Editorial Team

Editor

Fakhreddin Jamali, University of Alberta, Edmonton, AB Canada, Canada

Associate Editors

Jane Alcorn, University of Saskatchewan, Canada

Ulrich Bickel, Texas Tech University Health Sciences Center, Amarillo, TX USA

Dion Brocks, University of Alberta, Edmonton, AB Canada
Frank Burczynski, University of Manitoba, Canada

Neal M Davies, University of Alberta

Emmanuel A. Ho, University of Waterloo School of Pharmacy, Laboratory for Drug Delivery and Biomaterials, Canada

Sherif Hanafy Mahmoud, University of Alberta

Geoffrey Tranmer, College of Pharmacy, Umanitoba

Feridoun Karimi-Busheri, Research Scientist Department of Oncology University of Alberta Edmonton, Canada, Canada

Isadore Kanfer, Faculty of Pharmacy, Rhodes University, South Africa

Jochen Klein, University of Frankfurt, Frankfurt, Germany

Glen S. Kwon, University of Wisconsin, Madison, WI USA

Reza Mehvar, Department of Biomedical and Pharmaceutical Sciences School of Pharmacy Chapman University

Website Administrator

Rahim Bhatia, Organized Chaos Technologies Inc., Canada

Editorial Board

Dr Frank S. Abbott, University of British Columbia, Vancouver, BC Canada

Fakhrul Ahsan, Texas Tech School of Pharmacy, United States

Franco Mario Pasutto, University of Alberta, Edmonton, AB Canada

Kaneto Uekama, Kumamoto University, Kumamoto, Japan

Terumichi Nakagawa, Kyoto University, Kyoto, Japan
Iain McGilveray, McGilveray Pharmacon Inc. Ottawa, ON Canada

Lawrence J. Lesko, College of Pharmacy, University of Florida, United States

Stephen D. Hall, Indiana University School of Medicine, Indianapolis, IN USA

Gerd Geisslinger, Johann Wolfgang Goethe-University of Frankfurt, Germany

Laszlo Endrenyi, University of Toronto, Toronto, ON Canada

Michael Brier, University of Louisville, Louisville, KY USA

John Caldwell, University of Liverpool, Liverpool, UK

Helen Burt, University of British Columbia, Vancouver, BC Canada

Professor Leonard I Wiebe, University of Alberta, Edmonton, AB Canada

ABOUT JPPS

The Journal of Pharmacy and Pharmaceutical Sciences (JPPS), the first OPEN ACCESS in the field established in 1998, is the official journal of the Canadian Society for Pharmaceutical Sciences (CSPS). JPPS is a broad-spectrum, peer-reviewed, international pharmaceutical journal circulated electronically via the World Wide Web. Articles are published with no page charge. Subscription to JPPS is also free of charge. Articles will appear individually as soon as they are accepted and are ready for circulation. For submissions, register as an author and follow the Guidelines for Authors,

UNIVERSITY OF ALBERTA
LIBRARY

Journal of Pharmacy & Pharmaceutical Sciences

Sciences | ISSN 1482-1826
Editor: Fakhrreddin Jamali
Contact | Privacy Policy
Platform & workflow by
OJS / PKP
Vol 4, Suppl 5, 2012

Review Articles

A REVIEW ON INTERPENETRATING POLYMER NETWORK
MURUGESHI SHISHAVANIKAR, BADAL KUMAR MANDAL
FUNCTIONAL PROPERTIES OF CENTELLA ASIATICA (L.): A REVIEW
VASANTHARUBA SEERAVARTNAM, RBANUMATHI, M.RPRAVALATHA, SPISUNDARAM AND TARUMUGAM
THE GENUS RANUNCULUS: A PHYTOCHEMICAL AND ETHNOPHARMACOLOGICAL REVIEW
M SHAHID ALAM, BASHIR A. CHOUDHARY, MUZAIR, A SIBHAN IJAZ
REVIEW ON HYDROXYAPATITE-CARBON NANOTUBE COMPOSITES AND SOME OF THEIR APPLICATIONS
R. RAJESH, N. SETHULKUMAR, A. RARIBHASUBRAMANIAN, V. DOMINIC RAVICHANDRAN
A REVIEW ON ALTERNATIVES TO ANIMAL TESTING METHODS IN DRUG DEVELOPMENT
RANGANATHA N AND I.J. KUPPAST
LECHITHIN: CHOLESTEROL RATIO MEMBRANES AND THEIR CORRELATION WITH LIQUID MEMBRANES
P.K. MISHRA RAUL AND S.S. PANCHOLI
MYRICA NAGA: A REVIEW ON ACTIVE CONSTITUENTS, BIOLOGICAL AND THERAPEUTIC EFFECTS
PREETI PANTHARI, HARSHA KHARKEWAL, HARENDRA KHARKWAL AND DEVI DATT JOSHI
LIFESTYLE DRUGS
POOJA REDDY, DEVESH GOSAVI, SRIKANTH REDDY

