lain.

Hubungan kerja dengan unit lain sudah dilakukan seperti dalam proses produksi, dengan adanya koordinasi antar pabrik ammonia dan pabrik CO 2 dalam menjalankan proses produksi. Selain itu pabrik urea tidak dapat berdiri sendiri, dikarenakan semua bahan baku, bahan penolong berasal dari unit kerja yang berbeda.

Hubungan kerja di unit kerja urea ini, sangat berpengaruh dalam bekerja, khususnya dalam pelaksanaan program-program dari manajemen risiko. Semakin baik hubungan kerja, akan meningkatkan semangat bekrja dan produktivitas dari tenaga kerja ini.

Berikut ini hasil wawancara tentang hubungan kerja di unit kerja urea, seperti yang diungkapkan oleh IM :

Selain adanya koordinasi yang baik antar unit kerja, saya rasa hubungan kerja juga sangat mempengaruhi kita dalam bekerja Rasa nyaman dalam bekerja dan komunikasi. Hal serupa juga diutarakan oleh semua tesponden.

5.3.5. Tenaga Kerja yang ahli dalam Manajemen Risiko

Untuk tenaga kerja yang ahli dalam pencrapan manajemen risiko ini,sudah ada, yaitu tenaga ahli K3, karena scorang ahli K3 pasti juga merupakan orang yang ahli manajemen risiko, serta tenaga ahli mesin, tenaga ahli listrik, dan sebagainya sudah ada di perusahaan. Untuk tenaga yang sudah mendapatkan informasi dan pengetahuan dengan cara mengikuti seminar-seminar, atau pelatihan tentang manajemen risiko sudah ada.

Tenaga kerja yang mengikuti seminar ini dipilih dari golongan eselon II, eselon III. Tenaga yang sudah mengetahui tentang manajemen ini akan
mensosialisasikan manajemen nisiko ini ke seluruh tenaga kerja di tempat kerjanya masing-masing.

Berikut ini hasil wawancara tentang tenaga kerja yang ahli manajemen risiko di perusahaan secara umum dan di unit kerja urea secara khusus, menurut WH:

Dalam penerapan manajemen risiko ini memerlukan orang-orang yang ahli dibidangnya masing-masing yang ada difungsi kerja perusahaan. Hal serupa juga diungkapkan oleh seluruh responden.

5.4. Fungsi Penggerak/Kepemimpinan

Ada beberapa indikator yang digunakan dalam fungsi penggerak ini, antara lain yaitu pengambilan keputusan, penempatan staf, pengembangan (pendidikan) dan komunikasi terhadap penerapan manajemen risiko.

Berdasarkan hasil observasi dan wawancara, didapatkan bahwa fungsi penggerak / kepemimpinan di Unit kerja Urea dapat dijelaskan sebagai berikut :

5.4.1. Pengambilan Keputusan

Pengambilan keputusan di unit kerja urea ini, dapat dilakukan berdasarkan group decision dan self decision. Misalnya unluk pengambilan keputusan pemberian penilaian dari identifikasi yang sudah ditemukan, kepala bagian dan kcpala seksi akan meminta masukan dari bawahannya tentang kemungkinan yang dapat terjadi. Sehingga mereka dapat menentukan penilaian risiko sesuai dengan keadaan dan dampaknya. Hal ini dapat dilihat pada gambar 5.3, pada lampiran 7 dan lampiran 8.

Berikut ini adalah salah satu hasil wawancara mengenai pengambilan keputusan di unit kerja Urea, menurut SP :

Dalam pelaksanaan tahapan manajemen risiko seperti pengidentifikasi, penilaian, prioritas dan pengendalian yang menentukan adalah tingkatan kasi keatas,dan Kabag sebagai pengambil keputusan. Hal serupa juga diungkapkan semua responden.

Untuk pengambilan keputusan darurat, biasanya diberikan wewenang kepada tenaga kerja yang ada ditempat kerjadian untuk segera mengambil tindakan. Pengambilan keputusan ini harus bisa dipertanggung jawabkan. Untuk memperkuat berikut ini hasil wawancara tentang pengambilan keputusan darurat di unit kerja Urea, menurut bapak WH:

> Jika terjadi suatu bahaya/peristiwa, maka untuk pengambilan keputusan itu adalah kita yang berada di tempat kejadian. Mereka yang pertama kali melihat, maka mereka bisa langsung melakukan aksi, tanpa harus menunggu lagi, dan jika memang sangat membahayakan perusahaan/pabrik maka mereka mendapatkan wewenang untuk mematikan pabrik/shut down. Hal serupa diungkapkan oleh seluruh responden.

5.4.2. Penempatan Staf.

Untuk penempatan tenaga kerja yang baru semua berdasarkan ilmu yang keahlian yang dimiliki para calon tenaga kerja dan disesuaikan dengan hasil test. Sedangkan untuk penempatan tenaga kerja yang lama juga dilakukan di unit kerja urea ini, penempatan ini didasarkan atas kesepakatan kepala bagian.

Dalam penempatan staf lama kebagian lain dalam unit kerja urea ini biasanya dilakukan untuk memberikan variasi dan tantangan baru bari tenaga kerja tersebut. Untuk penempatan tenaga kerja atau staf yang ahli di bidang manajemen risiko masih belum ada.

Berikut ini salah satu hasil wawancara tentang penempatan tenaga kerja baru menurut IM :

Untuk penempatan pegawai baru, berdasarkan ilmu, tempat kerja dan lulus test, sedangkan tenaga kerja lama juga kan mendapatkan perpindahan tempat kerja atau penempatan di tempat kerja baru. Hal serupa juga diungkapkan oleh seluruh responden.

Sedangkan untuk tenaga kerja yang lama, juga akan mengalami perpindahan atau penempatan posisi yang baru. Dan hal ini biasanya berdasarkan keputusan dari Direksi, dan disesuaikan dengan kriteria yang sudah dimiliki oleh perusahaan.

5.4.3. Pengembangan (Pendidikan, Peiatihan)

Setiap tenaga kerja baru mendapatkan training/pendidikan untuk menunjang kegiatan mereka dalam bekerja, hal ini dilakukan sebelum mereka memulai bekerja. Dan untuk meningkatkan pengetahuan tenaga kerja lama biasanya perusahaan memberikan pelatihan, pendidikan mereka, dan mereka mendapatkan secara bergilir dan semua ini ditentukan oleh kepala devisi masing - masing.

Uniuk Urea setiap 1 semester mendapatkan pendidikan dan biasanya diwakilkan oleh 2 orang tenaga kerjanya. Jika ada pelatihan / pendidikan di PT Petrokimia Gresik biasanya mereka mengadakan kerjasama dengan pihak ketiga/pihak luar untuk mernberikan informasi atau pengetahuan yang diperlukan oleh perusahaan, selain itu perusahaan juga mengadakan pelatihan/pendidikan yang diberikan oleh pihak perusahaan sendiri.

Tenaga kerja yang telah mendapat pengetahuan, ilmu atau ketrampilannya dari luar dan akan diberikan kepada tenaga kerja lainnya dengan mengadakan kerjasama dengan bagian diklat, K3 dan bagian lain yang terkait. Tenaga kerja yang berhak mendapatkan pelatihan tersebut biasanya dilihat dari jabatannya dan
terkadang dari tingkat prestasinya di tempat kerja, dan yang berhak memilihnya adalah dari atasannya.

Pelatihan - pelatihan tentang penerapan manajemen risiko di unit kerja Urea, yang telah dilakukan antara lain exelent operation management effective producton system, production safety system, safety work permit job analysis, heat transfer principle, isue, analisis risiko \& kegagalan operasi pada industri kimia, teknik pengendalian proses produksi, peralatan dan pengendalian proses konversi \& transfer energi pada industri kimia.

