NATURAL PRODUCT COMMUNICATIONS An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research ## **NPC-Bromo Issue** Volume 13. Issue 12. Pages 1569-1756. 2018 ISSN 1934-578X (printed); ISSN 1555-9475 (online) www.naturalproduct.us # **NPC** Natural Product Communications #### EDITOR-IN-CHIEF #### DR. PAWAN K AGRAWAL Natural Product Inc. 7963, Anderson Park Lane Westerville, Ohio 43081, USA agrawal@naturalproduct.us #### EDITORS #### PROFESSOR MAURIZIO BRUNO Department STEBICEF, University of Palermo, Viale delle Scienze, Parco d'Orleans II - 90128 Palermo, Italy maurizio.hruno@unipa.it #### PROFESSOR CARMEN MARTIN-CORDERO Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain carmenmc@us.es #### PROFESSOR VLADIMIR I. KALININ G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation kalininv@pihoc.dvo.ru #### PROFESSOR YOSHIHIRO MIMAKI School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hormouchi 1432-1, Hachioji, Tokyo 192-0392, Japan mimakiy@ps.toyaku.ac.jp ## PROFESSOR STEPHEN G. PYNE Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia spyne@uow.edu.au #### PROFESSOR MANFRED G. REINECKE Department of Chemistry, Texas Christian University, Forts Worth, TX 76129, USA m.reinecke@tcu.edu ## PROFESSOR WILLIAM N. SETZER Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL 35809, USA wsetzer@chemistry.uah.edu #### PROFESSOR PING-JYUN SUNG National Museum of Marine Biology and Aquarium Checheng, Pingtung 944 Taiwan ## pjsung@nmmba.gov.tw PROFESSOR YASUHIRO TEZUKA Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan y-tezuka@hokuriku-u.ac.jp #### PROFESSOR DAVID E. THURSTON Institute of Pharmaceutical Science Faculty of Life Sciences & Medicine King's College London, Britannia House 7 Trinity Street, London SEI IDB, UK david.ihursion@kcl.ac.uk #### HONORARY EDITOR #### PROFESSOR GERALD BLUNDEN The School of Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT U.K. axuf64@dsl.pipex.com #### ADVISORY BOARD Prof. Giovanni Appendino Novara, Italy Prof. Norbert Arnold Halle, Germany Prof. Yoshinori Asakawa Tokushima, Japan Prof. Vassaya Bankova Sofia, Bulgaria Prof. Roberto G. S. Berlinck São Carlos, Brazil Prof. Anna R. Bilia Florence, Italy Prof. Geoffrey Cordell Chicago, IL, USA Prof. Fatih Demirci Eskişehir, Turkey Prof. Francesco Enifano Chieti Scalo, Italy Prof. Ana Cristina Figueiredo Lisbon, Portugal Prof. Cristina Gracia-Viguera Murcia, Spain Dr. Christopher Gray Saint John, NB, Canada Prof. Dominique Guillaume Reims, France Prof. Duvvuru Gunasekar Tirupati, India Prof. Hisahiro Hagiwara Niigata, Japan Prof. Judith Hohmann Szeged, Hungary Prof. Tsukasa Iwashina Tsukuba, Japan Prof. Leopold Jirovetz Vienna, Austria Prof. Phan Van Kiem Hanoi, Vietnam Prof. Niel A. Koorbanally Durban, South Africa Prof. Chiaki Kuroda Tokyo, Japan Prof. Hartmut Laatsch Gottingen, Germany Prof. Marie Lacaille-Dubois Dijon, France Prof. Shoei-Sheng Lee Tainei, Taiwan Prof. M. Soledade C. Pedras Saskatoon, Canada Prof. Luc Pieters Antwerp, Belgium Prof. Peter Proksch Düsseldorf, Germany Prof. Phila Raharivelomanana Tahiti, French Polynesia Prof. Stefano Serra Milano, Italy Dr. Bikram Singh Palampur, India Prof. Marina Stefova Skopj, Republic of Macodenia Prof. Leandros A. Skaltsounis Zografou, Greece Prof. John L. Sorensen Manitoha, Canada Prof. Johannes van Staden Scottsville, South Africa Prof. Valentin Stonik Vladivostok, Russia Prof. Winston F. Tinto Barbados, West Indies Prof. Sylvia Urban Prof. Karen Valant-Vetschera Melbourne, Australia Vienna, Austria ## INFORMATION FOR AUTHORS Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us. Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability. The publication of each of the articles contained herein is protected by copyright. Except as allowed under national "fair use" laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes. To Subscribe: Natural Product Communications is a journal published monthly. 2018 subscription price: US\$2,595 (Print, ISSN# 1934-578X); US\$2,595 (Web edition, ISSN# 1555-9475); US\$2,995 (Print + single site online); US\$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada. # **Editorial** # NPC-Bromo: Special Issue I am very grateful to Prof. Bambang Prajogo, Chairman, Bromo Conference (Symposium on Natural products & Diversity), and Dr. Tutik Sri Wahyuni, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia, and the Organizing Committee for arranging this issue, originating from the Bromo Conference-2018, which was held in Surabaya, Indonesia, from July 11–12, 2018, and attended by a large number of participants. The first part of the December 2018 edition is devoted to selected manuscripts (8) presented at Bromo-2018. I am very grateful to Profs. Bambang Prajogo and Tutik Sri Wahyuni for extending an invitation to participate in this scientific meeting, as well as for organizing this issue. The editors join me in thanking Profs Prajogo and Wahyuni, the authors, and the reviewers for their efforts that have made this issue possible, and to the production department for putting it into print. Pawan K. Agrawal Editor-in-Chief # Introduction to NPC Bromo Issue This special issue contains selected papers previously presented at the Bromo Conference: Symposium of Natural Products and Biodiversity held in Surabaya on July 11-12, 2018. This symposium was organized by Universitas Airlangga, Surabaya, Indonesia in collaboration with the Indonesian Association of Natural Drug Researchers (PERHIPBA) and the Phytochemical Society of Asia (PSA). It was held to commemorate the 10th anniversary of the IOCD seminar in Surabaya. The Bromo Conference provides a forum for the exchange of information