Research Articles

THERMODYNAMIC STUDIES ON THE INTERACTION OF 5-FUOROURACIL WITH HUMAN SERUM ALBUMIN
S. BAKRI LAKSHMI AND D. CHANDRAKALA
APPLICABILITY OF A COLORIMETRIC METHOD FOR EVALUATING STREPTOMYCIN SULPHATE LOADED SOLID LIPID NANOPARTICLES
MANGABANDU VERMA, MANDEEP SINGH, VANDITA KAUR, INDU PAL KAUR
PHARMACOCOSTHETICAL STANDORIZATION OF PLUMERIA ACUTIFOLIA (POJ) BARK
SURENDRA KR. SHARMA AND NAIRSHI KUMAR
FORMULATION AND EVALUATION OF MICROSPHERES FOR SUSTAINED DELIVERY OF ACECOLOFENAC
ARTICLE HAS BEEN WITHDRAWN FROM PUBLICATION ON AUTHORS REQUEST
STUDY ON THE SOLID INCLUSION COMPLEX OF COUMARIN-1 WITH B-CYCLODEXTRIN
S. BAKRI LAKSHMI AND T. MENAKA
SIMULTANEOUS ESTIMATION OF METFORMIN HYDROCHLORIDE, PIOGLITAZONE HYDROCHLORIDE AND GLICLAZIDE BY VALIDATED RP-HPLC METHOD IN SOLID DOSAGE FORM
NAZAR MUSTAFA MANOSOORY, ANUREEKHA JAIN
ANTI-DIABETIC EFFECT OF CRUDE LEAF EXTRACTS OF OCIMUM GRATISSIMUM IN NEONATAL STREPTOTOCIN-INDUCED TYPE-2 MODEL DIABETIC RATS
NELSON, OGUANobi, CHILOI PASCHAL CHJIOKE, SAMUEL GHASI
DEVELOPMENT AND VALIDATION OF A REVERSE PHASE HPLC METHOD OF SIMULTANEOUS ESTIMATION OF TOLPERISONE HYDROCHLORIDE AND PARACETAMOL IN TABLET DOSAGE FORM
I.CAROLIN NIMILA, PBALAN, N.CHIRANJEEVI, VINNAGOTA, V.V.M.KUMAR
IN VITRO EVALUATION OF ORAL TIMED RELEASE TABLET OF LOSARTAN POTASSIUM USING NATURAL GUM AND IT’S SOLID CHARACTERIZATION
K. LATHA, M UHUMWANGHO, SA SUNIL, MV SRIKANTH AND KV RAMANA MURTHY
METHOD VALIDATION FOR SPECTROPHOTOMETRIC ESTIMATION OF CLIINDIPINE
PANKAJ P. CHAUDHARI, A. V. BHALERAO
PHARMACOCOSTHETICAL EVALUATION OF TRIGONELLA FOENUM GRAECUM LEAF AND STEM
R. ANTHA AND R.PRIYADARSHINI
FLURBIPROFEN LOADED SOLID LIPID NANOPARTICLES, FORMULATION AND OPTIMIZATION BY USING RESPONSE SURFACE METHODOLOGY
SUBHRA PRAKASH BHATTACHARYYA, INDRAJ BHATTACHARYYA
METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS DETERMINATION OF OMEPRAZOLE AND DOMPERIDONE IN SOLID DOSAGE FORM BY RP-HPLC
ANITA S. KULKARNI, MANE VARSHA BALKRISHNA
A VALIDATED SIMULTANEOUS RP-HPLC METHOD FOR DETERMINATION OF DESOGESTREL AND ETHINYL ESTRADIOL TABLETS
M SARAT, AND C RAMBARU
FORMULATION AND EVALUATION OF SUSTAINED RELEASE MATRIX TABLETS OF FLURBIPROFEN USING GUAR GUM
GIRISH B, ISMAIL, PASHA, GOWDA DV

