38th Meeting of National Working Group on Indonesian Medicinal Plan

ISBN: 978-602-96839-1-2

978-602-96839-2-9

Proceedings

nternational Conference On Medicinal Plants
The Future of Medicinal Plants:
From Plant to Medicine

Organized by

Ethnobotanical, Proximate, and Phytochemical Studies of <i>Areca vestiaria</i> Giseke (Pinang Yaki)	9
Herny E.I. Simbala And Trina E. Tallei Optimization of Topical Patch Containing of Kaempferia Oil	15
(Kaemperia galanga) Lucia Hendriati	
Determination of Marker Compound of Artocarpus champeden Spreng. Stembark Extract And Validation of The Analysis Method Using HPLC	(21
Ni Putu Ariantari, Lidya Tumewu, Agriana Rosmalina Hidayati, Aty Widyawaruyanti, Achmad Fuad Hafid	
Isolation of Oligomerstilbenoids From Stem Bark of Vatica flavofirens Sloot Endemic of South East Sulawesi Siti Hadijah Sabarwati, Nohong, Euis H. Hakim, Yana M. Syah, Sutriadi S, Zaeni A	29
Antimicrobial And Anticancer Activity of Curcusone B Isolated From Stem Bark	34
of Jatropha curcas I. Sahidin , Ardiansyah, M. Taher, S. Arsad, S.J.A. Ichwan, J. Latip, B.M. Yamin, and S.N. Baharum	140
Screening of Medicinal Plants of South Sumatera for Antibacterial Activity Against Organism From Skin Infection Salni, Hanifa Marisa, Harmida	41
Long Term Effect of Ethanolic Extract of Fenugreek Seeds (Trigonella foenum-graecum L.) on White Rat Liver Function Kurnia Agustini, Sriningsih, Lestari Rahayu	47
Analysis of Plasma Malondialdehide (Mda) Concentration By Giving Shallot's Extortion Water (Allium ascalonicum L.) on Hypercholesteroiemic Mice Ismawati, Enikarmila Asni, M.Yulis Hamidy	54
Chemical Constituents from Shorea faguetiana (Dipterocarpaceae) Robaiza Saat, Laily B. Din, Wan Yaacob Wan Ahmad	60

DETERMINATION OF MARKER COMPOUND OF ARTOCARPUS CHAMPEDEN SPRENG. STEMBARK EXTRACT AND VALIDATION OF THE ANALYSIS METHOD USING HPLC

Ni Putu Ariantari¹, Lidya Tumewu². Agriana Rosmalina Hidayati². Aty Widyawaruyanti3. Achmad Fuad Hafid3.

Pharmacy Department, Faculty of Mathematics and Natural Sciences, Udayana University; Jalan Kampus Bukit Jimbaran Badung-Bali Indonesia 80364; Phone: 081 337 047 287 OR 0361-703837; e-mail: ari dedhika@yahoo.com

²Postgraduated Student, Faculty of Pharmacy, Airlangga University, Surabaya

³Phytochemistry and Pharmacognosy Department, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia

Abstract: Artocarpus champeden SPRENG. (Moraceae), commonly known as "cempedak", has been traditionally used for malarial remedies. Several studies also reported in vitro and in vivo antimalarial activity of this plant. In order to developed A. champeden stembark as antimalarial phytopharmaceutical product, marker approach was chosen for quality control purpose of the extract as raw material.

The aims of this study are to determine marker compound of A. champeden stembark extract and develop an analysis method for quantification of marker compound in ethanol extract

of A. champeden SPRENG. stembark using HPLC.