on Natural Products within all of the related topics, as well as with the aim to build and strengthen scientific cooperation between the research institutions. Academic and other researchers, industrial practitioners and students participated in the symposium. The topics of interest covered in the Bromo Conference included ethnomedicine, implementation of the Nagoya Protocol, sustainable valorization of biodiversity, bioactivity of natural products, metabolomics, phytopharmaceutical technology, clinical trials and other related subjects. The manuscripts have been reviewed by the Organizing Committee members, Prof. Katsuyosi Matsunami, Prof Gunawan Indrayanto, and Prof. Angela Calderon, and edited by Dr Pawan Agrawal. The manuscripts underwent further rigorous peer review and were revised before being accepted for publication. This special issue of *Natural Product Communications* is intended to help readers gain knowledge from the contributors, as well as to provide an overview of the various fields to improve natural products research. We would like to present a special thanks to the authors and reviewers. Also, we are grateful to Dr Pawan K Agrawal, the Editor-in-Chief of *Natural Product Communications* and the editorial team for their assistance in the preparation of this issue and for the continued support and collaboration between Universitas Airlangga, Surabaya, Indonesia and *NPC*. Prof. Bambang Prajogo EW Chairman of the Organizing Committee Bromo Conference, Symposium on Natural Product and Biodiversity Faculty of Pharmacy, Universitas Airlangga, Surabaya Indonesia # Natural Product Communications 2018 Volume 13, Number 12 # Contents | Editorial Pawan K. Agrawal | i | |--|-------------| | Introduction Bambang Prajogo | iii | | Original Paper | <u>Page</u> | | Optimization of Clinacanthus nutuns Biodegradable Analgesic Patch
Em-on Chaiprateep and Chalermsak Thavornwat | 1569 | | A New Antibacterial Polyketide from the Endophytic Fungi Aspergillus fumigatiaffinis Antonius R. B. Ola, Bibiana D Tawo, Henderiana L. L Belli, Peter Proksch, Dhana Tommy and Euis Holisotan Hakim | 1573 | | Styryl Lactones from Roots and Barks Goniothalamus lanceolatus Nurulfazlina Edayah Rasol, Fasihuddin Badruddin Ahmad, Chun-Wai Mai, Nur Vicky Bihud, Fauziah Abdullah, Khalijah Awang and Nor Hadiani Ismail
 1575 | | Antiviral Activities of Curcuma Genus against Hepatitis C Virus Tutik Sri Wahyuni, Adita Ayu permatasari, Tri Widiandani, Achmad Fuad, Aty Widyawaruyanti, Chie Aoki-Utsubo and Hak Hotta | 1579 | | Beneficial Effect of Supercritical Carbon Dioxide Extracted (SC-CO ₂) Dabai (Canarium odontophyllum) Pulp Oil in Hypercholesterolemia-Induced SPF Sprague-Dawley Rats | 1502 | | Noor Atiqah Aizan Abdul Kadir, Azrina Azlan, Faridah Abas and Intan Safinar Ismail Chemical Analysis of Red Ginger (Zingiber officinale Roscoe var rubrum) Essential Oil and Its Anti-biofilm Activity against | 1583 | | Candida albicans Tristia Rinanda, Rizki Puji Isnanda and Zulfitri | 1587 | | Accounts/Reviews | | | Antiplasmodial Anthraquinones from Medicinal Plants: The Chemistry and Possible Mode of Actions
Che Puteh Osman and Nor Hadiani Ismail | 1591 | | Recent Development of Quality Control Methods for Herbal Derived Drug Preparations
Gunawan Indrayanto | 1599 | | | | | Original Paper | | | A New Noriridoid and Six Phenolic Compounds from Rhopalocnemis phalloides Nguyen Quang Hung, Nguyen Thi Luyen, Nguyen The Cuong, Tran Huy Thai, Nguyen Thanh Tung and Nguyen Tien Dat | 1607 | | Differential Antifungal Efficiency of Geraniol and Citral
Roopa Gaonkar, Pramod K Avti and Gurumurthy Hegde | 1609 | | Characterization and Biological Properties of Zederone and Zedoarondiol from Rhizomes of En-Lueang (Curcuma cf. amada) Songyot Anuchapreeda, Nattakanwadee Khumpirapang, Sawitree Chiampanichayakul, Wariya Nirachonkul, Aroonchai Saiai, Toyonobu Usuk and Siriporn Okonogi | 1615 | | A New Tocopherol Derivative and Cytotoxicity from the Leaves of <i>Dalbergia velutina</i> Sutin Kaennakam, Thammarat Aree, Kitiya Rassamee, Pongpun Siripong and Santi Tip-pyang | 1619 | | Psolusosides C ₁ , C ₂ , and D ₁ , Novel Triterpene Hexaosides from the Sea Cucumber Psolus fabricii (Psolidae, Dendrochirotida) Alexandra S. Silchenko, Sergey A. Avilov, Anatoly I. Kalinovsky, Vladimir I. Kalinin, Pelageya V. Andrijaschenko and Pavel S. Dmitrenok | 1623 | | A New Pentacyclic Ergosteroid from Fungus Aspergillus sp. SCSIO41211 Derived of Mangrove Sediment Sample Huaming Tao, Yunqiu Li, Xiuping Lin, Xuefeng Zhou, Junde Dong, Yonghong Liu and Bin Yang | 1629 | | Design, Synthesis and Cytotoxic Evaluation of 4-Anilinoquinazoline-triazole-AZT Hybrids as Anticancer Agents Le Nhat Thuy Giang, Nguyen Thi Nga, Dinh Thuy Van, Dang Thi Tuyet Anh, Hoang Thi Phuong, Nguyen Ha Thanh, Le Thi Tu Anh, Vu Quoc Trung, Nguyen Van Tuyen and Phan Van Kiem | 1633 | | Antibacterial Activity of Flavans from <i>Crinum distichum</i> Roméol Romain Koagne, Frederick Annang, Mercedes de la Cruz, Gabin Thierry M. Bitchagno, Ignacio Perez-Victoria, Ingrid Simo Konga, Francisca Vicente, Fernando Reyes and Pierre Tane | 1637 | | A New Flavonol Glucoside from the Leaves of Crypsinus trilobus Pham Thi Bich Hanh, Ngo Thi Phuong, Le Ngoc Hung, Nguyen Quoc Dat, Dang Minh Tri, Do Truong Thien and Le Minh Ha | 1639 | # LIST OF AUTHORS | Abas, F | 1583 | |--|--| | ALLILI E | | | Abdullah, F | 1575 | | Abubakar, S | 1747 | | | | | Ahmad, FB | 1575 | | Ahn, JS
