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Hepatitis C virus (HCV) infection is a major worldwide problem, which involves approximately 170 million people. High morbidity of patients is caused by
chronic infection, which leads to liver cirrhosis, hepatocellular carcinoma and other HCV-related diseases. The sustained virological response (SVR) has been
markedly improved to be >90% by the current standard interferon (IFN)-free treatment regimens with a combination of direct-acting antiviral agents (DAAs)
targeting the viral NS3 protease, NS5A multi-function protein and NS5B RNA-dependent RNA polymerase, compared with 50-70% of SVR rates achieved by
the previous standard [FN-based treatment regimens with or without an NS3 protease inhibitor. However, the emergence of DA A-resistant HCV strains and the
limited access to the DAAs due to their high cost could be major concerns. Also, the long-term prognosis of patients treated with DAAs, such as the possible
development of hepatocellular carcinoma, still needs to be further evaluated. Natural resources are considered to be good candidates to develop anti-HCV
agents. Here, we summarize anti-HCV compounds obtained from natural resources, including medicinal plant extracts, their isolated compounds and some of
their derivatives that possess high antiviral potency against HCV.

Keywords: Hepatitis C virus, Medicinal plants, Extracts, Isolated compounds.

Hepatitis C virus (HCV) is a major cause of liver diseases. Persistent
HCV infection will progress to chronic liver diseases including
cirrhosis and hepatocellular carcinoma. It has been reported that
HCV infects 170 million people in the world [1, 2]. More than 120-
130 million people are at risk to develop cirrhosis and/or
hepatocellular carcinoma, and importantly, around 350,000 patients
die from HCV-related diseases every year. It is estimated that about
four million people are chronically infected with HCV in the United
States, 5-10 million in Europe, 12 million in India and 1.2 million in
Japan. Approximately 80% of the acute cases progress to chronic
infection and 20% of them progress to cirrhosis [3]. The HCV
genome exhibits a sequence of heterogeneity, based on which HCV
is currently classified into seven genotypes (1 to 7) with more than
70 subtypes (la, 1b, 2a, 2b, etc.) [4]. The prevalence of each
genotype varies with different geographic areas. The distribution of
HCV genotypes 1, 2, and 3 are widely spread among global areas
including the United States, South America, Europe, Australia and
Eastern Asia. Genotype 4 is primarily found in Egypt, the Middle
East, and Central Africa and genotype 5 in Southern Africa.
Genotype 6 is mostly found in Southeast Asia [5, 6]. The distribution
of HCV genotypes has an important clinical implication that
influences the efficacy of therapies. HCV genotype 1 is most
common, representing 46% of all HCV infections, with 22% being
subtype 1b. Genotype 3 represents about 22% of all HCV infections,
with genotypes 2 and 4 being 13% each, whereas genotypes 6 and 5
represent 2% and 1%, respectively [5].

A triple combination therapy with interferon (IFN)-a, ribavirin and
the first generation of HCV NS3 protease inhibitors (telaprevir or
boceprevir) has been used since 2011, which provides a higher
sustained virological response (SVR) rate of ca. 70% for patients

infected with HCV genotype 1 compared with ~50% achieved by a
double combination therapy with IFN-a and ribavirin. More
recently, novel direct-acting antiviral agents (DAAs) have been
developed and IFN-free oral treatment regimens using a combination
of the DAAs have become the standard for HCV treatment, with
SVR rates being >90%. Those DAAs include NS5A inhibitors such
as daclatasvir and ledipasvir, and NS5B RNA-dependent RNA
polymerase (RdRp) inhibitors such as sofosbuvir, in addition to the
second generation of NS3 protease inhibitors such as simeprevir,
asunaprevir and vaniprevir. The IFN-free oral DAAs regimens are
applicable to almost all HCV genotypes and have improved the SVR
rate, with reduction in treatment duration and side effects. However,
the long-term prognosis of patients treated with DAAs, such as the
possible development of hepatocellular carcinoma, still needs to be
further evaluated. Moreover, the high cost of the new DAA regimens
is also an important issue; not all patients can have access to the
therapy, particularly in countries with limited resources [1, 7-10].
Therefore, it would be necessary to find new compounds that not
only have good efficacy for all HCV genotypes and drug-resistant
strains but also which are available at much lower cost. Several
compounds from natural resources and their derivatives have been
reported to possess anti-HCV activities that have promise for
development into anti-HCV agents. Here, we summarize medicinal
plant extracts, isolated compounds and their derivative components
that possess anti-HCV activities with diverse mechanisms.