5.4.4. Komunikasi

Komunikasi yang digunakan dalam penerapan manajemen risiko di unit kerja urea ini berupa komunikasi lisan dan tulisan. Komunikasi secara tulisan antara lain buku pedoman, leaflet, majalah, buletin, poster, manual perusahaan seperti SOP (standart Operasional Prosedure), Instruksi kerja . Komunikasi secara lisan digunakan antar tenaga kerja dengan adanya safety partoli, pertemuan singkat sebelum melakukan pekerjaan, dan lain-lain

Berikut adalah hasil wawancara tentang komunikasi yang dilakukan di unit kerja Urea, menurut SY:

Adanya komunikasi dua arah yang baik antara atasan dan bawahan. Hal serupa juga diutarakan olch seluruh responden.

Komunikasi dikatakan baik, jika terjadi komunikasi dua arah antar pimpinan unit kerja dengan bawahannya, sehingga semua informasi, perintah dapat dijalankan dengan baik.

5.5. Fungsi Pengendalian

Dalam fungsi pengendalian ini bermanfaat untuk mengendalikan segala macam risiko/bahaya di tempat kerja dan lingkungan kerja, dan lingkungan sekitar tempat kerja. Berdasarkan kondisi dan keadaan ditempat kerja bahwa di PT Petrokimia melakukan pengendalian seperti dijelaskan dibawah ini :

5.5.1. Melakukan Identifikasi Faktor Pekerjaan

Identifikasi faktor pekerjaan merupakan kegiatan berupa pembuatan spesifikasi pekerjaan atau faktor risiko, apabila elemen tersebut dijalankan akan mendapatkan hasil yang optimal. Kegiatan itu mencakup keselamatan kerja, pengendalian risiko, dan juga untuk kualitas, produksi.

Elemen - elemen yang telah dilaksanakan di unit kerja urea ini adalah sebagai berikut : pelatihan, inspeksi, pelaporan dan Penyelidikan kecelakaan kerja, persiapan keadaan darurat, alat Pelindung diri, pemeriksaan kesehatan, pengendalian risiko,secara teknik, administrasi, komunikasi personal, promosi, penempatan tenaga kerja, dan lain-lain.

5.5.2. Pengukuran/Measurement

Pengukuran yang terlah dilakukan di unit kerja urea ini, merupakan pengukuran terhadap hasil produksi, lingkungan kerja, dan pelaporan kecelakaan kerja. Yang melakukan pengukuran lingkungan kerja ini adalah dari anggota Safety Representative bergilir yang dibentuk berdasarkan Surat Keputusan Direksi No. $927 / 12 / \mathrm{NK} .06 .06 / 42 / \mathrm{MI} / 2003$, tertanggal 24 Desember 2004.

Anggota Safety representative ini berasal dari seluruh unit kerja yang ada di Departement I atau Pabrik I. Untuk melakukan pengukuran lingkungan ini dilakukan sebanyak shift kerja yang ada, dalam hal ini sebanyak 3 kali. Untuk hasil pengukuran lingkungan kerja, antara lain :
a Kebisingan masih didalam batasan pendengaran yang diijinkan yaitu sekitar $35-45 \mathrm{~dB}$ (Sumber Data dari unit kerja Urea, PT Petrokimia Gresik).
b Sumber data untuk pengukuran buangan cair dari FM-39-4007 point 1.3 (Biro Laboratorium).
c Untuk pengukuran gas dan debu dari FM-39-1517 (Bagian Laboratorium Produksi I).
d Untuk hasil pengukuran produks dari FN -39-1510 (Bagian Laboratorium Produksi I).

5.5.3. Pembuatan Standart.

Adanya standart - standart tertentu untuk semua jenis kegiatan dalam proses produksi Urea, seperti adanya standart dalam momasuki tempat kerja (permit), standart dalam menjalankan operasional dalam bekerja, dll. Sehingga membantu didalam proses bekerja.

5.5.4. Evaluasi

Melakukan evaluasi untuk melihat apakah standart yang dibuat sudah sesuai dengan pengendalian risiko di semua kegiatan dalam proses produksi pupuk Urca. Misalnya melihat hasil dari pengukuran-pengukuran lingkungan kerja dengan
standart pengendalian yang telah dibuat, disesuaikan dengan standar dari pemerintahan daerah Jawa Timur.

Melihat hasil pelaporan kejadian kecelakaan kerja terhadap standart pengendalian dan kondisi tempat kerja, apakah sudah memenuhi tujuan yang ingin dicapai, seperti meminimalkan atau menghilangkan kecelakaan kerja di unit kerja urea ini.

Tetapi untuk melakukan evaluasi terhadap penerapan manajemen risiko ini, baru pada tahap evaluasi terhadap penilaian risiko. Untuk evaluasi lainnya sudah dilakukan, seperti melakukan audit internal dan eksternal tentang mutu lingkungan dan Safety.

5.5.5. Koreksi Terhadap Penerapan Manajemen Risiko

Merupakan kegiatan untuk memperbaiki/mengkoreksi kckurangan kekurangan yang ada dalam penerapan manajemen risiko. Walaupun penerapan manajemen risiko ini masih baru di unit kerja urea, namun asudah dilakukan koreksi dan perbaikan misalnya ddengan melakukan pensosialisasian manajemen risiko ke semua tenaga kerja menurut surat edaran Direksi pertanggal 02 Juni 2004 mendapatkan informasi tentang menajemen risiko.

Sehingga tenaga kerja secara keseluruhan mampu memahami manajemen risiko itu secepat mungkin, dan dapat menerapkannya dalam bekerja. Beberapa koreksi terhadap penerapan manajemen risiko di unil kerja urea ini, adalah :

1. Komunikasi yang lebih baik, untuk memastikan semua tenaga kerja merrahami tujuan dan standart dari penerapan manajemen risiko di tempat kerja.
2. Pelatihan - pelatihan untuk menambah ilmu dan pengetahuan tentang manajemen risiko.
3. Meningkatkan pengenalan terhadap prilaku, dan sebagainya.

5.6. Penerapan Manajemen Risiko (Implementasi)

Penerapan manajemen risiko di unit kerja urea meliputi identifikasian risiko, penilaian/pengukuran risiko, pengevaluasian/prioritas risiko dan pengendalian risiko. Berikut ini tahapan dalam penerapan manajemen risiko di unit kerja urea :

5.6.1. Identifikasi Risiko (Risk Identification)

Identifikasi risiko/bahaya merupakan salah satu dari awal tahapan pelaksanaan manajemen risiko yang ada. Untuk identifikasi risiko/bahaya di unit kerja Urea, biasanya dilakukan oleh tenaga kerja yang bekerja di Urea dan dibantu oleh tenaga safety representative. Hal ini dimaksudkan untuk dapat lebih teliti dan mengerti akan risiko yang dapat terjadi di tempat kerjanya.

Menurut hasil wawancara didapatkan bahwa identifikasi dilakukan hampir setiap hari yang dapat dibuat dalam bentuk laporan harian dan juga dalam bentuk laporan bulanan. Untuk lebih menyamakan bentuk dari form dalam melakukan identifikasi risiko, maka oleh perusahaan telah dibuatkan suatu form yang dapat menggambarkan keadaan risiko di tempat kerja.

Form untuk identifikasi bahaya ini dibuat oleh tim manajemen risiko yang dimaksudkan untuk mempermudah tenaga kerja atau safety Representative dalam melakukan identifikasi risiko/bahaya di tempat kerjanya. Adapun variabel - variabel dalam Form identilikasi risiko/bahaya adalah sebagai berikut :

1. Jenis Risiko
2. Sumber Risiko
3. Penyebab Risiko
4. Dampak dari Risiko.

Identifikasi risiko/bahaya di bagian Urea dilakukan secara menyeluruh terhadap semua aktivitas proses produksi. Menurut hasil wawancara tenaga kerja dalam hal ini selaku Kcpala Regu (Karu), Kepala Seksi (Kasi), dan Kepala Bidang (Kabid) yang dibantu juga oleh Safety Representative sebelum melakukan identifikasi risiko tidak mendapatkan pelatihan terlebih dahulu mengenai identifikasi risiko/bahaya ataupun mengenai kesehatan kerja meskipun mereka juga tidak memiliki latar belakang pendidikan atau pengalaman di bidang identifikasi risiko/bahaya, yang mereka peroleh hanyalah introduction mengenai manajemen risiko secara garis besarnya saja.