1-7
8-14
15-22
23-27
28-32
33-37
38-42
43-45
46-49
50-53
54-57
58-65
66-71
72-76
77-83
84-88
89-95
96-98
99-102
103-108
109-114
115-119
120-123
FORMULATION
LAVANYA GOGULAMUDI AND SUJANA. K
SPECTROPHOTOMETRIC DETERMINATION OF PRASUGREL IN BULK, DOSAGE AND BIOLOGICAL FLUIDS 280-281
A LAKSHMI LAVANYA, J V SHANMUKHA KUMAR, P GEETA SWARUPA AND K R S PRASAD REVERSING EFFECT OF A -TOCOPHEROL IN ARSENIC INDUCED TOXICITY IN ALBINO RATS 282-284
SUDHA. K AND S.K. MATHANGHI SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF SOME HETERO BENZOCAIN DERIVATIVES 285-287
S.RAM PRASAD, T.RASARATHI, V.NARAYANATHI, B.NOHUMATHI BIO-ANALYTICAL METHOD DEVELOPMENT AND ITS VALIDATION FOR ESTIMATION OF PHENOBarBITAL IN HUMAN PLASMA USING LIQUID CHROMATOGRAPHY COUPLED WITH TANDEM MASS 288-292
SMRITI PANDEY, AJIT KUMAR YADAV, JUNIL SINGH, HEMENDRA GAUTAM AND SURABHI SHARMA DEVELOPMENT AND CHARACTERIZATION OF TRANSDERMAL PATCHES OF ONDANSETRON HYDROCHLORIDE 293-296
MADHURA S, DENGU, SHEELPRIMA R, WALDE, ABHIYAM M, IITADWAR HEPATOPROTECTIVE ACTIVITY OF ACYHRANTHES ASPERNA LIGN AGAINST PARACETAMOL INDUCED TOXICITY 299-302
S V SURESH KUMAR, G CHANDRIKA, K MAHESH, PVS.MEGHANATH PROTECTIVE ROLE OF TRACE ELEMENTS AGAINST CADMIUM INDUCED ALTERATIONS IN THE SELECTED OXIDATIVE STRESS ENZYMES IN LIVER AND KIDNEY OF FRESH WATER TELEOST: OREOCHROMIS MOSSAMBICUS (TILAPIA) 303-310
OBAIAH JAMAKALA, USHA A RANI ANTI-OXIDANT AND ANTIHEMOLYTIC ACTIVITIES OF BOMBAX CEiba PENTANDRA SPIKE AND FRUIT EXTRACTS 311-315
SUBRAMANIAM POONODI, VALLIAPPAN KARUPPIAH, KANNAN SIVAKUMAR AND LAKSHMANAN KANNAN ALGAESSIC AND ANTIMICROBIAL ACTIVITIES OF CURCUMA ZEDORIA 322-328
KAMANASHIS DAS AND MOHAMMAD ASHRIKHUR RAHMAN EXTRACTION AND EVALUATION OF INDOLE ALKALOIDS FROM RAUWOLFA SERPENTINA FOR THEIR potential USE IN ANTIPLATELET AND ANTIHYPERTENSIVE ACTIVITIES 329-334
SARITHA R, DESHMUKH, DHANASHREE S, ASHMIT AND BHASKAR A, PATHIL ANTHELMINTIC AND ANTIMICROBIAL ACTIVITIES IN SOME SPECIES OF MULBERRY 335-338
ADITYA RAO S, JAMES C K, RAZI MAHMOOD AND PRABHAKAR B T IN VIVO AND IN VITRO ANTI-INFLAMMATORY ACTIVITY OF LEAVES OF IPOMOEA STAPHYLINA 339-343
FIRDOSI SM, RAJU KONERI ANTI-INFLAMMATORY EFFECT OF TARENNA ASIATICA (L) IN CARRAGEENAN INDUCED LUNG INFLAMMATION 344-347
AMUTHA. D, SANTHIL. S AND MARIAPPAN. V PREPARATION AND CHARACTERIZATION OF SOLID DISPERSION OF MODAFINIL FOR IMPROVEMENT OF DISSOLUTION PROFILE 348-352
VIJAY JIYAR, PREETHI JAYAVADAN, JAIN D. A. FABRICATION AND EVALUATION OF DOMPERIDONE TRANSDERMAL FILMS 353-356
ANISREE G, S, RAMASAMY C, JOHN WESLEY I FORMULATION AND EVALUATION OF HERBAL LIPSTICK FROM COLOUR PIGMENTS OF Bixa Orellana (Bixacae) SEEDS 357-359
ABHIJEET A, AHER, SHRUPAD M, BAIARGI, PREETHI T, KADASKAR SWAPNIL, S DESAI, PRADEEP K. NIMASE FORMULATION AND EVALUATION OF TERNARY SOLID DISPERSION OF CURCUMIN 360-365
G. ARUN, P SHWETA, KJ. UPEENDRA ENHANCED SOLUBILIZATION OF AQUEOUS INSOLUBLE ANTI-HYPERTENSIVE DRUG 366-368
M. JOYCE NIRMALA, N. CHANDRASEKRAN, AMITAVA MURJHEE FORMULATION OF COATED POLYMER REINFORCED GELAN GUM BEADS OF TIZANIDINE HCL USING FRACTIONAL FACTORIAL DESIGN 369-379
NEVINE SHAWKY ABD EL MALAK FORMULATION AND EVALUATION OF BILAYERED TABLET OF METFORMIN HYDROCHLORIDE AND PIOGLITAZONE HYDROCHLORIDE 380-385
SADHANA SHAH, SHANTANU SHIVANKAR, NITTANAND ZADBUKE, ABHAY PADALKAR ISOLATION AND IDENTIFICATION OF BACTERIA FROM BIOMEDICAL WASTE (BMW) 386-288
J. ANITHA AND INDIRA A, JAYARAJ A COMPARATIVE ANTIMICROBIAL ACTIVITY OF METHANOLIC ROOT, LEAF AND SEED COTYLEDON EXTRACTS OF ANNONA SQUAMOSA L 289-292
VIDHYASAGAR G M AND SHIVAKUMAR SINGH P DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE SIMULTANEOUS ESTIMATION OF PANTOPRAZOLE AND MOSAPRIDE IN CAPSULE DOSAGE FORM 293-299
G. MANASA, N, ANUSHKA STUDY ON THE IMPACT OF PATIENT COUNSELING ON THE QUALITY OF LIFE AND PULMONARY FUNCTION OF ASTHMATIC PATIENT 300-304
MOHAMMED SAIJ S, ALHAS JA JIJO K, SIRAJ SUNDARAN DESIGN AND IN VITRO EVALUATION OF MUCOADHESIVE MICROCAPSULES OF ACECOLENAC FOR ORAL CONTROLLED RELEASE 305-308
SRINIVASA RAO Y, VARALAKSHMI SNS TAMMAMA, CHANDANA RAND VIJAYA L IMPROVEMENT OF DISSOLUTION RATE OF RAMIPRIL BY SOLID DISPERSION TECHNIQUE AND DEVELOPMENT OF BUCCAL PATCH 309-318
SWATI JAGDALE, YASHWANT DANGAT, BHANUDAS KUCHEKAR RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE SIMULTANEOUS ESTIMATION OF TAMSOLOSON HCL AND TOLTERODINE TARTRATE IN PHARMACEUTICAL DOSAGE FORM 319-322
SUPRIYA M, MHAUMUNKAR, ROSHAND Y, VIVAHAIKARKAR, SAVARNA I, BHOURI ANTI INFECTIOUS SUSCEPTIBILITY OF CANDIDA ALBICANS ISOLATES FROM PULMONARY TUBERCULOSIS PATIENTS 323-326
VIMAL S, RATHOD, JAYANT S, RAUT, S MOHAN KARUPPAYIL ANTI-OBESITY EFFECT OF AQUEOUS FRUIT EXTRACT OF CARICA PAPAYA L. IN RATS FED ON HIGH FAT CAFETERIA DIET 328-330
ATHISH K, KARTHIKA B, BRINDHA P ASSESSMENT OF THE CHEMICAL PROFILE, POLYPHENOL CONTENT AND ANTI-OXIDANT ACTIVITY IN EXTRACTS OF PSIDIIDUM GUAJAVA L FRUITS 331-336
BRUNA GALDORFInI CHARI, JULLANA APARECIDA SEVERI, PRISCILA ABRACKERI DE PAULI-CREDENDIO, CELIA MARIA DE SYLOS, WAGNER VILEGAS, MARCOS ANTONIO CORREÁ, VERA LUCIA BORGES ISAAC
ANTIDIABETIC ACTIVITY OF ETHANOLIC EXTRACTS OF ALANGIUM SALVIFOLIUM AND PAVONIA ZEYLANICA IN STREPTOZOTOCIN INDUCED DIABETIC RATS

HEPXY KALARANI D, DINAKAR A, SENTHILKUMAR N

MONITORING DRUG INTERACTION IN A CASE WITH BIPOLAR DISORDER TREATED WITH NIFEDIPINE IN PRETERM LABOUR

MP RAGUNATH, M SIDAROJI, MITRA DHANARAJ, D SASMAL

ELEMENT AND FUNCTIONAL GROUP ANALYSIS OF ICHNOCARUS FRUTESCENS B.B. (APOCYNACEAE)

THANGARAJAN STARLING, PARAMASIVAM RAGAVENDRAN, CHINTHAMONY ARUL RAJ, PALANISAMY CHELLA PERUMAL AND VELLIYUR KANNIAPPAN GOPALAKRISHNAN