Andrijaschenko, PV | 1649 | | 1 1 1 1 DV | | | Andrijaschenko, PV | 1623 | | Andueza-Leal, F | 1715 | | | | | Anh, DTT 1633, | 16// | | Anh, LTT1633 | 1677 | | | | | Anjos, O | 1685 | | Annang, F | 1637 | | Aimang, I | | | Anuchapreeda, S | 1615 | | Aoki-Utsubo, C | 1579 | | Auki-Uisubo, C | | | Aragon-Alencastre, LJ | 1725 | | Araujo-Baptista, L | | | Araujo-Baptista, L | 1715 | | Aree, T | 1619 | | 1 | | | Avilov, SA | 1623 | | Avti, PK | 1609 | | | | | Awang, K | 1575 | | Ayu permatasari, A | 1579 | | Ayu permatasan, A | | | Azian, A | 1583 | | Azman, AS | 1747 | | Azman, AS | 1/4/ | | | | | D N | 1.001 | | Baenas, N | 1681 | | Belli, HLL | 1573 | | | | | Bihud, NV | 1575 | | Bitchagno, GTM | 1637 | | | | | Borics, A | 1695 | | Boselli, C | 1727 | | | | | Brasseur, L | 1659 | | | 1000 | | 131000001, 22 | 1033 | | | | | | | | Caeiro, A | 1685 | | Caeiro, A | 1685
1727 | | Caeiro, A | 1685
1727 | | Caeiro, A | 1685
1727
1685 | | Caeiro, A | 1685
1727 | | Caeiro, A | 1685
1727
1685
1715 | | Caeiro, A | 1685
1727
1685
1715
1691 | | Caeiro, A | 1685
1727
1685
1715 | | Caeiro, A | 1685
1727
1685
1715
1691
1659 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731 | | Caeiro, A | 1685
1727
1685
1715
1691
1659 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637
1607 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637 | | Caeiro, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637
1607 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637
1607 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637
1607
1639
1607
1685
1641
1715 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A | 1685
1727
1685
1715
1691
1659
1731
1569
1615
.1677
1637
1607
1639
1607
1685
1641
1715 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS | 1685
1727
1685
1715
1691
1659
1615
1677
1637
1607
1639
1607
1639
1607
1641
1715
1641
1715 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A | 1685
1727
1685
1715
1691
1659
1615
1677
1637
1607
1639
1607
1639
1607
1641
1715
1641
1715 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS | 1685
1727
1685
1715
1691
1659
1615
1677
1637
1607
1639
1607
1639
1607
1641
1715
1641
1715 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J | 1685
1727
1685
1715
1691
1731
1569
1615
1677
1637
1607
1639
1607
1641
1715
1715
1623 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I | 1685
1727
1685
1715
1691
1659
1731
1569
1615
1617
1637
1607
1639
1607
1685
1641
1715
1623
1629 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I | 1685
1727
1685
1715
1691
1659
1731
1569
1615
1617
1637
1607
1639
1607
1685
1641
1715
1623
1629 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M | 1685
1727
1685
1715
1691
1659
1731
1569
1615
1667
1637
1607
1639
1641
1715
1623
1629
1659
1731 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I |
1685
1727
1685
1715
1691
1659
1731
1569
1615
1667
1637
1607
1639
1641
1715
1623
1629
1659
1731 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M | 1685
1727
1685
1715
1691
1659
1731
1569
1615
1667
1637
1607
1639
1641
1715
1623
1629
1659
1731 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M Estevinho, LM | 1685
1727
1685
1715
1691
1659
1673
1659
1615
1667
1639
1639
1641
1715
1623
1629
1659
1731
1685 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M Estevinho, LM | 1685
1727
1685
1715
1691
1659
1673
1659
1615
.1677
1637
1639
1641
1715
1623
1629
1659
1731
1685 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M Estevinho, LM Farinha, N Ferri, N | 1685
1727
1685
1715
1691
1659
1615
1677
1637
1607
1639
1607
1685
1641
1715
1623
1629
1659
1731
1685 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M Estevinho, LM Farinha, N Ferri, N | 1685
1727
1685
1715
1691
1659
1615
1677
1637
1607
1639
1607
1685
1641
1715
1623
1629
1659
1731
1685 | | Caeiro, A Calevo, J Campos, MG Carpenter, B Carrara, M Caulier, G Chaillou, S Chaiprateep, E Chiampanichayakul, S Chinh, PT Cruz, M Cuong, NT Dat, NQ Dat, NT Delgado, T Devkota, HP Djabayan-Djibeyan, P Djabayan-Russo, A Dmitrenok, PS Dong, J Eeckhaut, I El Beyrouthy, M Estevinho, LM | 1685
1727
1685
1715
1691
1659
1615
1677
1637
1607
1639
1607
1685
1641
1715
1623
1629
1731
1685
1685
1685
1685 | | Gabbia, D1691 | |---| | Gao, G1709 | | Gaonkar, R1609 | | Gerbaux, P1659 | | Giang, I.NT | | Giang, LNT | | Giang, LNT | | Giovannini, A1727 | | Gu, Q1705 | | | | Ha, LM1639 | | Hakim, EH1573 | | Hamada, N1699 | | Hanh, PTB1639 | | Hegde, G1609 | | Hotta, H1579 | | Hu, X1721 | | Hung, LN1639 | | Hung, NQ1607 | | riung, iv | | Indrayanto, G1599 | | | | Ishola, A | | Ismail, IS1583 | | Ismail, NH1575 | | Ismail, NH1591 | | Isnanda, RP1587 | | Iwashina, T1641 | | | | Jaramillo-Abril, D1715 | | Jun, JH1667 | | | | | | Kadir.NAAA1583 | | Kadir,NAAA | | Kaennakam, S1619 | | Kaennakam, S | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 | | Kaennakam, S 1619 Kalinin, VI. 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 | | Kaennakam, S 1619 Kalinin, VI. 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1695 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1695 Lee, JY 1667 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1695 Lee, JY 1667 Lee, SM 1649 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1667 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Khumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1695 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 León-Leal, A 1715 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Kumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1695 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 León-Leal, A 1715 Li, P 1705 | | Kaennakam, S 1619 Kalinin, VI 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A 1731 Ke, L 1709 Klumpirapang, N 1615 Kiem, PV 1633,1677 Kim, H 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L 1695 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 Lee, TB 1667 León-Leal, A 1715 Li, P 1705 Li, Y 1629 | | Kaennakam, S. 1619 Kalinin, VI. 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A. 1731 Ke, L. 1709 Khumpirapang, N. 1615 Kiem, PV 1633,1677 Kim, H. 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 László, L. 1695 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 Leo, TB 1667 Leo, TB 1667 Leo, TB 1705 Li, P 1705 Li, Y 1629 Lin, X 1629 | | Kaennakam, S. 1619 Kalinin, VI. 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A. 1731 Ke, L. 1709 Khumpirapang, N. 1615 Kiem, PV 1633,1677 Kim, H. 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649
Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 Lészló, L. 1695 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 Leo, TB 1667 Leo, TB 1705 Li, P 1705 Li, Y 1629 Lin, X 1629 Lin, X 1629 Lin, X 1629 Lin, Z 1721 | | Kaennakam, S. 1619 Kalinin, VI. 1623 Kalinovsky, AI 1623 Kasi, PB. 1695 Kassouf, A. 1731 Ke, L. 1709 Khumpirapang, N. 1615 Kiem, PV. 1633,1677 Kim, H. 1649 Kim, JH. 1649 Knott, MG. 1741 Ko, SK. 1649 Koagne, RR. 1637 Kokubugata, G. 1641 Konga, IS. 1637 Kotormán, M. 1695 Kwon, MC. 1649 László, L. 1695 Lee, JY. 1667 Lee, SM. 1649 Lee, TB. 1667 León-Leal, A. 1715 Li, P. 1705 Li, Y. 1629 Lin, X. 1629 Lin, Z. 1721 Liu, Y. 1629 | | Kaennakam, S. 1619 Kalinin, VI. 1623 Kalinovsky, AI 1623 Kasi, PB 1695 Kassouf, A. 1731 Ke, L. 1709 Khumpirapang, N. 1615 Kiem, PV 1633,1677 Kim, H. 1649 Kim, JH 1649 Knott, MG 1741 Ko, SK 1649 Koagne, RR 1637 Kokubugata, G 1641 Konga, IS 1637 Kotormán, M 1695 Kwon, MC 1649 Lészló, L. 1695 Lee, JY 1667 Lee, SM 1649 Lee, TB 1667 Leo, TB 1667 Leo, TB 1705 Li, P 1705 Li, Y 1629 Lin, X 1629 Lin, X 1629 Lin, X 1629 Lin, Z 1721 | | Ma, Q1655 | |--| | Wa, Q1033 | | Mai, CW1575 | | Martin, SD1691 | | Matsuo, M1699 | | | | Mawang, CI1747 | | Medina-Ramírez, G1715 | | Mittal, N1673 | | | | Mizuno, T1641 | | Molnár, K1695 | | Moreno, DA1681 | | | | Murai, Y1641 | | | | Nakamura, K1641 | | Nakamura, K1041 | | Nga, NT1633 | | Nirachonkul, W1615 | | Thracholical, Transmission | | | | Oh, KY1649 | | Oh, SR1649 | | | | Okonogi, S1615 | | Ola, ARB1573 | | Osman, CP1591 | | | | Ouaini, N1731 | | | | Park, MH1649 | | | | Paula, VB1685 | | Perez-Victoria, I1637 | | Phuong, HT1633 | | ridong, 1111055 | | Phuong, HT1677 | | Phuong, NT1639 | | Pino, JA | | FIIIO, JA1/23 | | | | Ponomarenko, LP1743 | | Ponomarenko, LP1743
Proksch P. 1573 | | Proksch, P | | Proksch, P1573 | | Ponomarenko, LP | | Proksch, P1573 | | Proksch, P | | Proksch, P | | Proksch, P | | Proksch, P | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL 1725 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL 1725 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL 1725 Rutledge, DN 1731 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL. 1725 Rutledge, DN 1731 Ryoo, IJ. 1649 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL 1725 Rutledge, DN 1731 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL. 1725 Rutledge, DN 1731 Ryoo, IJ. 1649 | | Proksch, P. 1573 Quynh, DH 1677 Rao, P. 1709 Rasol, NE 1575 Rassamee, K. 1619 Retamal-Salgado, J. 1681 Reyes, F. 1637 Rinanda, T. 1587 Robustelli della Cuna, JS. 1727 Rodríguez, JL. 1725 Rutledge, DN 1731 Ryoo, IJ. 1649 Ryu, HW 1649 | | Proksch, P Stien, D | 13 | |--|---| | Sugiyama, S169 | | | Suzuki, M169 | 19 | | Juliani, iii | | | Takahashi, S169 | 00 | | Tam, KT | | | | | | Tane, P163 | | | Tao, H162 | | | Tava, A172 | | | Tawo, BD157 | | | Thai, TH160 | | | Tham, PT 16' | 77 | | Thanh, HT16 | 77 | | Thanh, NH163 | | | Thanh, NH 16 | | | Thavornwat, C156 | 50 | | Thien, DT | | | | | | Tip-pyang, S161 | 19 | | Todoki, K | 19 | | Tomaylla-Cruz, C172 | 25 | | Tommy, D157 | | | Toyama, T169 | 99 | | Tri, DM163 | 39 | | Trung, VQ163 | 33 | | Tung, NT160 | 17 | | Tuyen, NV163 | | | Tuyen, NV | 77 | | ruyon, 11710 | ' ' | | Usuk, T161 | 15 | | | | | | | | Valarezo-García, C17 | 15 | | Valarezo-García, C | 15 | | Valarezo-García, C17 | 15 | | Valarezo-García, C | 15
33
37 | | Valarezo-García, C | 15
33
37 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 | 15
33
37 | | Valarezo-García, C 17 Van, DT 163 Vicente, F 163 Wada-Takahashi, S 169 Wahyuni, TS 157 Wang, H 170 | 15
33
37
99
79 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 169 | 15
33
37
99
99 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 16 Wei, M 17 | 15
33
37
99
99
99
21 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 16 Wei, M 17 Wei, R 16 | 15
33
37
99
99
99
21 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 16 Wei, M 17 Wei, R 16 Widiandani, T 15 | 15
33
37
99
99
21
55 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 16 Wei, M 17 Wei, R 16 | 15
33
37
99
99
21
55 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 16 Wei, M 17 Wei, R 16 Widiandani, T 15 | 15
33
37
99
99
21
55
79 | | Valarezo-García, C 17 Van, DT 16 Vicente, F 16 Wada-Takahashi, S 16 Wahyuni, TS 15 Wang, H 17 Watanabe, K 16 Wei, M 17 Wei, R 16 Widiandani, T 15 Widyawaruyanti, A 15 Xie, Y 17 | 15
33
37
99
99
21
55
79
21 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55
41
99 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55
41
99
99 | | Valarezo-García, C | 15
33
79
99
99
21
55
79
21
29
55
41
99
81
31 | | Valarezo-García, C | 15
33
79
99
21
55
79
21
29
55
41
99
81
31
21 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55
41
99
81
31
21
55 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55
41
99
81
31
21
55 | | Valarezo-García, C | 15
33
37
99
99
21
55
79
21
29
55
41
29
31
21
55
99 | | Valarezo-García, C | 155
333
377
999
999
999
221
221
229
555
441
441
221
229
331
331
331
331
331
331
331
331
331
