Current Issue

February 2019

Volume 35 – Number 1

Page Numbers: 01-490

Journal allows immediate open access to content in HTML + PDF

Preparation of Cu in Se2 Thin Films by using Various Methods (A Short Review)
Ho Soonmin1, Sreekanth Mandal2, Ramkumar Chandran3, Archana Malik4, Mohammad Arif Sobhani Bhalivan5 and Deepa K. G6

[HTML Full Text] [Abstract] [PDF] [XML]

DOI: http://dx.doi.org/10.13095/ojc/350101

Influence of Impurities of Different Types on the Properties of Potassium Dihydrogen Phosphate Crystals (A Review)
Iliu Komendo7

[HTML Full Text] [Abstract] [PDF] [XML]

DOI: http://dx.doi.org/10.13095/ojc/350102

Studying the Mechanisms of Nitro Compounds Reduction (A-Review)
L. R. Sasykova8, Y. A. Aubakirov1, S. Senticreven7, Zh. K. Taşmukhambetova1, N. K. Zhabirova1, M. F. Fauzullaeva3, A. A. Baitrbaeva1, R. G. Ryskalyeva1, B. B. Tyussugapova1 and T. S. Aibek1

[HTML Full Text] [Abstract] [PDF] [XML]

DOI: http://dx.doi.org/10.13095/ojc/350103

A Simplified Method for Estimating Atomic Number and Neutrons Numbers of Elements Based on Period and Group Numbers in the Periodic Table
Laith H. M. Al-Osaimi9

[HTML Full Text] [Abstract] [PDF] [XML]

DOI: http://dx.doi.org/10.13095/ojc/350104

http://www.orientjchem.org/current-issue/
Carbon Dots Modification for Escherichia coli Detection: Variation of Collistin Sulphate Concentration
Suhairman1, Nicko Andriyanto1, Enuang Tri Wahyuni1, Miftahul Irvani2, Kinichi Morita3 and Yuji Oki4
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/105

Views: 55 PDF Downloads: 87

The Performance of P-Aminosaliclyclic Acid As Reducing and Stabilizing Agent in Silver Nanoparticles Synthesis
Dien Susanthy Sri Juari Santoso1 and Eko Sri Kunarti
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/106

Views: 32 PDF Downloads: 46

Synthesis, Characterization and Anticonvulsant Activity of Novel Fused 1,2,4-Triazoio-1,3,4-Thiadiazoles
Mohammad Sarafraz1, Yassir Khatib2, Niyaz Ahmad3, Mohammad Amer4, Sultanuddin5 and Faeem Hyder Pottoo6
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/107

Views: 68 PDF Downloads: 76

Liquid Fuel Production by Zeolite-A Catalyzed Pyrolysis of Mixed Cassava Solid Waste and Rubber Seed Oil
Wasinton Simanjuntak1, Kamalee Delawaratne-Pathirangan, Zipora Sembrong and Agustina Simanjuntak2
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/108

Views: 31 PDF Downloads: 40

Synthesis and Anti-Colon Cancer Activity of 1,2,4-Triazole Derivatives with Aliphatic S-Substituents
Sadat Ali-Mansary1, Amin A. Bahtak2, Fatin Fadhul Akzzazz3, Kaiser N. Mdium4 and Reza A. Gholide5
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/109

Views: 28 PDF Downloads: 50

Simultaneous Removal of Arsenite and Fluoride from Groundwater using Batch Electrochemical Coagulation Process - Role of Aluminum with Iron Electrodes
Shrihari Murthy1, Mahesh Shivaswamy1, Sahan Mahesh1 and Srikantha Hanumanthappa2
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/110

Views: 36 PDF Downloads: 33

Polarographic Performance of Some Azo Derivatives Derived from 2-Amino-4-Hydroxy Pyridine and its Inhibitory Effect on C-Steel Corrosion in Hydrochloric Acid
M. Abdalrhah1,2, M. M. Alsheker3, N. F. Hasan1, Ahmed, A. Ahbari2 and E. M. Mabrouk1
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/111