A NEW GRADIENT RP- LC METHOD FOR QUANTITATIVE ANALYSIS OF DARIFENACIN HYDROBROME AND ITS RELATED SUBSTANCES IN API

CHEGERLA SAI KRISHNA, SUNKAVILI SUDHREDHE KUMAR, SINGARAM KATHIRVEL

FORMULATION AND EVALUATION OF CLARITHROMYCIN IMMEDIATE RELEASE FILM COATED TABLETS

M.RAJESWARI, KAMARAPPU NAGARAJU AND S.H.SEYED MOHAMMED BHUIYAN

FORMULATION AND EVALUATION OF TRANSDERMAL PATCH CONTAINING TURMERIC OIL

AMIT K VISHWAKARMA, OM P MAURYA, NIMISHA, DIPTI SRIVASTAVA

DEVELOPMENT AND VALIDATION OF HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC METHOD FOR THE DETERMINATION OF RIFAMPICIN IN HUMAN PLASMA

T. SRIRAM SIDDHARTH, B. PRASANTHI, TATA SANTOSH, J. VIJAYA RATNA

FORMULATION AND EVALUATION OF GASTRO-RETENTIVE FLOATING MATRIX TABLETS OF NEVIRAPINE

K. SOWJANYA, K. SHOBHA DEEPTHI, ABHARATHI

PERFORMANCE AND EVALUATION OF FLOATING MICROSPHERES OF FATMOZIDINE AND COMPARISON OF THEIR PHYSICAL PROPERTIES

RISHIHESH GUPTA, S.K. PRAJAPATI, SNIGDHA PATTANAIK, APOORVA GANGULI, SAPNA MISHRA

SIMPLE AND VALIDATED UV SPECTROPHOTOMETRIC METHOD FOR THE ESTIMATION OF LEVOFLOXACIN IN BULK AND PHARMACEUTICAL DOSAGE FORMS

NEETU SACHAN, PHOOL CHANDRA, MAYANAY YADAV

SCREENING OF ANTIMICROBIAL ACTIVITY OF ACTIVE COMPONENT OF EMBELLARASAL CHLORHEXIDINE AND S-FLO AGAINST SALIVARY MICROFLORA OF MIXED DENTITION AGE GROUP

DR. RAHUL R, DESHPANDE, DR. MAHESH DADPE, DR. MEGHA V. JADHAV, DR. PRIYANKAMAHAJAN, DR. PALLAVIKAKADE, GAYTHRI KAMBLE, DR. NIRMA R, DESHPANDE

DETERMINATION OF PESTICIDE RESIDUES IN BLOOD SERUM SAMPLES FROM INHABITANTS OF "DAL LAKE" HAMLETS IN J & K, INDIA (2009-2010)

MUDDASIR BANDAY, J K DHAR, SHAIFIAQ ASLAM, SABIA QURESHI, TARIQ JAN, BHAVNA GUPTA

CHEMICAL AND BIOLOGICAL CONSTITUENTS FROM THE LEAF EXTRACTS OF THE WILD ARTICHOKE (CYNARA CORNIGERA)

ELSAYED SM, NAZIF NM, HASSAN RA, HASSANAH HD, ELKHOLOM, GOMAA NN, SHAHAT AA

SIMULTANEOUS DETERMINATION AND VALIDATION OF AMOLODIPINE AND METAPROLOL IN PHARMACEUTICAL DOSAGE FORMS BY REVERSE PHASE HPLC METHOD

B.VENKATA KRISHNAMURTHI, BATTULA SREENIVASA RAO

FORMULATION AND DEVELOPMENT OF IN SITU IMPLANTS OF CYTARABINE

SANTHOSH J, DRS.VANDIRA BABLI, VORIGANTI SANTOSHI, RAJU.TUMMA, PRADEEP REDDY.

ASSESSMENT OF NUTRITIVE VALUES PHYTOCHEMICAL CONSTITUENTS AND BIOTHERAPEUTIC POTENTIALS OF EPIPHYLLUM ONXTETALUM

R.SUPENDRA, PRATIMA KHANDELWAR

STUDIES ON THE PHYSICO-PHOTOCHEMICAL PROPERTIES AND HEPTOPROTECTIVE EFFECT OF SOLANUM TORVUM SWARTZ IN CCL4 INDUCED EXPERIMENTAL TOXICITY IN ALBINO RATS

J.KAYALVIZHI, K.BHARATHI, PVJAYAKUMARI, MKAVITHA, T.S. BHIJANESHWARI, G.MURUGANANDAM, M.SETHURAMAN, V.THIRUMURUGAN

SYNTHESIS OF NEW FLUORONATED CHOLINE DERIVATIVE WITH ANTI-INFLAMMATORY ACTIVITY

SAMER ALI HASSAN, AMER NADHIM ELIAS, AHMAD HAMD WJAEED, ALAA RADI KHIOODA, SAAD ABDELRAHMAN HUSSAIN

IN VITRO AND IN VIVO ANTI-INFLAMMATORY ACTIVITY OF WHOLE PLANT METHANOLIC EXTRACT OF MUKIA MADRASAPATANA (L.) M.ROEGER.

MALLIKADEVI, T. S. PAULSAMY, K. KARTHIKA AND S. JANMA

THE POTENTIAL IMMUNOMODULATORY EFFECT OF ALLICIN ADMINISTRATION IN AUTOMMUNE DISEASE PROCESS OF TYPE 1 DIABETES MELLITUS

MUHAMMED T OSAMAN, ARIZA ADNAN, NOR SALMAH BAKAR, FATMA ALASHKHAIM

SYNTHESIS OF NOVEL BI-DIRECTIONS FROM DIAMONUM SALT OF 3-AMINO 1, 2, 4-TRIAZOLE AND ITS DERIVATIVES

SHOBHITA SINGH, YOGESH C. JOSHI

IN VITRO ANTI-OXIDANT ACTIVITY OF AMORPHOPHALLUS CAMPAULITUS TUBERS (ROXB.) BLUME

SEEMA FIRDOUSE, PARWEZ ALAM, RABHA BASRA, AMEEBA AMREEN, NAVAL FIRDUS

DEVELOPMENT AND VALIDATION OF A SIMPLE AND SENSITIVE RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF DROSPERONE AND ETHINYL ESTRAIMOL IN COMBINED TABLET DOSAGE FORM