HCV is a member of the genus Hepacivirus that belongs to the
Flaviviridae family. The HCV genome consists of positive-sense
single-stranded RNA of 9.6 kb with highly structured 5°- and 3°-
untranslated regions (UTRs) (Figure 1). The viral genome encodes a
polyprotein of about 3,000 amino acid residues, which is cleaved by
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Figure 1: HCV genome organization.
The HCV genome contains a single open reading flame (ORF) of RNA that is flanked with 5 de-:lnmslamdmgom(UTRs) The 5’-UTR ins an internal rib entry
site (IRES). The IRES-mediated translation of ORF generates a polyprotein, which is cleaved into ten viral p al proteins (Core, E1 and E2) and nonstructural

proteins
(NS2, N§3, NS4A, NS4B, NS5A and NS5B). Red arrows, cleavage by signal peptidase and the sgnal peptide peptidase; orange arrow, autocatalytic cleavage by NS2-NS3
metalloprotease; blue arrows, cleavage by NS3-NS4A serine protease. The functions of the individual protein are explained in the text.

the host and viral proteases to generate structural proteins (core, E1
and E2), a putative ion channel (p7), and nonstructural proteins
(NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [11-13]. Each of
these proteins has a significant role in HCV entry, replication, and
particle formation, and therefore, can be a potential antiviral
target(s). The E1 and E2 glycoproteins are involved in HCV entry
steps, such as viral attachment and fusion. They are responsible for
binding to a number of different virus receptor molecules on the cell
surface, such as claudin 1 (CLDN1), scavenger receptor class B
type 1 (SR-B1), CD81 and occludin (OCLN). On the other hand,
nonstructural proteins play crucial roles in virus replication. They
serve to coordinate the intracellular events of HCV replication,
including HCV RNA synthesis, protein synthesis, virus assembly,
and modulation of host defense mechanisms. The NS2
metalloprotease mediates cleavage between NS2 and NS3. NS3
exerts a serine protease activity that is responsible for the cleavage
at the remaining cleavage sites of the polyprotein. NS3 also
possesses a helicase activity that can be regulated by the interaction
between the serine protease and helicase domains of NS3, and it is
required for replication of the virus. NS4A stabilizes NS3 by
forming a complex with it and also acts as an inducer of membrane
alterations. NS4B is a hydrophobic protein and is involved in the
membranous web formation, a characteristic feature of HCV-
infected cells. NS5A is a phosphoprotein that is capable of
interacting with the 3’-UTR of the HCV genome and is involved in
viral RNA replication and particle assembly. The nonstructural
proteins, NS3/4A, NS4B, NS5A and NS5B, form replication
complexes that generate de novo viral genomic RNA [11, 13-17].

The HCV life cycle can be divided into several steps, i.e., viral
attachment/entry, uncoating, viral translation, viral replication, viral
assembly and release of the new virion (Figure 2). In the
attachment/entry step, the HCV lipoviral particles attach to the cell
surface and interact with glycosaminoglycans (GAG), low-density
lipoprotein receptor (LDLR), SR-B1 and CDB8I. Then, the viral
interaction with CLDNI results in internalization of the virus via
clathrin-mediated endocytosis. Following acidification of the
endosome and subsequent fusion of viral and endosomal
membranes, the viral genome is released into the cytoplasm. On the
other hand, the lateral movement of HCV-CD81 causes the
transmission of virus by cell-to-cell contact [17, 18]. The incoming
viral genome is translated through an internal ribosome entry site
(TRES) that is located in the 5-UTR of the viral genome. The 5°- and
3’-UTRs contain highly structured elements that are critical for
genome translation, replication and encapsidation. The IRES

initiates translation of the HCV genome into a single polyprotein.
Following translation and cleavage of the HCV polyprotein, the
nonstructural viral proteins, NS3/4A, NS4B, NS5A and NS5B, form
replication complexes, which generate mew viral genome RNA
molecules. The HCV nonstructural proteins, together with cellular
factors, mediate the formation of a membranous web, where the
HCV RNA replication takes place. The NS3/4A, NS4B, NS5A, and
NS5B are the viral proteins of the replication machinery, which
replicates the positive sense RNA genome though the negative
strand. The NS5B viral RdRp is the primarily essential enzyme for
RNA synthesis. The RNA genome is translated to produce viral
proteins, and also serves as the RNA template for further RNA
replication. The newly replicated viral genomes are transferred to
the assembly sites, where the HCV virion morphogenesis is tightly
linked to the metabolism of VLDL assembly. The viral core protein
interacts with genomic RNA to form the nucleocapsid, which is
then covered in the viral envelope through the viral budding into the
endoplasmic reticulum (ER) lumen on the site of VLDL production.
After assembly and budding into the ER, HCV particles are released
from the cells through the secretory pathway [13, 14, 18, 19].