Views: 35 PDF Downloads: 38

The Main Components of Vehicle Exhaust Gases and Their Effective Catalytic Neutralization
L. R. Sasykova1, Y. A. Autakin2, S. Sendiveter3, Zh. Kh. Tashmukhambetova4, M. F. Fazullinaeva5, K. Braskar1, A. A. Batyrbayeva1, R. G. Ryskalieva1, B. B. Tyucsyupa1, A. A. Zhokupova1 and M. A. Sarybayov1
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13085/ojic/35/112

http://www.orientjchem.org/current-issue/
Hydrocracking of LDPE Plastic Waste Into Liquid Fuel over Sulfated Zirconia from a Commercial Zirconia Nanopowder
Latifa Hauji, Kama Wijaya* and Akhmad Syoufiian
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356113

Triterpenoids from the Bark of Agalana Glabrata and Their In Vitro Effects on P-388 Murine Leukemia Cells
Desti Harmie1, Asap Supriady2, Rani Matureri1,2, Nurfarlisan1, Tri Mayaris1, Aco Tajang Hidayat1,2, Rosyandi Anwar4, Unang Supratman1,2,* Khalijah Awang2 and Yoshifoto Shiono5
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356114

Development and Validation of Stability-Indicating RP-HPLC Method for the Estimation of Lenalidomide and its Impurities in Oral Solid Dosage Form
Somana Siva Prasad1, G. V. Krishna Mohan2 and A. Naga Babu2
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356115

Phenolic Analysis and Characterization of Palm Sugar (Arenga Pinnata) Produced by the Spray Dryer
Jayanthini1, Teguh Kusumawati and Indar Kundaranish
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356116

Benzyl and Sulfonyl Derivatives of N-(2,6-dimethylphenyl)-2-(piperazin-1-yl)acetamide(T2288): Biological Screening and Fingerprint Applications
Ghous A Khan1,2, Swamy Sreenivasulu1,2, Shivaranjini Govindaiah1 and Vivek Chandramohan3
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356117

Nanocrystalline Titania Coated Metaalalin and Rice Hull Ash Based Geopolymer Spheres for Photocatalytic Degradation of Dye in Wastewater
Patricia Isabel Bravo1, Eliza Shimizu1, Roy Akin Malemab2, April Anne Tigue2, Kimmie Mae Doria Cerna2, Jose Isagani Janairo3,4, Michael Angelo Promentillao3,4 and Derrick Ethelbert Yu1,4
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356118

Grafting of Oleic Acid on Cyclic Natural Rubber (Resiprene-35) using Dicumyl Peroxide Initiator and Divinylbenzene Compatibilizers for Paint Binder in Polyamide Thermoplastics
Barta Antonang1,2, Tamin2, Basuki Wirspentoro2 and Edy Param12
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/356119
Phytoremediation of Heavy Metals Spiked Soil by *Polyscias Fruticosa*
Naseer Inua Durumin Iya1,2, Zaini Bin Assim1, Isa Bin Ipor1, Sammu Murtala Yksaroa2, Shina Ismail Sariq2 and Binta Hadji Jume3
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350134

Electrochemical Capacitive Performance of ZnCl2 Activated Carbon Derived from Bamboo Bagasse in Aqueous and Organic Electrolyte
Sivagami Sundari Gunasekaran1, Raghu Subashchandra Bose2 and Kalavani Raman1
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350135

Microwave Assisted Synthesis, Structural Characterization, Thermal Analysis and Antibacterial Studies of Fe(II), Ni(II) and Cu(II) Complexes of Sulfanilamide
Garima Prajapat1, Rama Gupta1 and Narendra Bhujia1
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350136

Some Novel Antibacterial Macroyclic Complexes for Gram +ve and Gram -ve Bacteria
Sangeeta Sharma1, Rami Mehani No’e Chopra2 and Veenu Chugh3
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350137

Structural Study of the Powder Complex of Cu(II)-1,10-Phenanthroline-Trifluoroacetate
Kristian Haradio Sugiyarto1, Cahyorni Kusumawardani, Hestina Wigati and Hari Sutrisno
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350138

Low-Temperature Synthesis of α-Fe2O3/MWCNTs as Photo-Catalyst for Degradation of Organic Pollutants
Nooh Abdul Jalal Omar1, Zaid Hamid Mahmod2, Noor Kadhum Ahmed and Farah Kefah Al3
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350139