SHRIKANT WARKAD, B. SANTHRUKUMARI, A. V. CHANDREWAR

COMPARATIVE PHYTOCHEMICAL STUDIES IN SELECTED ACACIA SPECIES

C T SULAIMAN AND V. R. GOPALAKRISHNAN

PROTECTIVE EFFECT OF CASAELPENIA BONDICELLA L. LEAF AGAINST ACETAMINOPHEN-INDUCED LIVER DAMAGE IN WISTAR RATS

JAVED AKHTAR ANSARI, QAMRUZZAMAN, MATTEEN SAYYED

SYNTHESIS AND PHARMACOLOGICAL SCREENING OF SOME NEW AZETIDINONE DERIVATIVES

PRATAP K. PANWAR, SWATI U. KALURE, RESHMA B. KULKARNI

FORMULATION AND IN VITRO EVAULATION OF SUGARMIN FLOATING MATRIX TABLET

R.R.DESI REDDY, MALLESWARILK, LAKSHMI NARAYANA

PHYSICOCHEMICAL, PHYTOCHEMICAL AND ANTIMICROBIAL STUDIES ON MORINDA CITRIFOLIA L. FRUITS AT DIFFERENT MATURITY STAGES

SAMIRAJ RAMESH, MUTHU BALAJI RATHIKA RISHI, RAJESWARI ANURDHA, RAMARA ELANGAMATHAN AND SUBBAN PATHARAJAN

EFFECT OF CYLUTHEIN (SYNTHETIC PYRITRİÔDOL-SOFAÇ 9582) ON ASPARATE AND ALANINE AMINOTRANSFERASE PROFILES IN ACUTE

AND SUB-CHRONIC STUDY WITH SWISS ALBINO MICE

PRIYANKA RAGHUVANSHI, PRIYANKA MATHUR, PRADEEP BHATNAGAR

ASSESSMENT OF ANTIHYPERTENSIVE UTILIZATION IN A PRIVATE TEACHING HOSPITAL IN NIGERIA

408-403
GANIYU KEHINDE A AND SULEIMAN ISMAIL A

OUTPATIENT PHARMACY DEPARTMENT (OPD) AND COUNSELING CLERKSHIP AMONG FINAL YEAR PHARMACY UNDERGRADUATES: STUDENTS' EXPECTATION AND SATISFACTION

484-489

SITI MAISHARAH S.G, SABARIAH NOOR H, NUR HAFZAN M.H, GILLANI SW

ANTHYPERGLYCEMIC, ANTHYPERLIPIDEMIC AND ANTIOXIDANT ACTIVITY OF CYNOGLOSSUM ZEYLANICUM (VAHL. EX HORNEM) THURNB. EX LEHRN IN ALLOXAN INDUCED DIABETIC RATS

490-495

M.ANITHA, K. RAJALAKSHMI, S. MUTHUKUMARASAMY AND V.R.MOHAN

DEVELOPMENT AND VALIDATION OF FIRST ORDER DERIVATIVE SPECTROPHOTOMETRIC METHOD FOR SIMULTANEOUS ESTIMATION OF TRAMADOL HYDROCHLORIDE AND DICLOFENAC SODIUM IN TABLET DOSAGE FORM

496-500

ANKIT PATEL, JAIMIN PATEL, AMIT SHAH

DEVELOPMENT AND VALIDATION OF SIMULTANEOUS EQUATION SPECTROPHOTOMETRIC METHOD FOR SIMULTANEOUS ESTIMATION OF TOPLURIDE HYDROCHLORIDE AND DICLOFENAC SODIUM IN THEIR COMBINED TABLET DOSAGE FORM

501-505

ANKIT SHAH, PANKAJ PATEL, ANKIT PATEL

REACTIVE OXYGEN SPECIES CONTROL BY PLANT BIOPOLYMERS INTENDED TO BE USED IN WOUND DRESSINGS

506-510

LAZMI PARWANI, MONICA BHATNAGAR, ASHISH BHATNAGAR, VINAY SHARMA

ASSESSMENT OF THE IMPACT OF FORMULATION AND PACKAGING ON THE STABILITY OF CARBEROLINE TABLETS

511-518

M.ALSABABGH, W.ABDELWAHED, A.KHALY

SPECTROPHOTOMETRIC METHOD DEVELOPMENT AND VALIDATION FOR ESTIMATION OF A-LIPOIC ACID IN TABLET DOSAGE FORM

519-522

PRATIK P. GOTTI, JITI J. SAVANT, PARUL A. PATEL

SYNTHESIS AND ANTIMICROBIAL EVALUATION OF IMINO SUBSTITUTED 1, 3, 4 OXADIAZOLES

523-527

UMADEVI PARIM, LALITHA PAPPU

SUBACUTE TOXICITY, ANTI-INFLAMMATORY AND ANTIOXIDANT ACTIVITIES OF ETHANOLIC EXTRACT OF MOROCCAN WARHONIA SAHARAE FROM TATA REGION.

528-533

AMEZOURAT FATIMA, BADRI WADI, HSAINE MOHAMMED, AKSIM MOHAMMED, BOURHIM NOUreddine, FOUCHACH HASSAN

SOLUBILITY AND DISSOLUTION ENHANCEMENT OF POORLY WATER SOLUBLE GIMPEPRIDE BY USING SOLID DISPERSION TECHNIQUE

534-539

MAURU D. CHAUDHARY, RAJU D. SONAWANE, LAXMIKANT ZAWAR, SASMITA NAYAK, SANJAY B. BARI

EFFECT OF HANGING MERCURY DROP ELECTRODE DIFFERENTIAL PHOTOPOLAROGRAPHIC ANALYSIS OF ATORVASTATIN IN PHARMACEUTICAL SINGOBRAK BUFFER AT pH7.50

540-546

ABDUL AZIZE RAMADAN, HASNA MANDIL AND BARAA HAFZ

EVALUATION OF ANALGESIC ACTIVITIES OF METHANOLIC EXTRACT OF MEDICINAL PLANT JUNIPERUS COMMUNIS LINN

547-550

SASWARA BANERJEE, ANTARA MUKHERJEE, TAPAN KUMAR CHATTERJEE

EFFECT OF VERY HIGH DIULUTION OF ACETYLCHOLINE ON ISOLATED FROG’S HEART

551-553

SATISH G. PATIL, M.RAMESHWARUDU, RAMESHWARI REDDY, MANJUNATHA R AITHALA

OPTIMIZATION OF CLASS II BCS DRUG USING SOLID DISPERSION TECHNIQUE

554-571

M.A. EL-NABARAWI, M.F. EL-MILIGI, L.A. KHALIL

VALIDATED STABILITY INDICATING ANALYTICAL METHOD AND IN-VITRO DISSOLUTION STUDIES OF EFAVIRENZ FORMULATION BY RP-HPLC

572-576

VENKATA RAJU V, SUNITHA G, ASHISH KUMAR PAL, HARIPRIYA A, SIRISHA N, PANI KUMAR AD.