Dalam melakukan identifikasi risiko/bahaya tenaga kerja (Kepala Regu, Kepala Seksi, dan Kepala Bidang dibantu oleh safety representative, dan melaporkan hasil identifikasi risiko ini kepada tim manajemen risiko (Unit Kcrja Manajemen Risiko) yang selanjutkan akan dilaporkan kepada Direksi.

Identifikasi ini dilakukan dengan cara mendapatkan bantuan dari data - data yang ada dari hasil pengukuran lingkungan kerja seperti pengukuran kebisingan, pengukuran buangan gas dan debu atau dengan melakukan observasi langsung di tempat kerja

Berikut ini hasil wawancara tentang identifikasi risiko yang dilakukan di unit kerja urea, menurut SY:

Dalam melakukan identifikasi risiko/bahaya di tempat kerja kita ini, biasanya merupakan kejasama antara kasi keatas untuk
penentuan identifikasi risikonya. Namun dalam pelaksanaannya dilakukan dengan pendelegasian dari kasi kepada kepala regu dan pelaksana, serta masukan dari safety representative. Hal senada juga diungkapkan oleh seluruh responden.

Identifikasi risiko/bahaya harus dilakukan secara cermat dan teliti. Untuk dapat melakukan identifikasi risiko ada beberapa alat/teknik santara lain :

1. Mclakukan wawancara/interview dengan seluruh tenaga kerja yang benar benar memahami tentang risiko - risiko yang mungkin dapat terjadi di unit kerjanya.
2. Brainstroming dengan seluruh Tim Manajemen Risoko, dimaksudkan untuk lebih mendapatkan pemahaman yang baik dan benar.
3. Menggunakan metode Nominal Group Technique (NGT) dalam menetapkan risiko dengan cara mengelompokkan risiko berdasarkan sumbernya, membahas kemungkinan kejadiannya, kemudian didaftar, dikomplikasi, dan dikelompokan serta dibuat tabulasinya.
4. Menggunakan metode analogi terhadap risiko yang terjadi berulang atau kemungkinan kejadiannya sama.
5. Melakukan interaksi secara aktif dengan seluruh tenaga kerja di Urea, untuk mendapatkan umpan balik yang bermanfaat dalam penetapan risiko yang significant.
6. Menyusun check list, kuesioner/daftar isian tentang petunjuk pengisiannya.

Sedangkan hal lain yang perlu diperhatikan dalam melakukan identifikasi risiko adalah dengan :

1. Aktivitas rutin dan tidak rutin

Aktivitas rutin seperti : operasi dalarn keadaan normal sesuai dengan kegiatan sehari - hari. Sedangkan aktivitas yang tidak rutin seperti pabrik dalam keadaan shut down, peralatan atau mesin berhenti bekerja karena rusak, masa perawatan, kesalahan manusia dalam melaksanakan pekerjaannya, dan lain lain.
2. Aktivitas dari semua tenaga kerja yang mempunyai akses ke tempat kerja di Urea (seperti tamu, tenaga kerja kontrakan)
3. Fasilitas di tempat kerja yang disediakan oleh perusahaan.

Untuk identifikasi risiko/bahaya di Urea dilakukan dengan cara mendata semua aktivitas yang berkaitan dengan proses produksi yang ada di unit kerja Urea, yang selanjutnya menentukan risiko yang dapat timbul yang berkaitan dengan aktivitas tersebut.

Hasil pengidentifikasian yang telah dilakukan di unit kerja Urea dapat dilihat pada tabel 5.6 berikut ini :

Tabel 5.6. Identifikasi Risiko, tahun 2003.

No	Proses Produksi	Sumber Risiko	Risiko	Penyebab Risiko	Dampak
1.	Unit Kompressor	Peralatan \& mesin : GB 101 GT 101	Gangguan proses produksi	Usia alat, rotor rusak, gear \& bearing rusak,	Penurunan Performance
2	Unit Pompa	Peralatan $\&$ mesin : FV 131 AB , FV 105 AB , GA 102 , GA 103	Pabrik berpotensi shut down	Alat terjadi kebocoran terjadi passing flow,	Penuruanan performance, kerugian biaya karena shut down.

3.	Unit Sintesa	Pcralatan \& mesin : DA 101, EA 101 GA 105 DA 102 DC 101 EA 101/102	Pabrik berpotensi shut down	Alat terjadi kebocoran, U-seal sering break waktu start up, Line flusing sering buntu	Penuruanan performance
4.	Unit purifikasi				
5	Unit Konsentrasi	Peralatan \& mesin : GA 204 AB FA 204 GA 203 AB	Pabrik berpotensi shut down	 Potensi rawan bocor, sering over flow, Polusi limbah	Penuruanan performance Pencemaran lingkungan
6	Unit Prilling				
7	Unit recovery	Peralatan \& mesin: EA 401 AB GA 401	Pabrik berpotensi shat down	Potensi rawan bocor, Terjadi error flushing manual	Penuruanan performance Pencemaran lingkungan
8.	Unit Kondensat				
9.	Unit Pengantong an Urea	$\begin{aligned} & \text { Mesin }- \\ & \text { mesin } \\ & \text { penjahit } \\ & \text { rusak } \end{aligned}$	Terjadi penumpukan urea di gudang curah urea	Meisn jahit tidak berfungsi baik	Penuruanan performance
10	Level Transmitter	Mesin \& peralatan	Pabrik berpotensi shut down	-	Penuruanan performance

Sumber : data sekunder.

Berdasarkan tabel 5.6. diatas tclah ditemukan ada 7 macam identifikasi risiko berdasarkan kualitas mesin dan peralatan. Untuk identifikasi risiko/bahaya di unit kerja urea masih bersifat teknik saja. Hal ini diungkapkan oleh SP:

Untuk idntifikasi risiko untuk sementara ini masih bersifat teknik saja, untuk yang lain masih belum dilakukan. Hal senada juga diungkapkan oleh Bapak SY dan Bapak MR.

Berdasarkan hasil wawancara dan dokumentasi serta data yang mendukung tentang pengidentifikasi risiko yang lain masih belum ada. Proses identifikasi risiko ini berdasarkan data primer yang merupakan hasil dari observasi di tempat kerja di unit Urea, dapat dilihat pada Tabel 5.7. bcrikut ini ;

Tabel 5.7. Identifikasi Risiko di unit kerja urea, tahun 2004.

No	Proses Produksi	Sumber Risiko	Risiko	Penyebab Risiko	Dampak
1.	Unit Kompressor	Peralatan : GB 101	Kebisingan, Tersengat stream, PAnas	Temperatur tinggi, dan suara kompressor, tekanan tinggi	Gangguan pendengaran Luka bakar dehidrasi
2.	Unit Pompa	Peralatan : FA 105 GA 101 GA 102	Kebisingan Tersengat Stream Kebocoran Ammonia. Kebocoran larutan Karbamat. kebakaran dan kedakan	Tekanan tinggi, temperatur tinggi.	Gangguan pernafasan, Luka bakar, iritasi kulit, Pencemaran lingkungan
3.	Unit Sintesa	Peralatan: DC 101 EA 101 EA 102 DA 101 DA 102 DA 201	Kebisingan, Kebocoran Ammonia Cair Kebocoran Larutan Karbamat, Kebocoran CO 2 , Kebocoran Urea, Kebakaran dan ledakan	Temperatur tinggi, Tekanan Tinggi.	Gangguan Pernafasan Luka Bakar/ iritasi kulit, Pencemaran lingkungan, Panas.
4.	Unit Purifikasi	Peralatan : FA 401	Kebisingan, Kebocoran Ammonia, Kebocoran	Temeperatur tinggi, Tekanan Tinggi	Gangguan pernafasan, Luka Bakar, Pencemaran