The HCV proteins, HCV-specific RNA structures as well as host
factors, are important targets of anti-HCV drugs. The new
generations of DAAs have been developed as anti-HCV drugs for
treatment of chronic HCV infection. Telaprevir, boceprevir,
simeprevir, faldaprevir, vaniprevir, asunaprevir, paritaprevir,
sovaprevir and grazoprevir are the first and second generations of
NS3 protease inhibitors. On the other hand, daclatasvir, ledipasvir,
ombitasvir, elbasvir and velpatasvir are known as NS5A inhibitors,
and sofosbuvir, beclabuvir and dasabuvir as NS5B RdRp inhibitors
[10, 20]. These DAAs have been approved by the United States
Food and Drug Administration (FDA) for HCV treatment in
combination with pegylated IFN and ribavirin or as IFN-free
regimens. The current regimens with IFN-free DAAs have
increased the SVR rates and are applicable for almost all patients
except for those infected with drug-resistant strains. Sofosbuvir, a
nucleotide NS5B RdRp inhibitor, is approved for treatment of
patients with HCV genotypes 1, 2, 3 and 4 in combination with
other DAAs. Daclatasvir, an NS5A inhibitor, has been approved by
FDA for HCV genotypes 1, 3 and 4. Also, a triple combination of
NS3, NS5A and NS5B inhibitors (asunaprevir, daclatasvir and
beclabuvir, respectively) has been shown to be effective for HCV
genotypes | through 5 and some strains of genotype 6. Another
triple combination of ritonavir-boosted paritaprevir, ombitasvir and
dasabuvir was used for HCV genotype 1 [7-10, 15, 16].
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Figure 2: HCV life cycle and targets of natural compounds.
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In addition, several compounds that inhibit HCV replication by
targeting host factors, such as alisporivir, a cyclophylin inhibitor,
and miravirsen, a miR-122 antagonist, have also been reported [15].
Although the IFN-free DAA regimens have dramatically improved
the outcome of HCV treatment, not all patients can access to the
new therapy due to the high cost.

Developing anti-HCV agents from medicinal plants has currently
become a significant issue. Products from medicinal plants are
generally cost effective and easily available in many parts of the
world. Medicinal plants contain many metabolites, both the
secondary metabolites such as flavonoids, alkaloids, coumarins and
polyphenol compounds, and primary metabolites such as peptides,
which have been reported to possess antiviral effects including anti-
HCV activities. We have summarized the medicinal plant extracts
(Table 1), isolated compounds (Table 2) and their derivatives (Table
3) that inhibit HCV infection. Table 1 shows medicinal plant
extracts that exert anti-HCV activities with ICs, values of less than
50 pg/mL. Medicinal plant extracts from Indonesia: Toona sureni,
Melicope latifolia, Melanolepis multiglandulosa, Ficus fistula and
Ruta angustifolia possess anti-HCV activities with ICsy values of
1.6 -17.1 pg/mL [21, 22]. T. sureni and M. latifolia inhibit HCV
both at the entry and the post-entry steps, and decrease HCV RNA
levels while M. multiglandulosa and F. fistula show significant
HCV inhibition at the entry step. Moreover, these plant extracts

mediated strong inhibition against almost all HCV genotypes [21].
As for the plant extracts derived from Cameroon, methanol extracts
of Trichilia dregeana, Detarium microcarpum and Phragmanthera
capitata were shown to possess anti-HCV activities by inhibiting
the entry step, but showed no inhibition effect on viral replication
and virion release [23].