Viscosity and Density Studies of Drugs in Aqueous Solution and in Aqueous Threonine Solution at 298.15 K
Hanaa G. Albyaa, Zainab A. H. Al-Dulaimy1, Kanther Ahmed Sadiq and Maida Hameed Saleem
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13005/ojc/350140
Experimental Determination of the Kinetic Rate Law for the Oxidation of Acetone in Aqueous Environment by Potassium Permanganate and Sulfuric Acid at 25°C and Proposed Mechanism for the Reaction
Sayed Hossain Rasa and Mohammad Taha Bazii
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350142

Catalytic Technologies for the Production of Eco-friendly Gasolines and Reducing the Toxicity of Vehicle Exhaust Gases
Alma Massenova, Maxat Kalybentiev, Abzal Usenov, Alexandr Sass, Nail Kerzin, Erlan Kanatbaev and Amankeldi Balken
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350143

Recovery of Glutaric acid by Reactive Extraction using Tri-n-Octylamine in Different Biodiesels
Shourabir Singh Rajhowsani, Ashwanth Kumar Rathore and Sunder Lal Pal
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350144

Ninhydrin Based Visible Spectrophotometric Determination of Gemiglitin
Gini Prasad Gorumutsu, Venkata Nadi Radakumar and Sreeesh Matabdi
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350145

Process of Obtaining Sorbents from Bentonite and Refractory Clays Using Industrial Wastes
Baiu A. Usertbayeva, Saltanat T. Tiusov, Altay S. Tiusov, Saltanat D. Arystanova, Margina M. Yeskendirova, Ulimbek P. Baiysbaev, Marium M. Ublemkova and Menantu P. Baiysbaeva
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350146

Synthesis of Chitosan from the Scales of Starry Trigger Fish (Abalistes Stelaris)
Indri Hermiyati, Irawan and Swadika Jufana
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350147

Nanophotocatalytic Ozonation of Textile Dyeing Wastewater Using Cu-Zno Nanocatalyst and Study of Reactor Influencing Parameters
Logamani Pandian, Rajasekhar Rajasekaran and Poongodi Govindan
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13095/ojc/350148

Synthesis and Antimicrobial Activity of Novel Pyrazole Derivatives
Hassan Mohammad Al-Ghamdi
[HTML Full Text] [Abstract] [PDF] [XML]
Symposium and Affiliated Sessions of Royal Chemical Society and Publishing

Rosette (Rhizos absorbing) Flowers as Alternative Indicators of Blue and Red Luminous

Structural Analysis of Lanthide Oxide Prepared by Reduction Microwave-Assisted reflux Technique

Thermal and Optical Properties of Polyvinyl Nitroaniline Phosphorescent with 50% Phosphorescent Quenching

The Role of Micropores and Anion Groups in Preferential Cation Adsorption of Fruits in Coordination
Vibrational Spectra of C2Cl4 Using Lie Algebraic Technique
J. Vijayakumar1, S. Uma Devi2 and T. Sreelakshmi3
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13009/ojc/350165

Phytochemical Screening and Antidiabetic Activity of N-Hexane, Ethyl Acetate and Water Extract from Durian Leaves (Durio Zibethinus L.)
Dyna Grace Romatua Anus1,2, Tonel Baru1, Ginda Heri1, Akoson Siburue1 and Pantonuam Simarunjakti1,3
[HTML Full Text] [Abstract] [PDF] [XML]
DOI: http://dx.doi.org/10.13009/ojc/350166

http://www.orientjchem.org/current-issue/
Faloak (Sterculia quadrifida R.Br) Stem Bark Extract Inhibits Hepatitis C Virus JFH1

MUHAJIRIN DEAN*, RETNO HANDAJANI and JUNAIDI KHOTIB

1Department Pharmacy, Prof. Dr. W.Z. Johannes Hospital, Jalan Dr. Moch Hatta No. 19, Kupang City 85112, East Nusa Tenggara, Indonesia.
2Department Biochemistry, Medical Faculty, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo No. 47, Surabaya 60131, East Java, Indonesia.
3Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Jalan Dharmawangsa No. 4-6, Surabaya 60286, East Java, Indonesia.
*Correspondent author E-mail: muhajirindean@gmail.com

http://dx.doi.org/10.13005/ojc/350155

(Received: November 29, 2018; Accepted: January 07, 2019)