			Karbamat, Kebocoran Urea cair, Panas kebakaran dan ledakan		lingkımgan, Dehidrasi
5.	Unit Konsentrasi	Peralatan : FA 201	Kebocoran Urea cair .panas	Temperatur Tinggi, Tekanan Tinggi	Gangguan Pernafasan, Luka bakar, Pencemaran lingkungan, Dehidrasi
6	Unit Prilling (Pembutiran)	Peralatan :	Kebisingan, Jatuh dari ketinggian, Bau Urea, Emisi Debu, Cairan Urea Panas.		Gangguan pernafasan, luka patah, luka bajar/iritasi kulit, ketulian Pencemaran lingkungan
7	Unit Recovery	Peralatan :	Bau Ammonia, Kebocoran larutan Ammonia, tersengat stream, panas.	Temperatur tinggi.	Gangguan pemafasan, Terscngat stream, Luka Bakar/iritasi kulit, Dehidrasi, Pencemaran lingkungan.
8	Unit Kondensat	Peralatan FB 801 FA 801 FB 803 FA 802	Kebocoran Larutan Karbamat, Kebocoran larutan NaOH , Kebocoran H2SO4.	Temperatur Tinggi, Tekanan Tinggi	Tersengat stream, gangguan pernafasan, Luka Bakar/iritasi kulit/gatal - gatal. Dehidrasi .

			kebakaran dan ledakan		
9	Unit Pengantong an Úrea	Mesin mesin penjahit	Kejatuhan, kejepit mesin, Tangan kcjahit mesin, panas	Kecepatan mesin jahit	Terluka, dehidrasi

Sumber : data primer.

Dari tabel 5.7. didapatkan hasil penemuan identifikasi risiko sebanyak 9 jenis nisiko yang berdasarkan data primer di unit kerja urea.

5.6.2. Pengukuran/Penilaian Risiko

Besarnya pengaruh/dampak risiko terhadap kelangsungan hidup perusahaan dan kemungkinan tejadinya risiko tersebut, perlu dilakukan pengukuran/penilaian agar dapat dirumuskan langkah - langkah penyelesaian/pengendalian terhadap risiko tersebut.

Penilaian risiko di unit kerja Urea ini dilakukan oleh Kasi ke atas dalam hal ini oleh Kepala Bagian dengan bantuan dari Kepala Regu, Kasi di unit Urea. Penentuan penilaian risiko ini terkadang ditentukan sendiri oleh Kepala Bagian dan terkadang dilakukan diskusi dengan Kepala Regu dan Kepala Seksi yang ada. Kcpala Bidang tidak akan membahas penilaian risiko ini bersama - sama dengan Kepala Bidang lain, karena akan terjadi perbedaan pandangan dalam pemberian penilaian terhadap risiko tersebut.

Berikut ini hasil wawancara tentang pelaksanaan penilaian risiko di unit kerja urea, menurut MR :

Untuk penilaian risiko biasanya dilakukan oleh kepala bagian urea, yang dibantu oleh para kasi dan kepala regu. Tetapi dalam pengambilan keputusan tetap dilakukan oleh kepala bagian. Hal serupa diungkapkan oleh seluruh responden.

Kemudian hasil dari identifikasi risiko yang telah dilakukan maka penilaian risiko ini dikelompokan yang kemudian dilakukan penilaian risiko terhadap tiap - tiap temuan risiko tersebut. Penilaian risiko ini menggunakan kriteria occurrence hazard (kejadian bahaya) dan konsekuensi bahaya (consequences of hazard). Setelah ditentukan skor dari tiap - tiap kriterianya maka untuk menentukan besarnya risiko dilakukan kalkulasi/perhitungan dengan rumus :

Risk Potential Hazard $=$ Occurrence \times Consequences of hazard.

Berdasarkan hasil rangking tingkatan risiko yang ada, maka risiko didapat hasil penilaian risiko itu dapat dilihat pada tabel 5.8. berikut ini:

Tabel 5.8. Penilaian Risiko, tahun 2003.

No	Risiko	Pengendalian Risiko	Nitai										Tingkat Risiko $3=1 \times 2$
			Dampak					Pehuang					
			1	2	3	4	5	1	2	3	4	5	
(1)	(2)	(3)	(4)					(5)					(6)
1	Unit Kompressor GB-101 Performance menurun, uisa HP diprediksi 1-2 tahun, temperatur bearing> 100 ${ }^{\circ} \mathrm{C}$	Pemasangan CO 2 scrubber (DA 111): siapkan rotor baru, ganti gear 5 boaring			3							5	15

Sumber: data sekunder.

Dari tabel 5.8. dapat dilihat hasil penilaian risiko yang berdasarkan identifikasi risiko dikelompokan menjadi 7 jenis risiko sesuai dengan tahapan dalam proses produksi.

Dari hasil pengukuran/penilaian risiko yang dilakukan di unit kerja risiko ini, dari proses awal sampai akhir didapatkan 11 bahaya yang berasal dari mesin dan peralatan, yaitu :

1. Unit Kompressor (Turbin) GT-101
2. Unit Kompressor, GB-101, Performance menurun
3. Unit Pompa, G $\Lambda-101 / 102 / 103 / 401$, Berpotensi pabrik shut down.
4. Unit Sintesa, DA-101, Potensi performance menurun.
5. Unit sintesa, GA -105 , Line flusing sering buntu.
6. Unit Sintesa, Gasket DA-101/102, DC-101, EA-101/102, Tidak ready.
7. Unit Sintesa, EA - 101, Kondisi tube sheet rawan bocor; U seal sering break waktu start up.
8. Unit Konsentrasi, GA - 204 , Potensi rawan bocor .
9. Unit Konsentrasi, GA-203 AB, Polusi limbah cair.
10. Unit Pompa, GA-101/102/103/401, Berpotensi pabrik shut down.
11. Level transmitter, Berpotensi pabrik shut down.

Setelah identifikasi risiko maka dilanjutkan pada tahap berikutnya yaitu penilaian risiko, yang berasal dari data primer. Penilaian risiko ini mengacu pada Auatralia Standard, Risk Management, 4360, 1999.

Penilaian risiko terhadap identifikasi bahaya yang dilakukan berdasarkan data primer, dapat dilihat pada tabel \cdots tabel berikul ini :

1. Unit Kompressor

Tabel 5.9. Hasil Penilaian risiko pada unit kompressor, tahun 2004

Bahaya	Risiko	Penilaian Risiko			Kategori Risiko			Emergecy Respon
		Kermungkinan Kejadian KK	Keparahan bahava KB	$\begin{gathered} \mathrm{KK} \\ \mathrm{x} \\ \mathrm{~KB} \end{gathered}$	1-6	7-14	15-25	
Kebisingan,	Ketulian	4	3	12		X		
Tersengat stream	Luka bakar	3	4	12		X		
Panas	Dehidrasi	1	2	2	X			

Sumber : Data Primer.
Dari tabel 5.9. dapat diketahui bahwa pada unit Kompressor terdapat 3 bahaya dengan kategori risiko 1-6, yaitu, dehidrasi, untuk kategori $7-14$ yaitu tersengat steam, dan kebisingan.

2. Unit Pompa

Tabel 5.10. Hasil Penilaian Risiko pada unit Pompa, tahun 2004.

Sumber : Data Primer
Dari tabel 5.10. diatas dapat diketahui behwa pada unit pompa terdapat 5 bahaya dengan kategori risiko $7-14$ yaitu bahaya kebisingan dan tersengat stream sedangkan untuk kategori 15-25 yaitu bahaya, kebocoran ammonia, dan bahaya kebocoran larutan karbamat kebakaran dan ledakan, dan segera membutuhkan penanganan cepat (Emergency reapon)
3. Unit Sintesa

Tabel 5.11. Hasil Penilaian Risiko pada unit Sintesa, tahun 2004.