Isolation of marker isolate was carried out by column chromatography and preparative TLC techniques. Based on UV, IR, ¹H NMR, ¹³C NMR, 2D NMR (COSY, HMBC and HMQC) and MS spectra and comparison with other references, confirmed that marker isolate was identical with known prenylated chalcone, Morachalcone A. The HPLC profile showed that marker compound has time retention shown as Mean ± SD (RSD) of 12.547 minutes ± 0.39 (3.08%). Validation of analysis method for quantification of marker in ethanol extract was conducted. The analyte were chromatographed on C8 250x4.6 mm column, methanol-water as mobile phase (65:35 v/v) by isocratic elution at flow rate of 1 mL/minute, column temperature of 30°C, stop time of analysis at 20 minutes and detection wavelength at 385 nm. The method was validated in terms of selectivity, specificity, linearity, accuracy and precision. The calibration curve was linear within a high range concentration of 25 - 50 μgmL⁻¹ and low range concentration of 3.5 - 25 µgmL-1. The accuracy and intra-day precision were found to be well within acceptable limits. The marker content in ethanol extract of A. champeden SPRENG. stembark was shown as Mean ± SD (RSD) of $0.3361\% \pm 0.03$ (8.45%).

Keywords: A. champeden SPRENG., antimalarial activity, ethanol extract, marker compound, morachalcone A, HPLC analysis.

INTRODUCTION

Artocarpus champeden SPRENG. belongs to Moraceae, commonly known as "cempedak", is widely distributed in Indonesia and has been traditionally used for maiarial remedies [Hakim et al., 2006]. Previous studies reported that several prenylated flavonoids isolated from A. champeden SPRENG. has potent antimalarial activity in vitro against P. falciparum strains 3D7 [13] and in vivo against P. berghei strains ANKA (unpublished). This indicates that A. champeden is prospective to be developed as phytomedicine product for antimalarial.

The pharmaceutical requirements for a herbal product destined for a multi-target therapy are very complex [Kroll and Cordes, 2006]. The constituents of medicinal herbs can vary greatly as a result of genetic factors, climate, soil quality and other external factors [Schulz et al., 2004]. Therefore, despite the use of authenticated botanical voucher specimens to help assure proper identity, modern concepts and methods relating to the quality (i.e., chemical consistency) of herbal materials and products pertain to phytochemical markers and fingerprint analyses. These markers are the threads that tie together production and quality control [Reif et al., 2004]. Ideally, chemical markers should be unique components that contribute to the therapeutic effects of a herbal medicine [Li et al., 2008].

The standardized extract should have consistent constituent in order to ensure the consistency of quality, safety and efficacy of the product. The marker approach to ensure consistency is based upon the assumption that the content of other constituents will vary in proportion to the marker compound, that if each batch contains the same standardize amount of marker, the content of other constituents will also be relatively consistent [Lazarowych and Pekos, 1998; McCutcheon, 2002].

In order to develop A. champeden as antimalarial phytomedicine product with multi-component approach, it is needed to standardize A. champeden extract as raw material. Therefore, the study to obtain standardized extract of A. champeden SPRENG. stembark as raw material of antimalarial phytomedicine product using active marker compound was conducted.

The preliminary study showed that 80% ethanol extract of A. champeden stembark was active extract that inhibit parasit growth both in vitro against Plasmodium falciparum strains 3D7 and in vivo against Plasmodium berghei strains ANKA. Then, from this ethanol extract has been identified an isolate belongs to chalcone group, based on UV spectra, as characteristic orange spot, detected in extract, fraction and subfraction using TLC-Densitometer and HPLC. This isolate also showed in vitro antimalarial activity against P. falciparum strains 3D7 with an IC₅₀ value of 0.69 µg/mL, therefore this isolate can be used as marker candidate from 80% ethanol extract of A. champeden stembark.

The present study aims to determine and isolate marker compound from 80% ethanol extract of A. champeden stembark, then develop an analysis method for quantification of marker content in ethanol extract of A. champeden stembark. Therefore, in the beginning we isolate and identify the stucture of an isolate that we used as marker candidate for ethanol extract of A. champeden stembark. This study consist of several steps, are begun with isolation of marker compound using conventional column chromatography and preparative TLC techniques, followed by identification of isolate based on UV-Vis, IR, ¹H NMR, ¹³C NMR, 2D NMR (COSY, HMBC and HMQC) and MS spectra. Further step is development of analysis method for quantification of marker content in ethanol extract of A. champeden stembark using HPLC that conducted by validation of an analysis method.