EVALUATION OF ANTIDIABETIC POTENTIAL OF ACHYRANthes ASPERA LINN. ON ALLOXAN INDUCED DIABETIC ANIMALS

577-580

R.VIDHIYA, G.RAJIV GANDHI G JOTHI, J.RADHAKA AND P. BRINDHA

RADICAL SCAVENGING ACTIVITIES AND NATURAL INDICATOR ACTIVITY OF AQUEOUS AND ETHANOLIC EXTRACT OF ROSA DAMASCENA

581-586

SONI HIMESH, SAHU NANDA, SINGHAI AK, MALIK JITENDER

STUDY AND EVALUATION OF MEDICATION ERRORS IN A TERTIARY CARE TEACHING HOSPITAL – A BASELINE STUDY

587-593

KHAVANE KARNA, SANJAY SHARMA, SHIVKUMAR INAMDAR, ANIL BHANDARI

CLINICAL CHARACTERISTICS OF DIABETES MELLITUS PATIENTS SEEKING MEDICAL ADVICE IN OUT-PATIENT DEPARTMENT OF HOSPITAL PENANG, MALAYSIA

594-601

SYED WASIF GILLANI, SYED AZHAR SYED SULAIMAN, SHAMEENI SUNDARAM, SITI MAISHARAH SHERH GHAZIRI, SABARIAH NOOR HAROUN, NUR HAFZAN MD MANAFIYAH

THERMODYNAMIC AND INTERFACIAL STUDIES OF PHARMACEUTICAL ACTIVE NICOTINAMIDE - VANILLIN DRUG SYSTEM

602-609

H. SHEKHAR AND VISHNU KANT
L'il Critters, Complete Multivitamin...

IDR 202k America's #1 Gummy Vitamin Brand Roarin' Taste Dietary Supplement Delicious Fruit...

iHerb

Metrics based on Scopus® data as of April 2020

Dr Rashmi Sharma 2 months ago

Excellent.

reply

Melanie Ortiz 1 month ago

Dear Dr. Rashmi, thanks for your participation! Best Regards, SciImago Team

Richardson Brown 2 years ago

It's an enormous pleasure and honor to organize "15th World Congress On Bioavailability and Bioequivalence" scheduled during July 29-30, 2019 at Bangkok, Thailand. The conference is mainly focused on the theme of "Essential Innovation in the field of Pharmaceutical Science for Public and Medical health". BABE Conference 2019 is designed with prudent keynote sessions, session lectures, and poster presentations, presentations from the young researchers, panel discussions, and the B2B meetings with world-renowned speakers from the stream of clinical and pharmaceutical sciences. It provides the best platform for the researchers to the researchers all over globe to introduce themselves to the world with their unique researches. It's an open forum to discuss new researches and the challenges faced during the BA/BE studies, manufacturing the
THE ACTIVE MARKER COMPOUND IDENTIFICATION OF ARTOCARPUS CHAMPEDEN SPRENG. STEMBARK EXTRACT, MORACHALCHONE A AS ANTIMALARIAL

ACHMAD FUAD HAFID1*, NI PUTU ARIANTARI2, LIDYA TUMEWU3, AGRIANA ROSMALINA HIDAYAT1, ATY WIDYAWARUYANTI1

1Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Jalan Drhammawangsa Dalam, Surabaya 60226, Indonesia, 2Department of Pharmacy, Faculty of Mathematics and Natural Science, Udayana University, Bali, Indonesia, 3Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia, 4Department of Pharmacology, Faculty of Medicine, Mataram University, Mataram, Indonesia. Email: achmadjufad@unair.ac.in

Received: 16 July 2012, Revised and Accepted: 29 Aug 2012

ABSTRACT

Artocarpus champeden Spreng. (Moraceae), commonly known as “cempedak”, has been traditionally used for malarial remedies. Several studies reported that A. champeden Spreng. stembark has in vitro and in vivo antimalarial activity. The main aim of this research was to isolate and identify an active marker compound of A. champeden stembark for quality control purpose of A. champeden stembark extract in the development of this extract as phytopharmaceutical antimalarial product. The isolation method was bioactivity guided column chromatography and preparative TLC techniques. The marker compound that was isolated showed potent antimalarial activity with an IC50 value of 0.18 μg/ml against Plasmodium falciparum 3D7 strain. Based on UV, IR, 1H NMR, 13C NMR, 2D NMR (COSY, HMBC and HMQC) spectral and identification of other references, the active marker compound was identical with known prenylated chalcone compound, Morachalcone A.

Keywords: Artocarpus champeden Spreng., Antimalarial, Morachalcone A. Active marker compound.

INTRODUCTION

Artocarpus champeden Spreng. commonly known as “cempedak”, belongs to Moraceae. It is widely distributed in Indonesia and has been traditionally used for malarial remedies1. Previous studies reported that several prenylated flavonoids isolated from A. champeden Spreng. have potential in vitro antimalarial against P. falciparum 3D7 strain2 and in vivo against P. berghei strains ANKA (unpublished). This indicates that A. champeden Spreng. is prospective to be developed as phytopharmaceutical product for antimalarial.

The pharmaceutical requirements for a herbal product destined for a multi-target therapy are very complex. The constituents of medicinal herbs can vary greatly as a result of genetic factors, climate, soil quality and other external factors3. Therefore, despite the use of authenticated botanical voucher specimens to help assure proper identity, modern concepts and methods relating to the quality (i.e., chemical consistency) of herbal materials and products pertain to phytochemical markers and fingerprint analyses are needed. These markers are the threads that tie together the production and the quality control4. Ideally, chemical markers should be unique compounds that contribute to the therapeutic effects of a herbal medicine5. Markers should be commercially available or able to be isolated in own laboratory as well6.