Bahaya	Risiko	Penilaian Risiko			Kategori Risiko			Emergency Respon
		Kemungkinan Kejadian KK	$\begin{gathered} \text { Keparahan } \\ \text { bahayal } \\ \mathrm{KB} \end{gathered}$	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	1-6	7-14	15.25	
Kebisingan	Ketuliar	4	3	12		X		
Kebocoran Ammonia Cait	Gangguan Pernafasan, Terluka (lritasi kulit)	4	5	20			X	X
Kebocoran $\mathrm{CO} 2,$	Pernafasan	4	5	20			X	X
Kebocoran Urea,	Gangguan pernafasan	4	5	20			X	X
Kebocoran larutan Karbamat	Luka bakar	4	5	20			X	X
Panas	Dehidrasi	1	2	2	X			
Kebakaran \& Ledakan	Kerusakan property	3	5	15			X	X

Sumber: Data Primer.
Dari tabel 5.11. dapat diketahui pada unit Sintesa terdapat 7 bahaya dengan kategori 1-6 adalah bahaya panas, untuk kategori $7-14$ yaitu bahaya kebisingan, sedangkan untuk kategori $15-25$ yaitu bahaya Kebocoran CO 2 , Kebocoran Urea, Kebocoran larutan Karbamat, dan kebocoran Ammonia Cair, bahaya kebakaran \& ledakan, dan perlu segera dilakukan penanganan (Emergency Respon)
4. Unil Purifikasi

Tabel 5. 12. Hasil Penilaian Risiko pada unit Purifikasi, tahun 2004.

Bahaya	Risiko	Pcrilaian Risiko			Kategori Risiko			Emergency Respon
		Kumuqkinar Kejadian KK	Keparahan bahinya K13	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	1-6	7-14	15.25	
Kebisingan	Ketulian	4	3	12		X		
Kebocoran Ammonia,	Gangguan Pernafasan, Luka bakar(Iritasi kulit)	4	5	20			X	X
Kebocoran Karbamat,	Gangguan pernafasan, Iritasi kulit	4	5	20			X	X
Kebocoran Urea cair	Ganggran pemafasan, Iritasi kulit	4	5	20			X	X
Panas	Dehidrasi	1	2	2	X			
Kebakaran \& Ledakan	Kerusakan propenty	3	5	15			X	X

Sumber : Data Primer.
Dari tabel 5.12. diatas dapat diketahui bahwa pada unit Purifikasi terdapat 6 bahaya dengan kategori risiko 1-6, yaitu panas. Untuk kategori $7-14$ yaitu bahaya Kebisingan sedangkan untuk kategori $15-25$ yaitu Kebocoran Ammonia, Kebocoran Karbamat dan kebocoran Urea, yaitu kebakaran \& ledakan, segera perlu penanganan (Fmergency Respon)

5. Unit Konsentrasi

Tabel 5.13. Hasil Penilaian Risiko pada unit Konsentrasi, tahun 2004.

Bahaya	Risiko	Pcnilatun Risiko			Katcgori Risiko			tmergeney Respon
		Kemungkinan Kejadian KK	$\begin{gathered} \text { Kcparahan } \\ \text { bxilasas } \\ \mathrm{KB} \end{gathered}$	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	1-6	7-14	15-25	
Kebocoran	Gangguan							
Urea Cair,	Pemafasan,							
	Luka bakar(Iritasi kulit)	4	5	20			X	X
Panas	Dehidrasi	1	2	2	X			

Sumber: Data Primer.
Pada tabel 5.13. datap diketahui bahwa pada unit Konsentrasi terdapat 2 jenis bahaya dengan kategori risiko 1-6 yaitu bahaya panas, dan katcgori 15-25 adalah bahaya kebocoran Urea cair, untuk kategori ini perlu penanganan secepat mungkin (Emergency Repon).

6. Unit Prilling

Tabel 5.14. Hasil Penilaian Risiko pada unit Prilling, tahun 2004.

Bahaya	Risiko	Penilaian Risiko			Kategori Risiko			Emergency Respon
		Kemungkinan Kejadian KK	Kepurahan bahaya KR	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	1.6	7.14	15-25	
Kebisingan	Ketulian	4	3	12		X		
Jatuh dari Ketinggian	Terluku	4	5	20			X	X
Emisi debu	Gangguan pernafasan	3	4	12			X	
Emisi Ammonia	Gangguan pernafasan		4	12			X	

| Kebocoran
 Urea Cair
 panas | Gangguan
 pernafasan
 luka bakar | 4 | 5 | 20 | | | X | X |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sumber: Data Primer.
Dari tabel 5.14. dapat diketahui bahwa pada unit Prilling terdapat 5 bahaya dengan kategori risiko 7-14 yaitu bahaya kebisingan, Bahaya Emisi Debu dan Emisi Ammonia, untuk kalegori risiko 15-25 yaitu bahaya kebocoran Urea cair panas, dan bahaya jatuh dari ketinggian, dan untuk kategori ini segera dilakukan penanganan (Emergency Respon).

7. Unit Recovery

Tabel 5.15. Itasil Penilaian Risiko pada unit Recovery, tahun 2004.

Bahaya	Risiko	Penilasan Risiko			Kategori Risiko			Emergency Respon
		$\begin{gathered} \text { Kcmungkinan } \\ \text { Kejadian } \\ \text { KK } \end{gathered}$	Keparahan bahayu KB	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	1-6	$7-14$	15-25	
Kebocoran lanutan Ammonia.	Gangguan pernafasan, iritasi kulit	4	5	20			X	X
Tersengat stream,	Luka Bakar	3	4	12		X		
Panas,	Dehidrasi	I	2	2	X			

Sumber: Data Primer.
Dari tabel 5.15. dapat diketahui bahwa pada unit Recovery terdapat 3 bahaya, dengan kategori risiko 1-6 yaitu panas, untuk kategori 7-14 yaitu tersengat stream dan, untuk kategori 15-25 yaitu bahaya kebocoran larutan Ammonia, yang segera butuh penanganan (Emergency Respon)
8. Unit Kondensat

Tabel 5.16. Hasil Penilaian Risiko pada unit Kondensat, tahun 2004.

Bahava	Risiko	Penilaian Risiko			Katcgori Risiko			Emergency Respon
		Kemingkinan Kcyadian KK	$\begin{gathered} \text { Keparahay } \\ \text { bahaya } \\ \text { KB } \end{gathered}$	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	-1-6	7-14	15-25	
Kebisingan	Kctulian	4	3	12		X		
Kebocoran Larutan Karbamat,	Gangguan pernafasan Luka bakar (iritasi kulit)	4	5	20			X	X
Kebocoran larutan NaOH,	Gangguan pemafasan, luka bakar	4	5	20			X	X
Kebocoran $\mathrm{H} 2 \mathrm{SO} 4$	Gangguan pernafasan,	4	5	20			X	X
Panas	Dehidrasi	1	2	2	X			
T'ersengat strcam,	Luka Bakar	3	4	12		X		
Kebakaran \& Ledakan	Kerusakan Property	3	5	15			X	

Sumber: Data Primer.
Dari tabel 5.16. dapat dilihat bahwa pada unit Kondensat terdapat 7 bahaya dengan kategori risiko 1-6 yaitu panas, untuk kategori $7-14$ yaitu Kebisingan, tersengat stream. Untuk kategori 15-25 yaitu bahaya kebocoran larutan NaOH , Kcbocoran $\mathrm{H}_{2} \mathrm{SO}_{4}$, Kebocoran larutan Karbamat, kebakaran \& Ledakan, memerlukan penanganan segera (Emergency Respon).

9. Unit Pengantongan Urea

Tabel 5.17. Hasil Penilaian Risiko pada Unit Pengantongan Urea, tahun 2004.