MATERIALS AND METHODS

Plant material

The stembark of Artocarpus champeden SPRENG. was collected from Bogor, West Java, Indonesia, in June 2007 and 2008. A voucher specimen was identified and deposited at the Herbarium Bogoriense, Bogor Botanical Garden, Bogor, Indonesia.

Chemicals and Reagents

All reagents were analytical grade, otherwise reagents for HPLC analysis. Methanol for HPLC analysis was purchased from Mallinckrodt, Inc. (USA). Samples for HPLC were filtered through a 0.45 µm membrane filter (Millipore, Bedford, MA, USA). Reference standard, marker compound Morachalcone A, was isolated from the stembark of Artocarpus champeden SPRENG. In our laboratory; and mass spectrometry, NMR spectrometry and infrared spectrometry were applied to determine compound characteristics.

General Experimental Techniques and Instruments

Silica gel was used for column chromatography (Merck, 0.063-0.200 mm) and silica gel for preparative thin layer chromatography (Merck). Spots on plates were detected under UV light (λ 254 and 366 nm) and by spraying with 10% H₂SO₄ in water followed by gentle heating. IR spectrum obtained on a Shimadzu spectrometer IR Prestige-21 type. The NMR experiments (both 1D and 2D) were obtained on a Jeol spectrometer ECA 500 type operating at 500 MHz. HPLC analysis was performed with Hewlett Packard Agilent 1100 series, an Agilent 1100 series Degasser G1322A, a Rheo-dyne 7725 injection valve with a 20-µL loop, Agilent 1100 series Quartenary Pump G1311A, Agilent 1100 series Column Compartement G1316A, Agilent 1100 series diodearray detector (DAD) G1315A. Compounds were separated on a 250x4.6 mm Varian Microsorb MV 100-5 C8 column.

Extraction and Isolation

One kilogram of Artocarpus champeden SPRENG. stembark was extracted with 80% ethanol at 60°C in rotavapor, yielded 74,6368 g of crude extract. This extract was applied to ODS column chromatography, using methanol-water (4:1 v/v)-methanolmethanol-acetonitril (1:1 v/v) and acetonitril as eluent, resulting in 10 major fractions (fraction 1-10). Fraction 4 (686.9 mg) was applied to silica gel column and eluated with CHCl₃ followed by increasing polarity of CHCl₃-MeOH 1-10% by gradient elution, yielded 9 major subfraction. Further separation of subfraction 4.8 (47.1 mg) was conducted with several steps of Preparative TLC techniques using silica RP-C18 as stationary phase with MeOH-H₂O (7:3 v/v) mixtures as mobile phase yielded active subfraction 4.8.8 (18.7 mg). This was then continued using silica as stationary phase with CHCl₃-MeOH (9.5:0.5 v/v) mixtures as mobile phase yielded active subfraction 4.8.8.7 (12.2 mg). Purification of this subfraction was conducted by reverse-phase PTLC with MeOH-H₂O (4:1 v/v) mixtures as mobile phase resulting in active marker isolate, Morachalcone A (7.2 mg).

Morachalcone A: orange powder; UV (MeOH) λ_{max} nm 250, 316 and 385; IR

(KBr) cm⁻¹: 3,456, 1,697. ¹H and ¹³C NMR data are given in Table 1.

Antimalarial activity Testing

The antimalarial activity of fractions and the isolated compound was determined by the procedure described by Budimulya et al. (1997). In brief, each fractions and compound was separately dissolved in DMSO (10-2 mol L-1) and kept at -20°C until used. The malarial parasite P. falciparum 3D7 clone was propagated in a 24-well culture plate in the presence of a wide range of concentration of each fractions or compound. The growth of the parasite was monitored by making a blood smear fixed with MeOH and stained with Giemsa stain. The antimalarial activity of each fractions or compound was expressed as an IC50 value, defined as the concentration of the compound causing 50% inhibition of parasite growth relative to an untreated control.