Methanol and water extracts of Sudanese medicinal plants,
Boswellia carterii, Acacia nilotica, Embelia schimperi, Quercus
infectoria and Syzygium aromaticum, inhibited HCV protease
activity by >90% at the concentration of 100 pg/mL [31]. Some
traditional Chinese medicines, Ligustrum lucidum fruit and
Glycyrrhiza uralensis, were also reported to have anti-HCV
activities [24]. The ethyl acetate fractions of L. lucidum fruit
mediated anti-HCV inhibition by acting on NS5B RdRp and thus
blocking HCV RNA replication [25]. G. uralensis, commonly
known as licorice, has been widely used in Chinese medicine. It
contains about 20 triterpenoids and 300 flavonoid compounds. This
plant was shown to decrease HCV particle release and possess an
additive effect in combination with IFN-a [35, 36]. A methanol
extract of Embelia ribes and a water extract of Limonium sinense
root inhibit HCV infection at the entry step while extracts of
Phyllanthus ~ amarus,  Platycodon  grandiflorum,  Garcinia
mangostana and other medicinal plants inhibited HCV replication
[26-30, 32-34]. The antiviral activities of these plant extracts might
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Table 1: Plant extracts that possess anti-HCV activities.

Wahyuni et al.

Plant name Plant part __Extract/ Fraction ICqy Viral target/ mechani Ref.
Trichilia dregeana (Meliaceae) root methanol 16.2 pg/mL Inhibit HCV entry [23]
Detarium microcarpum (Caesalpinaceae) stem methanol 1.4 pg/mL
Pragmanthera capitata (Loranthaceae) leaves methanol 13.2 pg/ml.
Ruta angustifolia (Rutaceae) leaves ethanol, hexane, dichloromethane, 1.6 — 15.6 pg/mL Inhibit HCV J6JFH1 [22)
and methanol
Glycyrrhiza uralensis (Fabaceae) roots methanol 20 pg/mL Inhibit HCV J6/JFHI [24]
chloroform 8.0 pg/mL
Toona sureni (Meliaceae) leaves ethanol 2 - 13.9 pg/mL Inhibit HCV J&/JFHI and all HCV genotypes [21]
Melicope latifolia (Rutaceae) leaves cthanol 2.1-3.5 pg/mL
Melanolepis multiglandilosa (Euphorbiaceae) stem ethanol 6.2-17.1 pg/mL
Ficus fistula (Moraceae) leaves ethanol 5.7-15.0 pg/mL
Ligustrum lucidum (Oleaceae) fruit ‘waler, 10 pg/mL Inhibit HCV NS5B RdRp and HCV replication [25]
ethyl acetate 11.9- 51 pg/mL
Platycodon grandiflorum (Campanulaceae) root waler 35 pg/mL 1nhibit RNA replication against Con-1 and JFH1, 126)
and decrease NS3B level.
Embelia ribes (Primulaceae) root methanol Inhibit HCV entry 27
Phyllanthus amarus { Euphorbiaceae) oot leaves methanol 510 pg/mL Inhibit HCV NS5B [28]
Garcini 2 L (Clusi ) fruit peels ethanol 5.5 pg/mL Inhibit HCV replication, decrease NS5A and ROS [29]
levels in HCV
Pinus massoniana (Pinaceae) bark - 9.6 pg/mL Inhibit HCV replication, inhibit HCV NS3 [30]
Acacia nilotica (Mimocaceae), Boswellia - methanol and water 1 - 40.5 pg/ml Inhibit HCV protease [31
carterii (Burceraceae), Embelia schimperi
(Myrsinaceae), Quercus infectoria (Fagaceae),
Syzygium aromaticum (Myrtaceae), Piper
cubeba (Piperaceae)
L ium sinense (Plumbag root ‘water 9.71 pg/mL Inhibit viral entry, attachment and fusion. [32]
Inactivate cell-free virion
Inhibit virus binding to the host cell receptor.
Morinda citrifolia (Rubiaceae) leaves methanol 20.6 pg/mL Inhibit HCV J6/JFHI [33]
Dimocarpus longan (Sapindaceae) leaves 19.4 pg/mL Inhibit HCV primarily through a direct virucidal [34)
cffect

be a sum of additive, synergistic or antagonistic effects of the mixed
components of the extracts. The potential plant extracts are
promising candidates as the drug of choice for altemative or
complementary medicine for the treatment of HCV infection.