Bahaya	Kisiko	Pemilaian Risiko			Kalegori Risiko			Emergeney Respon
		Kemungkinan Kejudiar KK	$\begin{gathered} \text { Xeparahan } \\ \text { bahaya } \\ \text { KB } \end{gathered}$	$\begin{gathered} \mathrm{KK} \\ \mathrm{X} \\ \mathrm{~KB} \end{gathered}$	1-6,	7-14	15-25	
Kejatuhan Palet	Terluka	3	4	12		X		
Panas	Dehidrasi	I	2	2	X			
Kaki Kejepit mesin	Terluka	4	4	16			X	X
Tangan Kejahit	Terluka	4	4	16			X	X

Sumber: Data Primer.
Berdasarkan tabel 5.17. dapat diketahui bahwa pada unit Pengantongan terdapat 4 bahaya dengan kategori risiko 1-6 yaitu panas sedangkan untuk kategori 7-14 yaitu kejatuhan Pallet, unluk kategori 15-25 yaitu bahaya Kaki terjepit mesin, dan tangan kejahit mesin jahit, yang mana dibutuhkan penanganan segera (Emergency Respon)

Penilaian risiko mulai dari Unit Kompresor (Compressor Unit) sampai Unit Pengantongan (Bagging Unit) didapatkan hasil akhir sebagai berikut :

1. 7 bahaya dengan kategori 1-6 yang berarti risiko dari bahaya tersebut mungkin dapat diterima. Bagaimanapun juga, meninjau pekerjaan (yang mengandung bahaya ini) untuk melihat jika selanjutnya risiko dapat dikurangi.
2. 12 bahaya dengan kategori $7-14$ yang berarti pekerjaan akan diteruskan dengan adanya keputusan dari pihak manajemen, yang baik setelah konsultasi
dengan tenaga ahli dan tim penilaian. Risiko direduksi dulu sebelum memulai pekerjaan.
3. 17 bahaya yang termasuk kategori $15-25$, yang berarti pekerjaan yang mengandung risiko dengan nilai 15-25 tidak boleh diteruskan. Pekerjaan akan ditetapkan ulang atau selanjutnya dilaksanakan upaya pengendalian di tempat kerja untuk mereduksi risiko. Pengendalian akan dinilai ulang untuk kesesuaian sebelum pekerjaan dimulai.

5.4.3. Evaluasi Risiko.

Setelah melalui tahapan penilaian risikn maka selanjutnya akan dilakukan cvaluasi terhadap penilaian risiko untuk menentukan tingkatan risiko. Dengan adanya tingkatan risiko ini diharapkan adanya suatu tindakan terhadap pengurangan/pengendalian terhadap risiko tersebut.

Didalam penentuan tingkatan risiko ini diperlukan adanya Sumber Daya Manusia yang mempunyai kemampuan untuk dapat menganalisis hal ini. Untuk dapat menghilangkan risiko sama sekali itu merupakan suatu tindakan yang tidak realitis, karena dalam hal ini risiko masih dapat dikurangi sampai pada batasan yang telah disepakati bersama sama olch perusahaan.

Penentuan tingkatan ini berdasarkan keputusan Kepala Bidang yang dibantu dengan adanya masukan - masukan dari Kepala Regu, Kepala Kasi, dan unit kerja lain yang berhubungan dengan unt kerja urea dan tenaga kerja di unit Urca.

Berikut ini hasil wawancara tentang evaluasi risiko di unit kerja urea, menurut WR:

Evaluasi risiko dilakukan untuk menentukan prioritas risiko dan cara pengendaliannya. Hal senanda juga diungkapkan oleh seluruh responden.

Kemudian untuk dapat menentukan tingkatan risiko tertinggi diantara semua risiko yang sudah di identifikasi dan penilaian risiko, maka perusahaan melakukan suatu analisis untuk menentukan prioritas risiko dari penilaian risiko yang telah dilakukan, dengan kriterian yang sudah dapat mewakili kondisi dan situasi dari daerah kerja di setiap unit kerja di PT Petrokimia Gresik.

Berdasarkan standart perusahaan maka didapatkan evaluasi risiko yang dikelompokkan menjadi tujuh risiko untuk unit kerja di Urea, dapat dilihat pada tabel 5.18, pada lampiran 9. Dan untuk matrik risiko dapat dilihat pada Gambar 5.4. berikut ini :

Gambar 5.4. Matrik Risiko Sebelum Perencanaan Inspeksi (Pcrpetaan Risiko), Tahun 2003

Total
Kcterangan
Total Ranking Risiko Qty \% Risk Jumlah
High $\quad 2 \quad 29$ EA-101, EA-102

(Surnber; data sekunder, 2003)
Dari hasil pemetaan didapatkan gambaran bahwa prioritas risiko di unit kerja urea, sebelum dilakukan perencanaan inspcksi/pengendalian terhadap risiko tersebut, adalah sebagai berikut ;

1. 2 risiko bahaya termasuk dalam kuadrant IV. Dengan kemungkinan kejadian tinggi dan dampaknya besar.
2. 4 risiko bahaya termasuk dalam kuadran IV, dengan kemungkinan sedang dan dampaknya besar.
3. 1 risiko bahaya termasuk kuadran III, dengan kemungkinan kejadian sedang, dan dampaknya juga sedang.

Setelah dilakukan rencana inspeksi dan pengendalian, maka berdasarkan tabel 5.18, maka pemetaan prioritas risiko ini dapat dilihat pada gambar 5.5. dibawah ini :

Gambar 5.5. . Matrik Risiko Setelah Perencanaan Inpeksi
(Perpetaan Risiko), tahun 2003

Keterangan :

(Sumber; data sekunder, 2003)
Dari hasil pemetaan didapatkan gambaran bahwa prioritas risiko di unit kerja urea, setelah melakukan perencanaan inspeksi /pengendalian terhadapa risikorisiko tersbut, adalah sebagai berikut :

1. I risiko bahaya termasuk dalam kuadran IV, dengan kemungkinan kejadian tinggi dan dampaknya juga besar.
2. 1 risiko bahaya termasuk dalam kuadran II, dengan kemungkinan kejadaian kecil dan dampaknya besar.
3. 5 risiko bahaya termasuk dalam kuadran II dengan kemungkinan kejadian sedang dana dampaknya juga sedang.

Setelah melakukan penilaian terhadap risiko, berdasarkan masukan-masukan dari tenaga kerja yang ada di tempat kerja urea, dan dari refressi tentang karakteristik bahan-bahan kimia, serta diskusi. Maka didapatkan tingkatan risiko dari data primer untuk seluruh proses produksi dapat dilihat pada tabel 5.19. pada lampiran 10 dan tabel 5.20. pada lampiran 11

Risiko - risiko yang telah diberi penilaian kemudian di urutkan rangkingnya dari yang tertinggi sampai terendah. Setelah melakukan prioritas terhadap risiko tcrsebut, penulis menemukan ada 14 risiko. Maka pemetaan risiko dapat dilihat pada gambar 5.6. berikut ini :

Gambar . 5.6. Matrik Risiko Sebclum dilakukan rencana inspeksi, tahun 2004

Keterangan :

Total Ranking Risiko	Qty	\% Risk	Jumlah
High	6	43	Kebakaran dan ledakan, kebocoran NH_{3}, kebocoran lar. carbamat, kebocoran NaOH , jatuh dari kctinggian
	6	43	Kebocoran urca cair, kebocoran CO_{2}, kaki kejepit mesin, kebisingan, kejatuhan palet, tangan keiahit
Medium	1	7	Tersengat steam
Low	1	7	Panas

(Sumber: Data Primer.)
Dari hasil pemetaan didapatkan gambaran bahwa prioritas risiko di unit kerja urea, untuk keselamatan dan faktor-faktor lainnya adalah sebagai berikut :

1. 6 risiko bahaya termasuk dalam kuadrant IV, dengan kategori high, kemungkinan kejadian tinggi, dampak tinggi.
2. 6 risiko bahaya termasuk dalam kuadran III, dengan kategori medium high, kemungkinan tinggi, dampak sedang.
3. 1 risiko bahaya termasuk dalam kuadran III, dengan kategori medium, kemungkinan kejadian sedang dan dampaknya juga sedang.
4. 1 risiko bahaya termasuk dalam kuadran I , dengan kategori low, kemungkinan kejadian kecil dan dampaknya juga rendah.

Setelah dilakukan rencana inspeksi dan pengendalian, maka berdasarkan tabel 5.20, maka pemetaan prioritas risiko ini dapat dilihat pada gambar 5.7. dibawah ini:

Gambar 5.7. Matrik Risiko Sesudah dilakukan rencana inspeksi tahun 2004

Keterangan :

| Total Ranking Risiko | Qty | \% Risk Jumlah |
| :--- | :---: | :---: | :---: | :--- | (sumber Data Primer, 2004)

Dari hasil pemetaan didapatkan gambaran bahwa prioritas risiko di unit kerja urea, adalah sebagai berikut :

1. 5 risike bahaya termasuk dalam kuadran II, dengan kategori risiko medium high, kemungkinan kejadian kecil, dampak besar.
2. 7 risiko bahaya termasuk dalam kuadran II dan III, dengan kategori sedang, kemungkinan kejadian sedang, dampak juga sedang.
3. 2 risiko bahaya termasuk dalam kuadran I, dengan kategori rendah, kemungkinan kejadian kecil, dampak rendah.