The standardized extract should have consistent constituent in order to ensure the consistency of quality, safety, and efficacy of the product. The marker approach to ensure consistency is based upon the assumption that the content of other constituents will vary in proportion to the marker compound. If each batch contains the same standardize amount of marker, the content of other constituents will also be relatively consistent6,7,8.

In order to develop A. champeden as antimalarial phytopharmaceutical product with multi-component approach, it is needed to standardize A. champeden extract as raw material. Therefore, the study to obtain standardized extract of A. champeden Spreng. stembark as raw material of antimalarial phytopharmaceutical product using active marker compound was conducted.

The present study aims to isolate and determine marker compound from 80% ethanol extract of A. champeden stembark. This study consists of several steps: marker compound isolation using chromatography techniques, followed by identification of isolate based on UV-Vis, IR, 1H NMR, 13C NMR, 2D NMR (COSY, HMBC and HMQC) and MS spectra. Marker isolation from ethanol extract of A. champeden stembark was done by bioactivity guided fractionation.

MATERIAL AND METHODS

General Experimental Techniques

Silica gel was used for column chromatography (Merck, 0.063-0.200 mm) and preparative thin layer chromatography (Merck). Spots on plates were detected under UV light (A 254 and 366 nm) and by sprayed 10% H2SO4 in water followed by gentle heating. IR spectrum obtained in a Shimadzu spectrometer IR Prestige-21 type. The NMR experiments (both 1D and 2D) were obtained in a Jeol spectrometer ECA 500 type operating at 500 MHz. HPLC analysis was performed with Hewlett Packard Agilent 1100 series, an Agilent 1100 series Degasser G1322A, a Rheodyne 7725 injection valve with a 20-μl loop, Agilent 1100 series Quaternary Pump G1311A, Agilent 1100 series Column Compartment G1316A, Agilent 1100 series diodearray detector (DAD) G1315A. Compounds were separated in a 250×4.6 mm Varian Microsorb MV 100-5 CB column.

Plant material

The stembark of Artocarpus champeden Spreng. was collected from Bogor, West Java, Indonesia, on June 2007 and 2008. A voucher specimen was identified and deposited at the Herbarium Bogoriense, Bogor Botanical Garden, Bogor, Indonesia.

Extraction and Isolation

One kilogram of Artocarpus champeden Spreng. stembark was extracted with 80% ethanol at 60°C, yielded 74,64 g of crude extract. This extract was applied to ODS column chromatography, using MeOH-H2O (4:1 v/v)-MeOH-acetonitril (1:1 v/v) as eluent, resulting in 10 major fractions (fraction 1-10). Fraction 4 (866.9 mg) was applied to silica gel column and eluted with CHCl3 followed by increasing polarity of CHCl3-MeOH 1-10% by gradient elution, yielded 9 major subfraction. Further separation of subfraction 4B (47.1 mg) was conducted by several steps of Preparative TLC techniques using silica RP-18 as stationary phase with MeOH-H2O:0(7:3 v/v) as mobile phase yielded active subfraction 4.8B (18.7 mg). The process was then continued using silica as stationary phase with CHCl3-MeOH (95:5.0 v/v) as mobile phase yielded active subfraction 4.8B.7 (12.2 mg).

Purification of this subfraction was conducted by reverse-phase PLIC with MeOH-H2O:0(4:1 v/v) as mobile phase resulting an active marker compound, Morachalcone A (7.2 mg).
Morachalcone A: orange powder; UV [MeOH] λ max nm 250, 316 and 385; IR (KBr) cm⁻¹: 3,456, 1,697. ¹H and ¹³C NMR data are given in Table 1.

Antimalarial activity Assay

The antimalarial activity of fractions and the isolated compound were determined by the procedure described by Budimulya et al. (1997). In brief, each fraction or compound was separately dissolved in DMSO (10⁻² mol L⁻¹) and kept at -20°C until used. The malarial parasite P. falciparum 3D7 strain was propagated in a 24-well culture plate in the presence of a wide range of concentration of each fractions or compound. The growth of the parasite was monitored by making a blood smear fixed with MeOH and stained with Giemsa stain. The antimalarial activity of each fraction or compound was expressed as an IC₅₀ value, defined as the concentration of the compound causing 50% inhibition of parasite growth relative to an untreated control.

HPLC Conditions

HPLC analysis was conducted using methanol-water (65:35 v/v) as mobile phase by isocratic elution. IL 250x4.6 mm Varian Microsorb MV 100-5 column at flow rate of 1 ml/minute, column temperature of 30°C, stop time of analysis at 20 minutes and detection wavelength set at 385 nm.

Sample preparation

10 mg of ethanol extract of A. champeden Spreng stembark was accurately weighed and dissolved in methanol using vortex for 5 minutes. Sample solution was filtered through a 0.45 μm syringe membrane filter.

RESULT AND DISCUSSION

The dried stembark of A. champeden was extracted by 90% ethanol. In a preliminary test of in vitro antimalarial activity against P. falciparum 3D7 clone of this ethanol extract showed significant inhibition. Isolation of active marker compound from ethanol extract of A. champeden stembark was done by bioactivity guided isolation. The ethanol extract was fractionated by open column chromatography using ODS as stationary phase and methanol-water as mobile phase, resulting in 10 major fractions and fraction 4 was active against P. falciparum 3D7 strains. Furthermore, fraction 4 was applied to silica gel column and eluted with CHCl₃ followed by increasing polarity of CHCl₃-MeOH 1-10%, yielded active subfraction 4.8 with an IC₅₀ value of 0.03 μg/mL. Further separation of subfraction 4.8 with several steps of PTLC techniques using RP-18 silica gel as stationary phase with MeOH-H₂O as mobile phase yielded active subfraction 4.8.8 (IC₅₀ value of 0.10 μg/mL), then silica as stationary phase with CHCl₃-MeOH mixtures as mobile phase yielded active subfraction 4.8.8.7 (IC₅₀ value of 0.39 μg/mL). Purification of this subfraction by reverse-phase PTLC with MeOH-H₂O as mobile phase resulting in active marker compound.