HPLC Conditions

HPLC analysis was conducted with methanol-water (65:35 v/v) as mobile phase by isocratic elution, C8 250x4.6 mm Varian Microsorb MV 100-5 column at flow rate of 1 ml/minute, column temperature of 30°C, stop time of analysis at 20 minutes and detection wavelength set at 385 nm.

Preparation of standard solution

The standard stock solution (1 mg/mL) was prepared by dissolving 5 mg of standard to 5 mL of methanol. The stock solution was stored at 4°C.

Sample preparation

Ten mg of ethanol extract of A. champeden SPRENG stembark was accurately weighed and dissolved in methanol using vortex for 5 minutes. Sample solution then filtered through a 0.45 µm syringe membrane filter.

Calibration

The standard stock solutions of marker substance was diluted by methanol to give serial concentrations are: at 25; 30; 35; 40; 45 dan 50 μgmL⁻¹ (high range concentration) and at 25; 20; 10; 7; 5.6 dan 3.5 μgmL⁻¹ (low range concentration). After filtering through a 0.45 μm membrane filter, 20 μL of each concentration was injected into the HPLC column for analysis. Linear regression model was used to describe the relationship between peak area and concentration of standard solution.

Method validation

Method validation for quantification of marker content in ethanol extract of A. champeden stembark using HPLC was carried out in terms of selectivity, specificity, linearity, limit of detection, limit of quantitation, accuracy and precision.

Selectivity and Specificity

Selectivity and specificity was checked by using an extract of Artocarpus champeden SPRENG. stembark and marker compound Morachalcone A and optimizing separation and detection. The purity of the peaks was checked by acquisition of spectra (λ = 200–400 nm) by use of the DAD detector. Spectra were acquired at the upslope, apex, and downslope of each peak, computer normalized, and superimposed. Peaks were considered pure when there was coincidence between the three spectra (match factor ≥950.000). Selectivity study resulting in methanol-water (65:35 v/v) as mobile phase by isocratic elution, C8 250x4.6 mm Varian Microsorb MV 100-5 column at flow rate of 1 mL/minute, column temperature of 30°C, stop time of analysis at 20 minutes and detection wavelength set at 385 nm.

Limits of Detection and Limit of Quantification

Limits of detection and quantification were determined as the amounts for which the calculated signal-to-noise ratios were approximately 3:1 and 10:1, respectively.

Precission

Standard stock solution was diluted in methanol for intra-day test (injecting certain concentration of standard six times within 24 hours). The standard deviation (SD) and relative standard deviation (RSD) were calculated.

Accuracy

Accuracy study was carried out by spiking certain concentration of marker to sample. Recovery rate (%) was calculated.

RESULT AND DISCUSSION

The dried stem bark of A. champeden was extracted with 80% ethanol. In a preliminary test of in vitro antimalarial activity against P. falciparum 3D7 clone of this ethanol extract showed significant inhibition (unpublished). Marker isolation from ethanol extract of A. champeden stembark was done by bioactivity guided fractination. The ethanol extract was fractionated with open column chromatography using ODS as stationary phase and metanol-water as mobile phase, resulting in 10 major fractions and fraction 4 was proved to be active against P. falciparum strains 3D7 in vitro. Fraction 4 was applied to silica gel column and eluated with CHCl₃ followed by increasing polarity of CHCl₃-MeOH 1-10% by gradient elution, yielded active subfraction 4.8 with an IC₅₀ value of 0.03 µg/n.L. Further separation of subfraction 4.8 with several steps of PTLC

techniques using silica RP-C18 as stationary phase with MeOH- H_2O mixtures as mobile phase yielded active subfraction 4.8.8 (IC₅₀ value of 0.10 μ g/mL), then silica as stationary phase with CHCl₃-MeOH mixtures as mobile phase yielded active subfraction 4.8.8.7 (IC₅₀ value of 0.39 μ g/mL). Purification of this subfraction by reverse-phase PTLC with MeOH- H_2O mixtures as mobile phase resulting in active marker isolate.