33 | # **Natural Product Communications** 2018 Vol. 13 No. 12 1579 - 1582 # Antiviral Activities of Curcuma Genus against Hepatitis C Virus Tutik Sri Wahyuni^{a,b*}, Adita Ayu permatasari^b, Tri Widiandani^c, Achmad Fuad^{a,b}, Aty Widyawaruyanti^{a,b}, Chie Aoki-Utsubo^d and Hak Hotta^c ^aDepartment of Pharmacognocy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60115 ^bInstitute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia ^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia ^dDepartment of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan ^eFaculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku,, Kobe 658-0001, Japan wahyuni.tutiksri@yahoo.com; tutik-s-w@ff.unair.ac.id Received: August 8th, 2018; Accepted: November 14th, 2018 Hepatitis C virus (HCV) infection is one of the major public health problems in the world. Even though the new agents are shown to increase the sustained virology response, however, there are still many people who cannot access the therapy due
to the high cost. Moreover, the emergence of resistance and side effects presented the necessity to develop alternative treatment agents for HCV infection. Plants of the genus of curcuma are popular among traditional medicines in the world, including Indonesia. They have been used for many herb remedies and reported to possess many biological activities. Several plants from the curcuma genus were known as treatment agents in liver disease and jaundice. Our current study determines antiviral activities of *Curcuma domestica*, *Curcuma xanthorrhiza*, and *Curcuma heyneana* against HCV and further examines the mechanism of actions. Antiviral activity was performed by *in vitro* culture cells using Huh 7.5it cells and treated with the mixture of extract and virus JFH1. The effects of extracts in HCV life cycle were determined by mode of action analysis to examine the action of substances in the entry or post entry steps. The results revealed that ethanol extract of *C. domestica*, *C. xanthorrhiza*, and *C. heyneana* showed strong anti-HCV activities with IC₅₀ values of 1.68 ± 0.05, 4.93 ± 0.42 and 5.49 ± 0.59 µg/mL, respectively without any cytotoxicity effect. Mode of action analysis demonstrated that of *C. domestica* and *C. heyneana* exhibit HCV in the entry step, while *C. xanthorrhiza* inhibit in the entry steps of HCV life cycle. Docking analysis to predict the interaction of curcumin, the main compound of curcuma genus, revealed a strong interaction between curcumin and 4GAG receptor, a protein involved in the entry step of HCV infection. Moreover, it was also reported to possess good interaction with 4EAW, an HCV NS5B, which plays an important role in HCV replication. These results suggested that *C. domestica*, *C. xanthorrhiza*, and *C. Heyneana* possessed stron Keywords: Hepatitis C virus, Curcuma domestica, Curcuma xanthorrhiza, Curcuma heyneana, Curcumin, Docking analysis. Hepatitis C virus (HCV) infection is still a big issue in the world. It is estimated that 71 million people suffer chronic HCV and approximately 400.000 people die each year due to cirrhosis and hepatocellular carcinoma [1]. Direct acting antivirals (DAAs) are currently used to cure HCV infection. Oral interferon (IFN) free regimen by combination of NS3/NS4A or NS5A inhibitor increased the sustained virology response (SVR). However, the emergence of antiviral drug resistance and the limited patients who can access drugs due to the high cost remain the necessities to find new effective anti-viral agents [2, 3]. Medicinal plants are potential resources to search for new drug candidates. They consist of various chemical substances possessing strong biological activities including anti-HCV activities. Secondary metabolites of plants, such as silymarin, epigallocatechin gallate, naringenin that belong to the flavonoid compounds, have been reported to inhibit HCV [4-6]. Our previous study reported anti-HCV activity of Indonesian medicinal plants and obtained active anti-HCV extract of Toona sureni, Melicope latifolia, Melanolepis mutiglandulosa and Ficus fistulosa with IC50 value 3.5-15.0 µg/mL [7]. In another study we evaluated Ruta angustifolia leaves and further isolated anti-HCV compounds, chalepin, a coumarin compound and pseudane IX, an alkaloid compound which mediated a strong anti-HCV activity [8]. Exploration of natural sources to search for anti-HCV activity still remained a big chance. Curcuma domestica, Curcuma xanthorrhiza and Curcuma heyneana belong to the Zingiberaceae family. Plants of the genus of curcuma are popular in many areas in the world for several kinds of diseases including their use in traditional herbs [9]. In Indonesia, it has been used for many ingredients of Jamu, the traditional medicine of Indonesia [10]. C. domestica or C. longa, also called turmeric have been used for infection, dermatologic diseases and depression in India and China. Recently, it also shows anti-oxidant, anti-inflammatory, anti-cancer and antibacterial activities [11-13]. C. xanthorrhiza is locally known as temulawak in Indonesia. The isolated compound from the fresh rhizome, xanthorrizol, possesses antimicrobial activities against pathogenic bacteria and fungi [14-16]. It has been reported to have hepatoprotective activities, reduced the fatty liver symptom and inhibit alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and protein content [10, 15]. C. heyneana contain oxycurcumenol epoxide, curcumenol and isocurcumenol that have cytotoxicity activity against T-acute lymphoblastic leukemia cells (CEM-SS) with IC₅₀ values of 11.9, 12.6 and 13.3 μg mL⁻¹, respectively [17]. Furthermore, its isolation compounds, heyneanone A, heyneanone C, 