Further purification to obtain compounds responsible for anti-HCV
activities is needed. Moreover, to increase the anti-HCV potency of
the isolated compounds, structure modification to produce the semi-
synthetic/derivative compounds has been made. Table 2 shows the
isolated compounds from plants that exhibit anti-HCV activitics,
while Table 3 shows the semi-synthetic compounds. Benzoquinone
compounds, embelin and 5-O-methylembelin, isolated from E.
schimperi, were found to inhibit HCV protease at the concentrations
of 21 and 46 pM, respectively [31]. Purification from Maytrenus
ilicifolia and Peperomia blanda, Brazilian plants, yielded an
alkaloid component, APS (ICs, 2.3 pM) and lignan compounds
(ICsp 4.0 - 38.9 uM), that inhibited replication of HCV, including
daclatasvir-resistant mutant subgenomic replicon [37]. Chalepin and
pseudane IX, a coumarin and an alkaloid, both of which were
isolated from R. angustifolia, inhibited HCV at the post-entry step
and decreased the levels of HCV RNA replication and viral protein
synthesis [22]. Interestingly, another alkaloid, caffeine, which is
abundantly found in coffee, was shown to inhibit HCV with an ICso
of 0.72 mM. Caffeine acts by delaying fibrosis, and improving the
function of liver cellular pathways, in addition to inhibiting HCV
replication [38]. Potent alkaloids isolated from Myrioneuron faberi,
which possess novel cyclohexane-fused oxtahydroquinolizine
skeletons, inhibit HCV replication [39].

Terpenoid saponins from P. grandiflorum: platycodin D, D2, and
D3, deapioplatycodin D, and D2 and platyconic acid A, were
identified as active compounds for anti-HCV activities, which are
shown to exert directly on NS5B RdRp, but did not show any
inhibitory effect on NS3 protease. Animal experiments using a
saponin mixture from P. grandiflorum revealed its half-life of 6.57
+ (0.7 h in rat and showed higher absorption from the duodenum and
ileum than from the oral cavity. This might suggest that the

compound could be absorbed better when used as an enteric-coated
product. A clinical study using a coated product demonstrated
decreased HCV titers by >2 logs after 8-weeks treatment in chronic
HCV patients [26]. Other anti-HCV terpenoids that were isolated
from fruits of L. lucidum are oleanic acid and ursolic acid. These
compounds inhibit HCV replication and NS5B RdRp activity. A
combination of oleanic acid and ursolic acid with IFN-y
significantly reduced HCV NS5A protein expression [25].
Andrographolide, a diterpenoid lactone from Andrographis
paniculata, was identified to inhibit HCV replication by targeting
host factors. This compound interferes with HCV replication by
activating p38 MAPK phosphorylation, which stimulated nuclear
factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase-
1 gene expression. A combination of andrographolide with IFN-a,
telaprevir or PSI-7977 (NS5B inhibitor) revealed a synergistic effect
[40]. On the other hand, flavonoid components also offer a bright
part of the anti-HCV agent. Several flavonoids have been identified
to inhibit HCV infection. Epigallocatechin-3-gallate (EGCG), which
is present in green tea (Camellia sinensis), was reported to inhibit
the HCV entry step in cell-to-cell transmission [41,66]. The
structure-activity relationship demonstrated that the gallate ester
hydroxyl groups are not essential for anti-HCV activity. However,
the hydroxyl groups from the B-ring of EGCG play an important
role in binding to HCV during the attachment/entry step [42]. A
recent report described EGCG significantly enhancing HCV
dsRNA-induced expression of IFN-Al, Toll-like receptor 3 (TLR3),
a retinoic acid-inducible gene I (RIG-I) and antiviral IFN-stimulated
genes (ISGs), the important host factor(s) for intracellular innate