Identification of isolate based on UV-Vis, IR, ¹H NMR, ¹³C NMR, 2D NMR (COSY, HMBC and HMQC) spectra and comparison with other references. Marker compound was isolated as orange powder. The UV-Vis absorptions at 250, 316 and 385 nm were suggestive of a chalcone skeleton [Mabry, et al., 1970]. The IR spectrum of morachalcone A contained absorption bands at 3,456 cm⁻¹ and 1,697 cm⁻¹ corresponding to hydroxyl and carbonyl groups, respectively [Silverstein et al., 1991]. The ¹H NMR spectrum contained charactheristic signals ascribable to an isoprenyl group (δH 1.65, 1.77, 5.22, 3.34). Two proton signals at δH 7.73 (1H, dd, J=15.25 Hz) and 8.1 (1H, dd, J=15.9 Hz) form an AB system, the large coupling constant indicating the trans geometry of a double bond. The 1H-NMR spectrum (table 1) also indicated signals for ortho coupled aromatic protons in ring A (δ 6.36 (2H, m) dan δ 7.52 (1H, dd, J= 8.55, 3.7 Hz) and two aromatic protons in ring B δ 6.43 (1H, q, J=8.55, 17.75 Hz) dan δ 7.76 (1H, d, J= $_{\circ}.55$ Hz). The presence of proton signals at δ 13.93 and δ 14.48 indicated that the hydroxyl groups are loocated at C-2 and C-4 in ring A and C-2' and C-4' in ring B. The ¹³C-NMR spectrum contained signals from 20 carbon atoms including that of a ketone carbonyl carbon at δ_C 194.25 (table 1).

On the basis of HMQC and HMBC spectral analysis, all protons and carbon signals were fully assigned and the positions of the substituents on the aromatic rings were determine. The HMBC correlations for H-1"/C-2, C-3, and C-3" confirmed that the 3,3-dimethylallyl group is located at C-3. Structure determination for marker compound also conducted based on comparison with their spectroscopic data from literature values [Abegaz et al., 1998; Monache et al., 1995]. Thus, the structure of marker compound was deduced as known prenylated chalcone, Morachalcone A. Morachalcone A was previously isolated from callus culture of Maclura pomifera (Moraceae) [Monache et al., 1995] and also from methanol extract of A. champeden stembark (unpublished)

Tabel 1. The ¹H NMR and 13C NMR (500 MHz) data for marker compound

C	¹ H	13°C
α	7.73 dd, (15.25 Hz)	117.93
β	8.1 dd (15.9 Hz)	142.15
C=O	-	194,25
1'		114.68
	<u></u>	163.50
3'	-	116.62
4'	-	165.32
5'	6.43 q (8.55, 17.75 Hz)	108.26
6'	7.76 d (8.55 Hz)	130.47
1	-	115.74
2	-	160.85
3	6.36 m	103.69
4	-	162.77
5	6.36 m	109.23
6	7.52 dd (8.55, 3.7 Hz)	132.56
CH2	3.34	22.60
CH=	5.22	123.70
C=	-	131.59
E-Me	1.65 s	26.09
Z-Me	1.77 s	18.04

·= ‡ · ·

*CD3OD, TMS as internal standard. Only signals that significant for the comparison are reported.

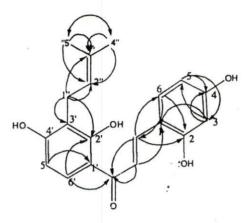


Fig. 1 Chemical structure of active marker compound isolated from Artocarpus champeden SPRENG.

The marker compound revealed inhibitory activity against P. falciparum strain 3D7 with an IC₅₀ value of 0.18 µg/ml. The inhibitory activity of this compound showed that the isolated compound was an active marker. The result of this study showed that active marker compound, Morachalcone A, can be used to