4,10-epizedoarondiol, procurcumenol, aerugidiol, zerumin A, and (E)-15,16-bisnorlabda-8,11-dien-13-one inhibited protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 42.5, 35.2, 35.1, 45.6, 35.7, 10.4, and 14.7 µM, respectively [18]. Since it has been reported to have many bioactivities, however, there is no report yet for anti-HCV activity. This study examined anti-viral activities of *C. domestica*, *C. xanthorrhiza*, and *C. heyneana* against HCV. Anti-hepatitis C activity was performed by *in vitro* culture cells using Huh 7it and further determine the mode of action of extracts. The cytotoxic effect was accessed by MTT assay. The results showed that *C. domestica*, *C. xanthorrhiza*, and *C heyneana* possess potential inhibition against hepatitis C virus without any cytotoxicity (Figure 1). *C. domestica* revealed the strongest anti-HCV activity among the tested extracts and showed a stronger activity than the positive control ribavirin (Table 1). Table 1: Antiviral activity (IC₅₀) against HCV and cytotoxicity (CC₅₀) of C. domestica, C. xanthorrhiza, and C heyneana. | Extract | IC ₅₀ (μg/mL) | CC50 (µg/mL) | SI | |------------------------------|--------------------------|--------------|-------| | C. domestica | 1.68 ± 0.05 | >100 | >59.5 | | C. xanthorrhiza | 4.93 ± 0.42 | >100 | >20.3 | | C. heyneana | 5.49 ± 0.59 | >100 | >18.2 | | Ribavirin (positive control) | 2.79 ± 0.3 | >50 | >10 | The data represent means ± SEM of data from three independent experiments. Figure 1: Dose dependent inhibition of extracts and their cytotoxicity. Various concentrations of extracts (A) Curcuma domestica, (B) Curcuma xanthorrhiza, (C) Curcuma heyneana, 100 to 0.01 μg/mL were inoculated to the Huh7it cells (MOI=0.1). After virus adsorption, the cells were cultured with the same concentrations of compounds for 46 hours. The culture supernatants were harvested and tirated for virus infectivity. Percent inhibitions of HCV infectivity by each compound are shown in Figure I. In parallel, cytotoxicity of the compounds was measured by MTT-1 assay. All three extracts did not show any cytotoxicity effect. Mode of action analysis was accessed to explore the effect of extracts in the entry or post entry steps of HCV life cycle which divided into: entry steps that include viral attachment and viral entry to the target cells, and post entry steps that include synthesis protein, replication of viral genome, assembly and release of viral particles [19, 20]. C. domestica and C. heyneana proved to possess stronger inhibition in the entry step with HCV inhibition higher than 70%, while in the post entry step was around 30% in the concentration of 50 μ g/mL. On the other hand, C. xanthorrhiza showed a weaker effect in the entry step with 60% inhibition; however, in the post entry step mediated higher inhibition with percentage of HCV inhibition 53.6 \pm 3.9% compared to C. domestica and C heyneana. Therefore C. xanthorrhiza might be conducted to act in the entry and post entry (Table 2). Table 2: Mode of action of C. domestica, C. xanthorrhiza, and C heyneana extracts. | | % HCV | inhibition (50 | μg/mL) | | |-----------------|---------------------------|------------------|-------------------|-----------------------------| | Plant Extract | During +Post
infection | During infection | Post
infection | Mode of action | | C. domestica | 96.2 ±1.2 | 75.2 ± 2.1 | 34.9 ± 2.0 | Enty inhibition | | C. xanthorrhiza | 90.8 ± 0.8 | 60.8 ± 0.8 | 53.6 ± 3.9 | Enty, Post-entry inhibition | | C. heyneana | 84.8 ±1.4 | 70.2 ± 1.5 | 30.5 ±1.4 | Enty inhibition | Curcumin, a popular compound in the genus of curcuma, has been identified to have many therapeutic effects including antiviral against HIV, influenza, HPV, H5N1 and all HCV genotypes [10, 21-23]. Curcumin acts as anti-HCV activities by suppressing viral entry step [23] and replication [24]. Further examining to predict the mechanism-of-action of curcumin to the receptors, docking analysis was performed by Molegro Virtual Docking ver 5.5 program to determine the possible interaction of compounds with the protein target. We evaluated several proteins from Protein Data Base which reported to possess interaction with HCV (www.rcsb.org). We found that curcumin has a strong interaction with 4GAG, the protein involved in the entry step of HCV, neutralizing antibody AP33 in complex with E2 epitope [25, 26]. The rerank score of curcumin was -116.94 kcal/mol while the rerank score of ligand was -45 kcal/mol. The lower value of rerank indicated the stronger interaction of curcumin to the receptor. Hydrogen binding of curcumin with Thr 165 and Asp 167, and the steric van der walls between curcumin with Thr 165, Asp 167, His 164 and Val 163 contributed the binding interaction of 4GAG and curcumin (Figure 2). While, the standard ligand revealed hydrogen binding to His 164 and Asp 167, and steric van der walls to Asp 167. The interaction was clearly described in 3D profile (Figure 3). Figure 2: Hydrogen bond interaction (dashed blue-line) and Steric-Van der Walls bond interaction (dashed red-line) between Standard Ligand and Curcumin on the active site of HCV protein (4GAG.pdb). Figure 3: The 3D profile of docking