5.6.4. Pengendalian risiko.

Setelah dilakukan penentuan tingkatan risiko/evaluasi risiko, maka selanjutnya akan menentukan pengendalian terhadap nisiko tersebut. Dalam penentuan cara pengendalian risiko ini berdasarkan keputusan dari Kepala Bidang yang kemudian di koordinasikan dengan bagian pemeliharaan, bagian keuangan, bagian pengadaan dan bagian - bagian lain yang saling berhubungan.

Berikut ini hasil wawancara tentang pengendalian risiko yang telah dilakukan di unit kerja urea, menurut IM :
"Dalam melakukan pengendalian risiko biasanya berdasarkan hasil evaluasi risiko, seperti eliminasi, substitusi, retensi dan tansfer risiko. Hal ini juga diungkapkan oleh seluruh responden.

Pengendalian risiko yang dilakukan di unit Urea ini sudah berdasarkan prioritas risiko. Adapun macam - macam pengendalian yang dilakukan di unit kerja Urea dapat dilihat pada tabel $5 . .21 \mathrm{~s} / \mathrm{d} 5.26$. pada lampiran 12 .

Pengendalian Risiko yang menunjang lainnya, yaitu seperti dengan adanya pentrasferan risiko kepada pihak ketiga, dalam hal ini dalam bentuk asuransi. Untuk selama ini pihak perusahaan juga melakukan pengendalian yang sistemnya ditrasfer kepihak ketiga (asuransi).

Untuk mesin/peralatan kerja, property pcrusahaan, dan tenaga kerja serta sarana dan prasarana yang mendukung kelangsungan perusahaan juga diberikan asuransi. untuk tenaga kerjanya juga diberikan asuransi, yang diikutkan dengan asuransi Jamsostck. Sedangkan untuk mesin dan peralatan tergantung dari mana asal mesin itu dibeli, dalam hal ini menurut responden mereka tidak mengetahui nama jenis asuransi untuk mesin/peralatan serta property perusahaan.

Berikut ini hasil wawancara tentang pengendalian risiko lainnya, yang dilakukan di unit kerja urea,menurut WR :

Dalam pengendalian risiko sebagian dilakukan oleh unit kerja urea sendiri, dan sebagian lagi dilakukan transfer pengendalian, dalam hal ini diserahkan ke pihak ketiga atau asuransi. misalnya untuk mesin/peralatan bcrat, property, dan lain-lainnya. Hal serupa juga diungkapakn oleh seluruh responden.

5.7.Hasil Pengamatan/Observasi.

5.7.1. Tempat Kerja di Unit Kerja Urea

Unit kerja Urea terletak pada ujung Barat Laut dari Pabrik I, unit kerja urca ini letaknya diantara Pabrik Ammonia, unit kerja ZA I/III dan bagian Penggantongan. Unit kerja Urea terdiri dari beberapa bagian, yaitu Control Room, Gudang Curah Urea, dan Proses Produksi. Untuk lebih jclasnya dapat dilihat lay Out unit kerja Urca pada lampiran 13. Berikut ini penjelasan keadaan tempat kerja unit Urea berdasarkan hasil pengamatan yang berpedoman Inspeksi Keselamatan dan kesehatan kerja (Balai Hyperkes dan Keselamatan dan kesehatan kerja, 2000) yaitu :

1. Permukaan Tempat Kerja/Jalan/Halaman, kondisi jalan di sekitar lingkungan kerja di unit kerja Urea bebas dari gangguan atau tumpukan barang - barang yang dapat mengganggu aktivitas para pekerja. Kondisi jalan sudah beraspal semua. Dan disekitar jalan menuju ke unit kerja urea terdapat beberapa papan peringatan bahaya, pewarnaan pipa - pipa yang menghubungan dari satu unit kerja ke unit kerja yang lain, adanya rambu - rambu larangan memasuki atau melakukan sesuatu di tempat kerja yang berbahaya dan berisiko tinggi.
2. Tempat kerja untuk Control Room ini merupakan ruangan yang berfungsi untuk mengontrol kelangsungan proses produksi di unit kerja Urea sclain itu

Control Room dilengkapi dengan sisiem pencahayaan yang baik, ventilasi dibuat sedemikian rupa sehingga terjadi pertukaran udara, adanya pengaman seperti alat pemadam ringan yang dimana lctaknya sangat mudah dijangkau dan tidak terhalangi sesuatu, dalam kondisi yang baik, hal ini dikarenakan adanya pengawasan dan pemeliharaan serta dalam kondisi yang masih berfungsi, selain yaitu disctiap alat pemadam ringan ini terdapat SOP untuk penggunaannya, sistem alarm berfungsi dengan baik, ialah alarm untuk proses produksi jika terjadi gangguan pada mesin/peralatan, atau perubahan tekanan dan temperatur yang berbahaya sehingga dapat dilakukan antisipasi jika terjadi masalah operasional, Kondisi tangga diruangan ini dalam keadaan yang baik, yang dilengkapi dengan pegangan dan dalam keadaan bersih, sedangkan kondisi pintu baik untuk masuk dan keluar dalam kondisi baik dalam artian dapat dengan mudah ditutup dan dibuka selain itu juga terdapat pintu darurat jika terjadi bahaya, untuk tempat kerja seperti penataan peralatan dalam keadaan rapi, dimana setiap peralatan sudah diletakkan pada tempat yang tepat. Adanya pcralatan P3K (Pertolongan Pertama Pada Kecelakaan), yang dapat digunakan setiap saat.
3. Tempal Proses Produksi.

Tempat ini letaknya berada ditengah - tengah, yaitu berada diantara ruang kontrol, gudang curah urea, proses Water Treatment, and ompressor house.

Pada proses produksi ini, ruangnya terdiri dari 6 tingkat, dan tiap tingkat tingginya 12 meter, masing - masing tingkat terdiri dari tingkat paling bawah adalah Lokasi Stripper dan lokasi Proses Condensat treatment serta unit Pump station, tingkat pertama proses Stripper dan unit Purifikasi, tingkat
kedua merupakan unit reaktor dan unit konsentrasi serta unit recovery, lingkat ketiga merupakan unit reaktor urea, tingkat keempat merupakan unit Prilling Urea, serta tingkat kclima merupakan tempat Exhause Blower untuk prilling tower. Untuk lebih memahami gambar dapat dilihat pada lampiran.