immunity in hepatocytes [43]. A clinical trial study of healthy
volunteers with an oral dose of 800 mg of EGCG per day over four
weeks, which equals 8-16 cups of green tea, showed no toxic
effects, however, this dose was not enough to eliminate HCV
completely due probably to its poor in vivo bioavailability [41, 44].
Another natural compound, delphinidin, which has a similar
molecular structure to EGCG, was identified as an anti-HCV entry
inhibitor. Delphinidin acts directly on the virus particle and impairs
viral attachment to the cell surface. This compound inhibits HCV
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entry more efficiently than EGCG at the concentration of 50 pM.
The ICsy value of delphinidin was 3.7 £ 0.8 uM, while that of
EGCG was 10.6 £ 2.9 pM. Other polyphenol compounds,
tricetinidin chloride, cyanidin chloride and myricetin, showed only
moderate inhibition against the JFH1 strain of HCV. It was
considered that trihydroxyphenyl and hydroxyl moieties in the
benzene ring of flavonoids have an important contribution for their
anti-HCV activities. The combination between delphinidin (5 and
10 pM) with IFN-a and boceprevir significantly potentiated the
activity of IFN-a and boceprevir. The addition of delphinidin at the
concentration of 5 pM potentiated the anti-HCV activity of
boceprevir up to 5 fold (ICsy values from 0.15 pM to 0.03 pM) and
that of IFN-a byl10 fold (ICsp values from 6.30 IU/mL to 0.59
IU/mL). It was also observed that delphinidin and EGCG altered the
morphology of HCV pseudoparticles (HCVpp) due possibly to a
direct effect on the surface of HCVpp, including the EI/E2
glycoproteins [45]. Other isolated compounds that were reported to
inhibit the entry step are grosheimol and cynaropicrin, isolated from
wild Egyptian artichoke, which possess ICsq values between 0.4 and
4 pM. These compounds act directly on the viral particle and may
prevent the virus-receptor interaction [46]. Currently, some of the
isolated compounds from medicinal plants with anti-HCV activities
are under clinical studies, such as naringenin, which is reported to
be in phase 1 clinical study, and silymarin/silibinin, which is in
phase 2/3 [18]. Both of them are bioflavonoid compounds that exert
inhibition against HCV. Naringenin blocked NS5A-driven IRES-
mediated translation of the viral genome [47]. Silymarin is a seed
extract of Silybum marianum. This extract consists of eight
flavonolignans, silybin A (16%), silybin B (24%), isosilibin A (6%),
isosilybin B (4%), silydianin (16%), silychristin (12%),
isosilychristin (2%), and taxifolin (2%). Monotherapy with oral
administration of silymarin mediates little effect on viral enzymes
and viral loads. Therefore, silymarin is used as a botanical medicine
for complementary or alternative treatment and the impact of oral
silymarin in combination with IFN-a, ribavirin or DAAs should be
investigated [48, 49]. A randomized clinical trial of silymarin for
patients with chronic HCV infection found that oral silymarin
administration did not exert any significant effect on alanine amino
transferase (ALT) and HCV RNA levels compared with the
placebo/control group [50]. The impact of the anti-HCV activities of
both silymarin and EGCG was relatively weak compared with the
other DAAs in the in vitro culture cells [51]. Studies to improve the
activity and bioavailability of these compounds are still ongoing.
Another study of intravenous administration of silibinin (purified
compound of silymarin) during the peri-transplant period evidenced
antiviral properties that decreased viral load [52]. Ladanein,
quercetin, and apigenin are other flavonoid compounds possessing
anti-HCV activities [53). Apigenin inhibits HCV replication and
decreases the expression level of miR-122 [54].