interaction of curcumin (green color) with 4GAG protein. Further analysis was done to observe the possible interaction with other proteins. We obtained a strong interaction between 4EAW.pdb and curcumin. 4EWA is a protein of HCV NS5B, considered to be involved in the replication step of HCV life cycle, a potential therapeutic target in HCV treatment. The rerank score of curcumin was -102.169 kcal/mol, which is similar to the rerank Figure 4: Hydrogen bond interaction (dashed blue-line) and Steric-Van der Walls bond interaction (dashed red-line) between (A) Standard Ligand and (B) Curcumin on the active site of HCV protein (4EAW.pdb). score of standard ligand -103.24 kkal/mol. This result indicated a strong interaction between curcumin and receptor and resulting good therapeutic activity. Curcumin revealed more interaction with amino acid of Tyr 448, Ser 367, Asp387, and Asn 369 with hydrogen binding interaction than the standard ligand which only binds with three amino acids, Tyr 448, Asp 318, and Asn 291 (Figure 4). These results indicated that curcumin has strong interaction with 4EAW that might serve as a potential target for HCV inhibition. The 3D profile of curcumin docking interaction is shown in Figure 5. Figure 5: The 3D profile of docking interaction of curcumin (green color) with 4EWA protein. ## Experimental Extraction and sample preparation: The rhizomes of Curcuma domestica, Curcuma xanthorrhiza, and Curcuma heyneana were verified by a licensed botanist of Botanical garden, Purwodadi, Indonesia. The dried powder of the rhizome was extracted with ethanol. The obtained filtrates were evaporated to yield the ethanol extracts C. domestica, C. xanthorrhiza, and C heyneana. Stock solution was prepared by dissolving the extract in dimethyl sulfoxide (DMSO) to obtain a stock concentration of 100 mg/mL. Serial dilutions of extracts were prepared to yield the concentrations of extracts 100, 50, 10, 1, 0.1 and 0.01 µg/mL. Cells and viruses: Huh7it cells were cultivated in Dulbeco's Modified Eagle Medium (GIBCO Invitrogen, Carlsbad, CS, USA) supplemented with 10% Fetal Bovine Serum (Biowest, Nualle, France), 0.15 mg/mL Kanamycin (Sigma–Aldrich, St. Louis, MO, USA) and non-essential amino acids (GIBCO-Invitrogen) in 5% CO2 at 37°C. The culture cells were cultivated and maintained by periodically re-feeding with new medium. The adapted HCV variant was propagated in Huh7it [27]. Culture supernatant from the infected cells was collected at day 2 and day 5 post infection and concentrated using Amicon Ultra centrifugal filter unit. Virus titers were determined for antiviral assay [28, 29]. Antiviral activity assay: Antiviral activity assay was conducted as described previously [7, 8, 28, 29]. Huh7it cells (5.4 x 104) were seeded for 24 hours. The HCV at multiplication of infection (MOI) of 0.1 in the presence of different concentrations of sample were inoculated to the culture cells. The mixture of extract and virus was incubated for 2 hours. After virus absorption for 2 h, the cells were rinsed with the medium and were further incubated in the medium containing the same sample for 46 hours. Mode of action analysis was performed by time-of-addition experiments. Three series of studies were done. First, the culture was treated with the extract both in pre- and post- inoculation. Second, the culture was only treated with the extract at inoculation steps (2 hours). The third extract was added only after inoculation to examine the action of substance in the post-entry steps of HCV life cycle. Culture supernatants were collected for virus titration. The 50% inhibitory effect (IC₅₀) was calculated by SPSS probit analysis [7, 8]. Virus titration and immunostaining: Huh7it-1 cells (2 x 10⁴ cells/well) were seeded in a 96-well plate and incubated for 24 hours. Virus supernatants were diluted in the medium and inoculated onto the Huh7it culture cells and incubated for 4 hours. After virus absorption, the cells were cultured with medium containing 0.4% methylcellulose (Sigma–Aldrich) following 41 hours incubation. Infected cells were analyzed with immunostaining using anti-HCV patient anti-serum (250 time dilution on 2% BlockAce/1%BSA/PBS) and HRP-goat antihuman Ig antibody (300x on 2% lockAce/1%BSA/PBS). The HCV antigen positive cells were visualized with Metal Enhanced DAB substrate kits (Thermo Fisher Scientific, Rockford, USA). The infected cells were counted under microscopes and calculated the percentage inhibition. MTT assay: The cytotoxicity analysis was conducted to determine whether the extract mediated any cytotoxicity effects. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay was done by inoculating 100, 50, 10, 1 and 0.1 μg/mL of extract in 96 wells plate culture cells which have seeded for 24 hours. After 48 h incubation, the medium was replaced with MTT reagent containing medium and incubated for 4 h. Absorbance sample was evaluated under microplate reader at 450 and 600 nm, which is correlated with the amount of cell viability. The percentage of cell toxicity was calculated by comparing with untreated cells and further determine its 50% cytotoxic concentration (CC₅₀) values [7, 8, 27]. **Docking analysis:** The ligand was prepared by making 2D and 3D structures of the curcumin using ChemBioOffice program Ultra 11.0 and its energy was minimized using MMF94. The docking analysis continued by Molegro Virtual Docking ver 5.5 program Ver 5.5, resulted in rerank score describing the minimal energy by the ligand in interaction with the receptor. Acknowledgments: We gratefully acknowledge Research Institute and Innovation, Airlangga University through a Riset Mandat Grant. #### References [1] Pawlotsky J-M, Negro F, Aghemo A, Berenguer M, Dalgard O, Dusheiko G, Marra F, Puoti M, Wedemeyer H. (2018) EASL Recommendations on Treatment of Hepatitis C. Journal of Hepatology, 69, 461-511. - [2] Teraoka Y, Uchida T, Imamura M, Hiraga N, Osawa M, Kan H, Saito Y, Tsuge M, Abe-Chayama H, Hayes CN, Makokha GN, Aikata H, Miki D, Ochi H, Ishida Y, Tateno C, Chayama K. (2018) Limitations of daclatasvir/asunaprevir plus beclabuvir treatment in