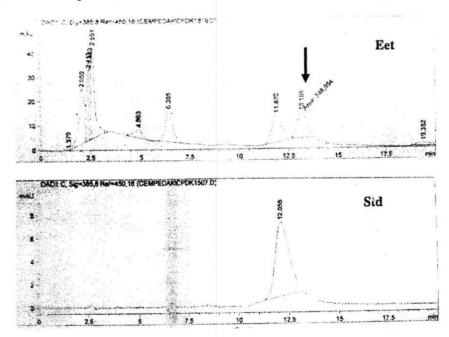


Figure 1. Chromatogram obtained from ethanol extract of A. champeden stembark (Eet) and marker standard morachalcone A (Std)

standardize ethanol extract of A. champeden stembark as antimalarial phytomedicine product. Morachalcone A, obtained from this study was then used as reference standard for analysis of marker content in ethanol extract of A. champeden stembark using HPLC. According to Reif [2004], marker compound can be isolated in cwn laboratory if it is not comercially available and used as reference standard with defined identification, purity and content.

The development of analysis method for quantification of marker content in ethanol extract of A. champeden stembark using HPLC was conducted by validation of an

analysis method. Validation of the method was done in terms of selectivity, specificity, linearity, accuracy, precision, limit of detection and limit of quantitation.

The chromatographic condition was optimized through comparison of different solvents and solvent ratio. Compared with other solvents, the mixture of methanol and (65:35 v/v) as mobile phase by isocratic elution, C8 250x4.6 mm Varian Microsorb MV 100-5 column at flow rate of 1 mL/minute, column temperature of 30°C, stop time of analysis at 20 minutes and detection wavelength set at 385 nm showed the

best separation and minimize peak tailing.

== +...

Under this condition, the chromatogram profile of ethanol extract (Figure 1) showed that peak at time retention shown as Mean \pm SD (RSD) of 13.001 minutes \pm 0.37 (2.87%), has resolution of 1.42, plate number of 3524, peak width at half height of 0.5200, symmetry factor of 0.82 and selectivity factor of 1.11. The purity factor of this peak was 997.034, indicated that targeted peak fall within acceptable purity. The identity of this peak against marker spectrum was shown as match factor value of 981.261 (>950.000), indicated that targeted peak analyzed in ethanol extract was marker compound that has been detected in ethanol extract of A. champeden stembark. Linearity study showed that analysis within the high range concentration of 50 - 25 µgmL⁻¹ and low range concentration of 3.5 - 25 μgmL⁻¹ resulting in response proportional against concentration with correlation coefficient (r) of 0.9989 and 0.9997, V_{x0} value of 1.26% and 2.11% respectively, indicated linear correlation. Limit of detection was 1.57 μgmL⁻¹ and limit of quantitaion was 4.71 µgmL⁻¹. The compound analysis were obtained with the recovery rate shown as Mean \pm SD (RSD) of 102.5991% \pm 5.62 (5.48%), with intra-day for instrument precision shown as Mean ± SD (RSD) of 31.0668 ± 1.88 (6.06 %) and method precision shown as RSD of 8.45%. Based on parameter values obtained from validation study, the analysis method can be assumed to be valid for quantification of marker content in ethanol extract of A. champeden stembark using HPLC. Amount of Morachalcone A as marker in ethanol extract of A. champeden stembark shown as Mean \pm SD (RSD) was 0.3361% \pm 0.03 (8.45%).

CONCLUSION

Results of this study showed that prenylated chalcone, Morachalcone A, can be used as marker for ethanol extract of Artocarpus champeden SPRENG. stembark. HPLC method also has been developed for quantitation of Morachalcone A in ethanol extract of A. champeden SPRENG. stembark. Results indicate that the present method was valid in controlling the quality of ethanol extract of A. champeden SPRENG. stembark. The quantitative analysis showed that the content of marker Morachalcone A in ethanol extract of A. champeden was shown as Mean \pm SD (RSD) of 0.3361% \pm 0.03 (8.45%).

ACKNOWLEDGMENTS

This work was supported by Grant for Competition Research (no. 564/J03.2/PG/2007) from Directorate General of Higher Education, The Ministry of National Education, Republic of Indonesia.