Some polyphenols, such as curcumin, resveratrol, exoecariphenol D
and corilagin, were found to have potential as anti-HCV substances
[57,65]. Curcumin is a diarylheptanoid that possesses two phenol
moicties. Curcumin was reported to act as an anti-inflammatory by
suppressing pro-inflammatory cytokines and chemokines such as
tumor necrosis factor (TNF)-a, interleukin (IL)-1p, and CXCLS.

It also activates antioxidant responses by activation of transcription
factor, nuclear factor erythroid-derived 2-like 2 (Nrf2), which
induces the expression of heme oxygenase 1, glutathione S-
transferase (GST), and NAD(P)H-quinone oxidoreductase 1. These
effects were modulated by other transcription factors, including NF-
«B, B-catenin, and signal transducer and activator of transcription 3
(STAT3) [55, 56]. Curcumin inhibits the entry step of all HCV
genotypes. However, it has no effect on HCV replication and
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assembly. Curcumin influences the fluidity of the HCV envelope
and impairs viral binding and fusion. The membrane fluidity is
controlled by anisotropic rotation of the phospholipid acyl chain and
flip-flop movement of membrane molecules that affects membrane
rigidity. Curcumin penetrates into the membrane and changes its
rigidity. Curcumin also interferes with cell-to-cell transmission of
HCV. Two of the curcumin derivatives, desmethoxycurcumin and
bis-desmethoxycurcumin, also exert anti-HCV activity. However,
the main metabolite of curcumin, tetrahydrocurcumin, did not show
any significant inhibitory effect against HCV, indicating that the
different structures on a- and - unsaturated ketone groups play an
importance role in anti-HCV activities [57]. Curcumin is an
attractive antiviral candidate with a safety profile in humans and
low cost. Phase 1 clinical study demonstrated no treatment-related
toxicity. Animal experiments showed an improved bioavailability of
curcumin when administered as nanoparticle and nanocrystal
formulations [58]. Other polyphenols that inhibit HCV replication
are o-mangostin and y-mangostin, isolated compounds from
Garcinia mangostana. Both of them reduced HCV RNA and
NS3/NS5A protein levels. An ethanol extract of mangosteen was
shown to decrease the reactive oxygen species (ROS) level in HCV-
infected cells, while not inhibiting NS5B RdRp and IRES-
dependent translation [29]. Novel derivatives of quercetin, 7-O-
arylmethylquercetin and quercetin-3-O-benzoic acid ester, exhibited
anti-HCV activities. Compound 3i, which has a 3-chlorobenzyl
substitution in 7-O-arylmethylquercetin, showed stronger activity
(ICsp: 3.8 pM) than that with substitution of carboxyl groups at
quercetin-3-0 (ICso: 9.0 pM). This quercetin analog exerted potent
inhibition of HCV NS5B RdRp activity through chelation of
magnesium ions at the active site [59]. Other derivatives such as
imidazo derivatives were also potent inhibitors of HCV [60, 61].
Compound 50, an imidazo[1,2-a][1,8]naphthyridine derivative,
revealed promising pharmacokinetics in rat at the concentration of
100 mg/kg [60]. A safe pharmacokinetic profile was also observed
with MK-8831, which showed a bioavailability of 31% in rat and
17% in dog [62, 63]. A series of phenylalanine-based macrocyclic
inhibitors, boronate-based inhibitors, phenylglycine-based inhibitors,
a-ketoamide-based inhibitors, sulfonamide-capped inhibitors, indole
derivatives, acridone derivatives and oleanolic acid derivatives have
been designed as HCV NS3 protease inhibitors. Those NS3 protease
inhibitors are considered as peptidomimetics, which mimic cleavage
products (peptides) and inhibit the enzyme activity. Also,
macrocyclic a-ketoamides were found to be potent HCV NS3
protease inhibitors [64]. Other semi-synthetic compounds
possessing Ant-HCV activities are listed in Table 3.

Clemizole, anguizole and their structurally related compounds, N-
(4-indol-2-yl)phenyl)  sulfonamides,  6-(indol-2-yl)pyridine-3-
sulfonamides and piperazine derivatives were developed as NS4B
inhibitors. These compounds inhibit HCV replication by preventing
either NS4B RNA binding activity or membranous web formation
[74].

In conclusion, diverse natural resources, including medicinal plant
extracts and their isolated compounds, interfere with HCV
replication at different steps of the HCV life cycle. Many of the
natural resources, especially herbal medicines, have been used for
traditional medicine, with relatively less side effects and lower cost.
The compounds described in this review article could be promising
candidates for anti-HCV drugs. Increasing the antiviral potency by
modification of the molecular structures would be an important
strategy for developing clinically useful anti-HCV drugs. Also, in
vivo study is necessary for drug development. Further studies on
mechanisms of action, efficacy, pharmacokinetics and safety, both
in vitro and in vivo, are greatly needed.
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Table 2: Anti-HCV compounds isolated from medicinal plants.

__Compound Plant name (plant part) ICy Viral target Ref.
Embelin Embelia schimperi (fruit) 21 uM Inhibit HCV NS3 protease [31]
5-0-Methyl embelin 46 uM
Chalepin Ruta angustifolia (leaves) 1.7 pg/mL Inhibit HCV replication and decrease the NS3 [22]
Pscudane IX. 1.4 pg/mL protein level
Oleanolic acid Ligustrum lucidum (fruit) 0.8-3.5 pg/mL Inhibit HCV replication, HCV NS5B RdRp [25]
Ursolic acid 3.1-19.2 pg/mlL
APS (alkaloid) Maytrenus ilicifolia (root bark) 2.3 pM Inhibit HCV replication and decrease the NS5A [37]
Compound 3*43, 3*20 and 5*362 Peperomia blanda (aerial ) 4.0, 8.2, 38.9 pM respectively. level
Glycycoumarin Glyeyrrhiza uralensis (roots) 4.6-88 pg/mL Inhibit post-entry step, [24]
Glycerin, Glycerol Inhibit HCV NS3 protease
Excoecariphenols D Excoecaria agallocha L. 34-9.0uM Inhibit HCV NS3-4A protease and RNA [65]
Corilagin, Geraniin and Chebulagic acid replication
Platycodin D, D2, and D3; Deapioplatycodin D, Platycodon grandiflorum (roots) ~ 0.35 - 2.45 pg/mL Inhibit RNA replication against Con-1 and JFH1 [26]
and D2; Platyconic acid A Inhibit NS5B but not NS3 protease level
Grosheimol Cynara cardunculus (leaves) 04-14pM Inhibit HCV pan-genotypes [46])
Cynaropicrin Inhibits entry step by cell to cell transmission.