The identification of isolated compound was based on UV-Vis, IR, ¹H NMR, ¹³C NMR, 2D NMR (COSY, HMBC and HMQC) spectra and comparison of other references. Marker compound was isolated as orange powder. The UV-Vis absorptions at 250, 316 and 385 nm were suggestive of a chalcone skeleton. The IR spectrum of morachalcone A contained absorption bands at 3,456 cm⁻¹ and 1,697 cm⁻¹ corresponding to hydroxyl and carbonyl groups, respectively. The ¹H NMR spectrum contained characteristic signals ascribable to an isoprenyl group (5H 1.65, 1.77, 5.22, 3.34). 2 proton signals at 8H 7.73 (1H, dd, J=15.25 Hz) and 8.1 (1H, dd, J=15.9 Hz) form an AB system, the large coupling constant indicating the trans geometry of a double bond. The ¹H-NMR spectrum (table 1) also indicated signals for ortho coupled aromatic protons in ring A (6.636 (2H, m) and δ 7.52 (1H, dd, J= 8.55, 3.7 Hz) and two aromatic protons in ring B δ 6.43 (1H, q, J=8.55, 17.75 Hz) dan 6.74 (1H, d, J=8.55 Hz). The presence of proton signals at δ 13.93 and δ 14.48 indicated that the hydroxyl groups are located at C-2 and C-4 in ring A and C-2 and C-4 in ring B. The ¹³C-NMR spectrum contained signals from 20 carbon atoms including that of a ketone carbonyl carbon at δc 194.25 (table 1).

On the basis of HMQC and HMBC spectral analysis, all protons and carbon signals were fully assigned and the positions of the substituents on the aromatic rings were determined. The HMBC correlations for H-1’/C-2’, C-3’, and C-3’ confirmed that the 3,3-dimethylallyl group was located at C-3’.

The structure determination for marker compound also conducted based on the comparison of their spectroscopic data from literature values.²,³ Thus, the structure of marker compound was deduced as known prenylated chalcone, Morachalcone A. Morachalcone A was previously isolated from callus culture of Macha pusifera (Moraceae)² and also from methanol extract of A. champeden stembark (unpublished).

Table 1. The ¹H NMR and ¹³C NMR (500 MHz) data for marker compound

<table>
<thead>
<tr>
<th></th>
<th>¹H</th>
<th>¹³C</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>7.73 dd (15.25 Hz)</td>
<td>117.93</td>
</tr>
<tr>
<td>β</td>
<td>8.1 dd (15.9 Hz)</td>
<td>142.15</td>
</tr>
<tr>
<td>C=O</td>
<td>-</td>
<td>194.25</td>
</tr>
<tr>
<td>1’</td>
<td>-</td>
<td>114.68</td>
</tr>
<tr>
<td>2’</td>
<td>-</td>
<td>163.50</td>
</tr>
<tr>
<td>3’</td>
<td>-</td>
<td>116.67</td>
</tr>
<tr>
<td>4’</td>
<td>-</td>
<td>165.32</td>
</tr>
<tr>
<td>5’</td>
<td>6.43 q (8.55, 17.75 Hz)</td>
<td>108.26</td>
</tr>
<tr>
<td>6’</td>
<td>7.76 d (8.55 Hz)</td>
<td>130.47</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>115.74</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>160.85</td>
</tr>
<tr>
<td>3</td>
<td>6.36 m</td>
<td>103.69</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>162.77</td>
</tr>
<tr>
<td>5</td>
<td>6.36 m</td>
<td>109.23</td>
</tr>
<tr>
<td>6</td>
<td>7.52 d (8.55, 3.7 Hz)</td>
<td>132.56</td>
</tr>
<tr>
<td>CH2</td>
<td>3.34</td>
<td>22.60</td>
</tr>
<tr>
<td>CH=</td>
<td>5.22</td>
<td>123.70</td>
</tr>
<tr>
<td>C=</td>
<td>-</td>
<td>131.59</td>
</tr>
<tr>
<td>E-Me</td>
<td>1.65 s</td>
<td>26.09</td>
</tr>
<tr>
<td>Z-Me</td>
<td>1.77 s</td>
<td>18.04</td>
</tr>
</tbody>
</table>

*CD₃OD, TMS as internal standard.

Only signals that are significant to the comparison are reported.
Fig. 1: The chemical structure of active marker compound isolated from *Artocarpus champeden* Spreng.

Fig. 2: Chromatogram obtained from ethanol extract of *A. champeden* stem bark (A) and marker standard morachalcone A (B)

The marker compound revealed inhibitory activity against *P. falciparum* 3D7 strain with an IC50 value of 0.18 μg/mL. The inhibitory activity of this compound showed that the isolated compound was an active marker.

According to Ref. [2004], marker compound should be accessible to the quantification of common analytical equipment (e.g., high-performance liquid chromatography [HPLC]) to keep costs of routine analysis moderate. Therefore, preliminary analysis of the existence of Morachalcone A in ethanol extract of *A. champeden* Spreng stem bark was conducted using HPLC.

The chromatogram profile of ethanol extract using the mixture of methanol and water (65:35 v/v) as mobile phase by isocratic elution, C8 250x4.6 mm Varian Microsorb MV 100-5 column at flow rate of 1 mL/minute, column temperature of 30°C, stop time of analysis at 20 minutes and detection wavelength set at 369 nm (Figure 2) showed that peak at time retention shown as Mean ± SD (RSD) of 13.001 minutes ± 0.37 (2.87%), has resolution of 1.42, plate number of 3524, peak width at half height of 0.5200, symmetry factor of 0.82 and selectivity factor of 1.11. The purity factor of this peak was 997.034, indicated that targeted peak fall within acceptable purity. The identity of this peak against marker spectrum was shown as match factor value of 981.261 (>950.000), indicated that targeted peak analyzed in ethanol extract was marker compound that has been detected in ethanol extract of *A. champeden* stem bark.

The result of this study showed that the active marker compound, Morachalcone A, can be used as a marker compound in standardization of ethanol extract of *A. champeden* stem bark as antimalarial phytochemistry product. Further studies are needed to develop an analysis method of Morachalcone A for quality control and standardization purpose of ethanol extract of *A. champeden* Spreng.

ACKNOWLEDGEMENT

This work was supported by Grant for Competitive Research (no. 564/J03.2/PG/ 2007) from DGHE, The Ministry of National Education, Republic of Indonesia.

REFERENCES