Untuk menuju setiap tingkat, di tempat kerja proses produksi ini dapat dilakukan dengan menggunakan lift dan tangga. Untuk kondisi lift masih sering dijumpai adanya gangguan, hal ini biasanya disebabkan adanya kesalahan listrik, tetapi masih dapat scgera diatasi. Kondisi didalam lift disediakan masker khusus dan tabung respirator (udara) yang berfungsi untuk menghindari terjadinya kecelakaan kerja seperti keracunan gas dari proses Urea, kondisi tangga dari lantai dasar sampai lantai kcatas dalam kondisi yang baik, dan terawat, walupun ada beberapa bagian terjadi korosi, untuk masalah ini sudah dilakukan pengecatan berulang kali, dengan maksud untuk menghindari terjadinya korosi/pengkaratan pada besi besi (tangga). Disetiap lantai disediakan pancuran air yang dimaksudkan untuk pertolongan pertama jika para pekerja terkena cairan Urea, atau bahan - bahan kimia dalam proses produksi urea ini. Untuk mesin/peralatan yang menggunakan temperatur yang tinggi, diberikan semacam selimut (isolasi) khusus sehingga para pekerja tidak terkena panas dari mesin/peralatan tersebut, sehingga tidak terjadi luka bakar, untuk mesin/peralatan yang berputar diberikan perlindungan yang sudah sesuai dengan ketentuan akan keselamatan, adanya sistem kontrol otomatis pada semua peralatan dan mesin yang berputar/bergerak (semacam saklar, keran,dII), semua valve, tombol - tombol kerja diberikan pengaman secara otomatis. Adanya pengukuran lingkungan kerja seperti pengukuran emisi gas
dan kebisingan. Untuk alat pemadam kebakaran ringan sudah ditempatkan pada posisi yang mudah dijangkau dan dalam kondisi yang baik, tidak terhalang. sistem pengaman untuk mesin dan peralatan juga diterapkan disetiap lantai, seperti adanya alat pengontrol temperatur dan tekanan, dilakukan pemeriksaan/inspeksi setiap akan memulai bekerja/shift. Sistem perpipaan yang ada sudah diberikan warna/dicat dengan ketentuan warna yang sesuai dengan fungsinya masing - masing, dan pewarnaan ini juga sering dilakukan dengan maksud untuk menghindari terjadinya korosi/pengkaratan pada pipa - pipa tersebul. Sistem ventilasi di setiap lantai ini terbuka dalam artian tidak dalam ruangan tertutup dan dikelilingi pagar dari besi, sehingga udara dapat berputar secara bebas. Selain itu kondisi lantai di setiap lantai dalam keadaan bersih, tidak basah, dan semua peralatan sudah diletakan dalam posisi yang sesuai. Untuk masalah kelistrikan, semua saklar, sekering dan tombol dalam kondisi yang baik dan berfungsi dengan baik, untuk susunan kabel sudah teratur dengan sangat baik sehingga tidak dijumpai adanya kabel kabel yang terluka atau berantakkan, dan scmua peralatan listrik diberi Grounding dan juga selalu dilakukan perbaikan/pemeliharaan. Untuk melakukan komunikasi dengan sesama tenaga kerja disemua tempat kerja di Urea menggunakan handy talkie (HT).
4. Gudang Curah Urea.

Gudang ini digunakan pada awal produksi urea sebelum memenuhi standart kualitas produksi atau bila ada gangguan di mesin mengantongan urea. Kondisi tempat kerja tidak terdapat sekat sama sekali, ventilasi dibuat sesuai
dengan keadaan disana, pencahayaan sangat baik, kondisi lantai dalam keadaan bersih dan tidak basah, dinding dalam keadaan bersih.
5. Bagian Pengantongan Urea.

Ruangan ini terletak paling belakang dari pabrik I. Dalam lokasi ini terdapat 4 unit mesin pengantongan urea, dengan tenaga kerja pada bagian pengantongan ini terdiri dari tenaga kerja organik PT Petrokimia Gresik dan tenaga kerja kontrak/borongan. Kondisi area kerja agak panas, sedikit berdebu sehingga perlu pengawasan secara intensive memakai alat pclindung diri seperti masker, sepatu karet, sarung tangan yang telah discdiakan oleh perusahaan.

5.7.2. Kecelakaan Keria.

Kecelakaan kerja yang terjadi di perusahaan PT Petrokimia Gresik ini dapat dikelompokan dalam 3 bagian, yaitu kecelakaan industri, Penyakit Akibat Kerja dan Kecelakaan yang berhubungan dengan kerja (non Industri). Berdasarkan dokumentasi, untuk unit kerja Urea dapat dilihat pada tabel berikut ini :

Tabel 5.27. Kecelakaan kerja Industri Karyawan
di unit kerja Urea tahun 2002

No	Identitas Penderita	Seksi/Bagian/ DEP/ BIRO/BID	Kejadian $\mathrm{Tg} / \mathrm{Jam} /$ Lokasi	Penjelasan tentag terjadinya kecelakaan	Keterangan	
					Luka Cidera	Hari kerja yg tilang
1.	KSN Umur 40 thn	Lab. Prod.I Ro. Dalpros \& Laboratorium	$\begin{aligned} & 4 \text { Jan } 2002 \\ & \text { Jam } 07.30 \\ & \text { EA }-402 \\ & \text { Urea } \end{aligned}$	Sewaktu mengambil sampling, saat membuka valve EA - 402, cairan Urea menyembur mengenai muka dan mata kiri	Iritasi pada mata kiri dan saluran napas	1 hari

2	WSS Umur 39 thn	Mekanik 1/3 Dep Har I	13 Fcb 2002 jam 09.30 $\text { IA }-301$ Prilling Usea Lantai IV	Pada waktu lurun sclesai mengambil tackle terkena steam condensat dari flange yang dibuka tg1 12-0202 menganai telingan kanan dan lutut kiri	Luka bakar pada telinga kanan sampai leher kanan 1 2% grade I dan pada lutut kiri $1.0 .5 \%$ garde I	Tidak ada
3	$\overline{\mathrm{ES}}$ Umus 40 thn	Urea produksi I	$\begin{array}{ll} \hline 13-8-2002 \\ \text { jam } & 01.00 \\ \text { WIB, } & \text { arca } \\ \text { FA } 202 \mathrm{~A} \end{array}$	Sewaktu membersihkan sprayer yang buntu selang steam lepas sehingga uap panas mengenai paha kiri dan tungkai kiri	Luka bakar pada paha kiri dan tungkai kiri garde II, 2.5\%.	I hari

Sumber : Biro K3, PT Petrokimia Gresik
Kecelakaan kerja industri untuk karyawan unit Kerja Urea pada tahun 2003 tidak ditemukan adanya kecelakaan kerja, begitu juga sampai dengan bulan juni tahun 2004 tidak dijumpai adanya kecelekaan kerja industri.

Sedangkan kecelakaan kerja untuk tenaga bantuan dalam proses produksi pembuatan pupuk Urea di unit kerja Urea adalah sebagai berikut :

Tabel 5.28. Kecelakaan kerja Industri Tenaga Bantuan
di unit kerja Urea tahuan 2002

Sumber Biro K3 PT Petrokimia Gresik
Tabel 5.29. Kecelakaan kerja Industri Tenaga Bantuan
di unit kerja Urea tahuan 2003

No	Identitas Penderita	Seksi/ Bagian/DEP/ BIRO/BID	Kejadian $\mathrm{Tg} / / \mathrm{jam} /$ lokasi
1	SNS Umur 32 thn	PT AJG Mekanik I Har. 1	$\begin{gathered} 31 \text { Mar } 2003 \\ \text { Jam } 08.30 \\ \text { Area FA } \\ 202 \mathrm{~A} \end{gathered}$

Sumber : Biro K3 PT Petrokimia Gresik
untuk tahuan 2004, sampai dengan bulan juni tidak ditemukan adanya kecelakaan kerja industri pada karyawan bantuan di unit kerja Urea.

5.7.3. Evaluasi Kecelakaan Kerja

Berdasarkan dokumentasi tentang pelaporan dan penyelidikan kecelakaan keja baik untuk tenaga kerja tetap dan tenaga kerja kontrakan, maka dilakukan cvaluasi. untuk melihat hasil evaluasi dapat dilihat pada lampiran 14.

Evaluasi terhadap pelaporan dan penyelidikan kecelakaan kerja baik kecelakaan industri dan non industri, maka didapatkan Frequency rate untuk tenaga kerja tctap pada tahun 2002; yang artinya : tingkat kekerapan kecelakaan kerja pada setiap satu juta jam kerja karyawan di unit kerja urea adalah 16 jam . Severty rate untuk tenaga kerja tetap pada tahun 2002, yang artinya tingkat keparahan total hilangnya hari kerja pada setiap salu juta jam kerja seluruh karyawan di unit kerja urea adalah 11 hari.

Untuk tahun 2003 didapatkan nilai untuk frequency rate yang artinya : tingkat kekerapan kecelakaan kerja pada setiap satu juta jam kerja karyawan di unit kerja urea adalah 5 jam dan severty rate yang artinya tingkat keparahan total hilangnya hari kerja pada setiap satu juta jam kerja selunuh karyawan di unit kerja urea adalah 10 hari.

[^0]: Sumber: PT Petrokimia Gresik, Unit Urea