Directly act on the virus particle and prevent
Saikosaponin b2 Bupleurum kooi/ Embelia ribes 16.1 uM Inhibit HCV entry, neutralization of virus [27

(roots) particle, attachment, and fusion, Bind to E2 and

disrupt E2-CD8linteraction.
p-Myrifabral A Myrioneuron faberi (acrial) 0.9-4.7 yM Inhibit HCV replication [39]
u-Myrifabral A
B-Myrifabral B
a -Myrifabral B and their derivatives
a-Mangostin Garcinia mangostana (fruit 6.3 uM Inhibit HCV replication and decrease the NS3 [29]

_y-Mangostin _peels) 2.7 M and NS5A levels

‘Table 3: Semi-synthetic compounds and other anti-HCV agents from existing medicines.

_Compound (plant origin) ICqy Viral target/ mech Rel.
Glycyrrhizin (Glycyrrhiza uralensis; root) 16.5 pM Inhibit HCV assembly and release by inhibiting phospholipase A2 (PLA2)and  [24, 35, 36)

HCV NS3 protease
Andrographolide (Andrographis paniculata; acrial) 5.1-6uM Inhibit HCV replication by up-regulating the heme oxygenase-1 gene via the [40]
p38 MAPK/Nrf2 pathway
EGCG (Camellia sinensis; leaves) 5-21 uM Inhibit HCV entry steps (attachment) (42,43, 45,
Interfere with E1/E2 glycoprotein 66)
Enhance intracellular innate immunity against HCV
Delphinidin (anthocyanidin in plant pig 3.7uM Inhibit HCV in the early step of entry (E1E2 glycoprotein) (45]
Cu in, D hoxy in, Bis- 8.46 uM Inhibit HCV entry by affecting membrane fluidity [55-57)
desmethoxycurcumin (Curcuma species; rhizome) Inhibit cell-to-cell transmission
Apigenin 50 uM Inhibit HCV virus repli by d ing miR22 exp level [54]
Caffeine (Coffea species) 0.7 mM Inhibit genotype 2a HCV replication [38]
Licochalcone-A (Glyeyrrhiza species; root and thizome) 2.5 ug/mL Inhibit HCV, dominantly acts in the post entry step. [24, 36]
Glabridin (Ghycyrrhiza specics; root and rhizome) 6.3 pg/mlL
Isoliquiritigenin (Glycyrrhiza species; root and rhizome) 16.4 pg/mL
5-Carba-p pens derivatives 1.5-5.5 uM Inhibit HCV replicon and decrease HCV NS3 protease [67]
7-0-Arylmethylquercetin derivate (compound 3i) 38 uM Inhibit HCV RdRp 159]
Quercetin-3-0-benzoic acid ester derivative (compound 4f) 9.0 uM
Tmidazo [2,1-b]thiazole derivative (compound 26f and 28g) 16 oM and 31 nM, Inhibit HCV NS4B (inhibit the second amphipathic a-helix of NS4B(4BAH2) [61]
respectively
Imidazof1,2-a][1,8]naphtiryridine (compound RO81991) 0.017 - 0.159 yM Inhibit HCV entry step [60]
derivative (compound 50)
2-(4-sulfonamidophenyl}-indole 3 carboxamides 7 nM (GT-1a) and 2 nM Inhibit HCV NS4B [68)
(GT-1b)
MK-8831 0.004 - 3.4 nM Inhibit HCV-NS3/4a protease 1631
MK-4882 0.001 - 0.4 nM Inhibit HCV genotype 1a, 1b and 2a, potent NS5A inhibitor [62)
Flunarizine 0.38 pM Inhibit HCV entry by inhibiting membrane fusion (E1 and/or E2) [69-71]
Fluphenazine, trifluopenazine and pinozid 0.5- 1.0 uM Inhibit entry step (E1 and/or E2) [69]
Chloroquine (Cinchona succirubra; bark) 3.93 uM Inhibit HCV entry by impairing endosome-mediated virus entry (72, 73]
Ferroquine 0.26 - 0.85 pM Inhibit all HCV genotype; inhibit entry step/fusion (E1) [7,73]
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