cases of NS5A inhibitor treatment failure. Journal of General Virology, 99, 1058-1065. - [3] Jakobsen JC, Nielsen EE, Koretz RL, Gluud C. (2018) Do direct acting antivirals cure chronic hepatitis C? British Medical journal, 361, 1382. - [4] Calland N, Dubuisson J, Rouille Y, Seron K. (2012) Hepatitis C virus and natural compounds: a new antiviral approach? Viruses, 4, 2197-2217. - [5] Wahyuni TS, Aoki Utsubo C, Hotta H. (2016) Promising anti-hepatitis C virus compounds from natural resources. Natural Product Communications, 11, 1193-1200. - [6] Khachatoorian R, Arumugaswami V, Raychaudhuri S, Yeh GK, Maloney EM, Wang J, Dasgupta A, French SW. (2012) Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle. Virology, 433, 346-355. - [7] Wahyuni TS, Tumewu L, Permanasari AA, Apriani E, Adianti M, Rahman A, Widyawaruyanti A, Lusida MI, Fuad A, Soetjipto D, Nasronudin D, Fuchino H, Kawahara N, Shoji I, Deng L, Aoki C, Hotta H. (2013) Antiviral activities of Indonesian medicinal plants in the East Java region against hepatitis C virus. Virology Journal, 10, 259. - [8] Wahyuni TS, Widyawaruyanti A, Lusida MI, Fuad A, Soetjipto, Fuchino H, Kawahara N, Hayashi Y, Aoki C, Hotta H. (2014) Inhibition of hepatitis C virus replication by chalepin and pseudane IX isolated from Ruta angustifolia leaves. Fitoterapia, 99, 276-283. - [9] Omosa LK, Midiwo JO, Kuete V. (2017) Curcuma longa. In Medicinal Spices and Vegetables from Africa, Academic Press, 425-435. - [10] Widyowati R, Agil M. (2018) Chemical constituents and bioactivities of several Indonesian plants typically used in Jamu. Chemical and Pharmaceutical Bulletin, 66, 506-518. - [11] Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research International, 2014, 1-12. - [12] Kim HJ, Yoo HS, Kim JC, Park CS, Choi MS, Kim M, Choi H, Min JS, Kim YS, Yoon SW, Ahn JK. (2009) Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. Journal of Ethnopharmacology, 124, 189-196. - [13] Sompet B, Potha T, Tragoolpua Y, Pringproa K. (2017) Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pacific Journal of Tropical Medicine, 10, 871-876. - [14] Mary HPA, Susheela GK, Jayasree S, Nizzy AM, Rajagopal B, Jeeva S. (2012) Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb. Asian Pacific Journal of Tropical Biomedicine, 2, S637-S640. - [15] Hwang JK, Shim JS, Baek NI, Pyun YR. (2000) Xanthorrhizol: a potential antibacterial agent from Curcuma xanthorrhiza against Streptococcus mutans. Planta Medica, 66, 196-197. - [16] Lee LY, Shim JS, Rukayadi Y, Hwang JK. (2008) Antibacterial activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. against foodborne pathogens. Journal of Food Protection, 71, 1926-1930. - [17] Aspollah Sukari M, Wah TS, Saad SM, Rashid NY, Rahmani M, Lajis NH, Hin T-YY. (2010) Bioactive sesquiterpenes from Curcuma ochrorhiza and Curcuma heyneana. Natural Product Research, 24, 838-845. - [18] Saifudin A, Tanaka K, Kadota S, Tezuka Y. (2013) Sesquiterpenes from the rhizomes of Curcuma heyneana. Journal of Natural Products, 76, 223-229 - [19] Scheel TK, Rice CM. (2013) Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nature Medicine, 19, 837-849. - [20] Colpitts CC, Baumert TF. (2016) Hepatitis C virus cell entry: a target for novel antiviral strategies to address limitations of direct acting antivirals. Hepatology International, 10, 741-748 - [21] Lechtenberg M, Quandt B, Nahrstedt A. (2004) Quantitative determination of curcuminoids in Curcuma rhizomes and rapid differentiation of Curcuma
domestica Val. and Curcuma xanthorrhiza Roxb. by capillary electrophoresis. Phytochemical Analysis, 15, 152-158. - [22] Bos R, Windono T, Woerdenbag Herman J, Boersma Ykelien L, Koulman A, Kayser O. (2007) HPLC-photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia. Phytochemical Analysis, 18, 118-122. - [23] Anggakusuma, Colpitts CC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, Behrendt P, Brown RJP, Bankwitz D, Steinmann J, Ott M, Meuleman P, Rice CM, Ploss A, Pietschmann T, Steinmann E. (2014) Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut, 63, 1137-1149. - [24] Ye M-X, Li Y, Yin H, Zhang J. (2012) Curcumin: updated molecular mechanisms and intervention targets in human lung cancer. *International Journal of Molecular Sciences*, 13, 3959-3978. - [25] Potter JA, Owsianka AM, Jeffery N, Matthews DJ, Keck ZY, Lau P, Foung SK, Taylor GL, Patel AH. (2012) Toward a hepatitis C virus vaccine: the structural basis of hepatitis C virus neutralization by AP33, a broadly neutralizing antibody. *Journal of Virology*, 86, 12923-12932. - [26] Zhu Y-Z, Qian X-J, Zhao P, Qi Z-T. (2014) How hepatitis C virus invades hepatocytes: The mystery of viral entry. World Journal of Gastroenterology, 20, 3457-3467. - [27] Apriyanto DR, Aoki C, Hartati S, Hanafi M, Kardono LBS, Arsianti A, Louisa M, Sudiro TM, Dewi BE, Sudarmono P, Soebandrio A, Hotta H. (2015) Anti-hepatitis C virus activity of a crude extract from longan (*Dimocarpus longan* Lour.) leaves. *Japanese Journal of Infectious Diseases*, 69, 213-220. - [28] Hafid AF, Aoki-Utsubo C, Permanasari AA, Adianti M, Tumewu L, Widyawaruyanti A, Wahyuningsih SPA, Wahyuni TS, Lusida MI, Soetjipto, Hotta H. (2017) Antiviral activity of the dichloromethane extracts from *Artocarpus heterophyllus* leaves against hepatitis C virus. *Asian Pacific Journal of Tropical Biomedicine*, 7, 633-639. - [29] Aoki C, Hartati S, Santi MR, Lydwina L, Firdaus R, Hanafi M, Kardono LBS, Shimizu Y, Sudarmono P, Hotta H. (2014) Isolation and identification of substances with anti-hepatitis c virus activities from Kalanchoe pinnata. International Journal of Pharmacy and Pharmaceutical Science, 6, 211-215.