REFERENCES

Abegaz BM, Ngandjui BT, Dongo E, Tamboue H., 1998, Prenylated Chalcones and Flavones from The Leaves of Dorstenia kameruniana. Phytochemistry, 49(4),

Budimulya A.S., Syafruddin, Tapchaisri P., Wilariat P., Marzuki S., 1997, The sensitivity of Plasmodium protein synthesis to prokaryotic ribosomal inhibitors, Mol Biochem Parasitol, 84, 137-141

·-- -

- Hakim E.H., Achmad S.A., Juliawaty L.D., Makmur L., Syah Y.M., Aimi N., Kitajima M., Takayama H., Ghisalberti E., 2006, Prenylated Flavonoids and Related Compounds of The Indonesian Artocarpus (Moraceae), J Nat Med, 60, 161-184
- Kroll U., Cordes C., 2006, Pharmaceutical prerequisites for a multi-target therapy, Phytomedicine, 13, 12-19
- Lazarowych N.J., Pekos P.,1998, Use of Fingerprinting and Marker Compounds for Identification and Standardization of Botanical Drugs: Strategies for Applying Pharmaceutical HPLC Analysis to Herbal Product, Drug Information Journal, 32, 497-512
- Li S., Han Q., Qiao C., Song J., Chen, C.L., Xu H., 2008, Chemical Markers for The Quality Control of Herbal Medicine: An Overview, Chinese Medicine, 3(7), 1-16
- Mabry T.J., Markham K.R., Thomas M.B., 1970, The Systematic Identification of Flavonoids. Springer-Verlag, New York-Heidelberg-Berlin, pp 227-241
- McCutcheon A.R., 2002, An Exploration of Current Issues in Botanical Quality: A Discussion Paper. Canada, Natural Health Products, pp 1-11
- Monache G.D., De Rosa M.C., Scurria R., Vitali A., Cuteri A., Monacelli B., Pasqua G., Botta B., 1995, Comparison Between Metabolite Productions in Cell Culture and in Whole Plant of *Maclura po....fera*, Phytochemistry 39(3), 575-580
- Reif K., Sievers H., Steffen J.P., 2004, The Role of Chemical Reference Standards as Analytical Tools in the Quality Assessment of Botanical Materials An European Perspective, HerbalGram, 63, 38-43
- Schulz V., Hansel R., Blumenthal M., Tyler V.E., 2004, Rational Phytotherapy: Reference Guide for Physicians and Pharmacists, Fifth Edition, Springer-Verlag, Hiedelberg, pp 1-10
- Silverstein R.M., Bassler G.C., Morrill T.C., 1991, Spectrometric Identification of Organic Compounds, John Wiley & Sons Inc, Singapore, pp 3-10; 91-97
- Widyawaruyanti A., Subehan, Kalauni S.K., Awale S., Nindatu M., Zaini N.C., Syafruddin D., Asih P.B.S., Tezuka Y., Kadota S., 2007, New Prenylated Flavones from Artocarpus champeden SPRENG. and Their Antimalarial Activity In Vitro, J Nat Med, 61, 410-413

UNIVERSITAS AIRLANGGA FAKULTAS FARMASI

Kampus B Jl. Dharmawangsa Dalam, Surabaya 50286 Telp. 031-5033710 Fax. 0315020514
Website: http://www.ff.unair.ac.id -- E-mail: farmasi@unair.ac.id

SURAT TUGAS

Nomor/:/788/H3.1.5/KP/2010

Sehubungan dengan adanya International Conference On Medicinal Plants The Future of Medicinal Plants: Form Plant to Medicine pada tanggal 21 – 22 Juli 2010 di Fakultas Farmasi Universitas Widya Mandala, dengan ini Wakii Dekan II Fakultas Farmasi Universitas Airlangga menugaskan:

- Dr. Aty Widyawaruyanti, MSi

NIP. 19620426 199002 2 001

- Dr. Achmad Fuad H.MS

NIP. 19521212 198103 1 009

Untuk menghadiri acara tersebut.

Demikian Surat Penugasan ini untuk dilaksanakan dengan baik dan penuh tanggung jawab.

Surabaya, 20 Juli 2010

ENDIDIKA Dekan

Dr.H. Umi Athiyah,MS

NIP. 19560407 198103 2 001