ABSTRACT

The discovery of antiviral drugs is developing new alternative medication and economics prices. One of the natural resources for alternative medicine is the water extract of faloak stem bark which is a material used by Kupang Community as an antiviral drug. The HCV JFH1 lifecycle inhibition is expressed in IC_{50} (inhibitory concentration 50%) and the toxicity of water extract of faloak stem bark in hepatocyte cell line Huh7it is expressed in CC_{50} (cytotoxicity concentration 50%). Determining the results obtained using Microsoft Office Excel 2013. The water extract of faloak stem bark has an inhibition of HCV genotype 2a strain JFH1 with the IC_{50} 11.57 μg/mL and the toxicity water extract of faloak stem bark in the Huh7it cell line hepatocyte with the CC_{50} 1000 μg/mL. Mode of action activities from water extract of faloak stem bark can be inhibited all step HCV life cycle. The first step is entry step has the inhibition 93.97%, post-entry step has the inhibition 96.75%, and combination step (entry and post-entry step) has the inhibition was 100%. The active compound in the water extract of faloak stem bark was epicataechin 875 mg/kg. The water extract of faloak stem bark can be a candidate for antivirals against HCV JFH1.

Keywords: Faloak, Cytotoxicity concentration 50% R.Br, Hepatitis C Virus.

INTRODUCTION

Hepatitis C virus infection is a global problem and needed drugs can inhibit HCV infection. There is now a combination with pegylated interferon alfa (IFN-α) and ribavirin1. However until now the fulfillment of the drug needs has not been met well throughout the region of Indonesia, it takes an alternative treatment to help HCV infection. One medicinal plant that can be used as an alternative treatment for hepatitis is faloak. The part of the faloak plant commonly used as medicine is the stem bark6. Tests have been carried out on the faloak bark and flavonoid compounds have been found. Flavonoid
compounds can inhibit the hepatitis C virus in cell culture so that faloak plants can be tested to obtain active content and the effect of inhibiting the hepatitis C virus.

MATERIALS AND METHODS

Materials

The stem bark of faloak is obtained from Kupang City of East Nusa Tenggara Province. The only stemming by peeling is taken from the main stem. Weighed fresh samples, cut into small pieces and dried by air-dried until dried and then fertilized and weighed dry samples. Extraction is performed using a water solvent. The obtained viscous extract is dried using a freeze dryer until the extract is dry and weighed.

METHODS

Preparation and sample extraction

Determinants plants in UPT BKT Purwodadi Garden, East Java, Indonesia. Extraction was extracted for LC-MS/MS test to identify epicathechin compounds. A regular concentration series of (−)-epicatechin >98% (Sigma-Aldrich) was dissolved using 0.5 g of water extract from new bark to make a standard curve. A weigh of 0.5 g of homogeneous water extracts of bark dissolved in methanol and vortex until. Then the extract solution (0.1 mL) was added to 0.9 mL of methanol 5%, and then it was vortexed. The calculation of epicatechin level using dilution factor 1000, then the sample is injected into LC-MS/MS (AB-Sciex 4000) instrument. The result is a chromatogram and contains a peak epicatechin compound from the Analyst Instrument Control and Data Processing Software AB Sciex which is software in LC-MS/MS (AB-Sciex 4000) instrument.

Cells and Viruses

Analysis of anti-HCV activities

The anti-HCV test was carried out following the previous test. The samples was dissolved in dimethyl sulfoxide (DMSO) to obtain stock solutions at a concentration of 100 mg/mL, stored at -20°C until it was used. Huh7/t cells were seeded in 48-well plates (5x10⁴ cells/well). A fixed amount of infection (FFU)/cell, was mixed with serial dilutions of the extracts (100, 50, 25, 12.5, 6.25 and 3.125 μg/mL) and inoculated to the Huh7/t cells. After two h incubation, the cells were washed with Dulbecco’s modified Eagle’s medium to remove the residual virus and further incubated in the Dulbecco’s modified Eagle’s medium containing the same concentrations of test samples as those during virus inoculation.

Staining

Cell staining was carried out following the previous test. The Huh7/t cells were prepared medium in 96-well plate (2.3 x 10⁴ cell/mL) incubation 24 hours. The stored supernatant was thawed first and serially diluted in medium with 2% FBS, added into the Huh7/t cells, incubation 2 h at 37°C with 5% CO₂. Then, remove supernatant and overlaid with methylcellulose 0.5%, incubation at 37°C with 5% CO₂ for two days. After two-day infection cells, in each well were fixated using 200 μL 10% formaldehyde per well and incubated for 15 minutes. After the formaldehyde was removed, the cells were washed three times with 200 μL of Phosphate Buffered Saline (PBS) with a period of 5 min in between. After the PBS was removed, 100 μL of Triton-X 0.5% was added to each well. Afterward, incubation was done for 10 minutes. The Triton-X was then removed from all wells. Next, the wells were rinsed with PBS three times with 200μL of PBS with a period of 5 min in between. Then, 45 μL of 1/200 anti-HCV from human serum was added. Incubation for 1 h was then performed. After removing the antibody, each well was rinsed with PBS. After that, the second antibody, which was 45 μl of 1/300 human anti-hors eradish peroxidase (HRP) (Sigma-Aldrich), was added. It was incubated, removed, and rinsed again with the same method as before. Next, 100 μL of 3, 3-diaminobenzidine (DAB) (Thermo Scientific, USA) was added to each well as staining step. Then, it was incubated for 15 minutes. Finally, the virus focus was observed under light microscope and calculated with KatiKati program as cells counter.

Cytotoxic assay

The cytotoxic test followed the previous test. The cell viability of the samples was assessed by (3-(4,5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide) (MTT) (Sigma-Aldrich) assay. Huh7/t cells (2.3x10⁴ cells/well) in 96 well plates were treated with serial dilution of the samples (1000 μg, 800 μg, 600 μg, 400 μg, 200 μg, 100 μg, 50 μg, 25 μg/12.5 μg). The condition of the cells was observed after 48 h incubation, and the toxicity was checked under a microscope. The medium was removed from 96 well plates and then MTT 10% 150 μl/well was put
by multichannel pipette and incubated for 4 hours at 37°C. MTT solution was removed from 96 well plates and 100 µl/well DMSO 100% was then put for dissolve. Absorbance was checked at 560 nm and 750 nm, shaker 0.5 min before reading absorbance. The MTT reagent is absorbed by the cells and converted by reduction reaction to formazan by mitochondrial dehydrogenases. Percent cell viability compared to the control was calculated for each dilution of the samples and CC_{50} were determined.

Mode of action assay test is carried out by following the previous test^{2,3}. These experiments were performed to assess the way of action of the samples. It has two sets of tests; the first is entry step, the mixture of HCV and sample was inoculated to the cells. After 2 h the residual virus and the sample were removed, and cells added to the medium without samples for 46 hours. The second step is a post entry step, HCV was inoculated to the cells in the absence of the sample. After 2 h the residual virus was removed, and the cell was added to the medium containing the sample for 46 hours. Positive control used a medium containing 0.1% DMSO.

RESULTS

Taxonomically, faloka plants are included in the Genus Sterculia^{4,5}, so the initial assumption of faloka plants contains compounds that resemble plants in their genus. Plants that are one genus, namely Sterculia tragacantha, which has successfully isolated several flavonoid compounds, one of these compounds is epicatechin^{6}. On this basis, the search for epicatechin compounds was carried out qualitative and quantitative by using LC-MS/MS (AB-Sciex 4000)\(^{10}\). The test results using LC-MS/MS (AB-Sciex 4000) library software water extract faloka stem bark identified containing epicatechin at retention time (RT) and mass to charge ratio (m/z) shown in Figure 1.

![Fig. 1. Chromatogram results of the identification of epicatechin identification compounds in the water extract of water extract faloka stem bark to determine RT using LC-MS/MS (AB-Sciex 4000). (A) From the figure at RT 5.90 shows a compound based on software library from LC-MS/MS (AB-Sciex 4000) so that this pick graph is an epicatechin compound. (B) The epicatechin compounds in the water extract faloka stem bark is shown at m/z 289.2 based on the software library LC-MS/MS (AB-Sciex 4000) with the molecular formula C_{15}H_{15}O_6 for.](image)
After successfully identifying the epicatechin compounds in the water extract of falok stem bark, the next step is to determine the level of epicatechin compounds. Determination of epicatechin compounds using LC-MS/MS (AB-Sciex 4000) and standard compounds of standard compounds (S)-epicatechin >98% (Sigma-Aldrich). The results of the determination of the levels of epicatechin compounds in the water extract of falok stem bark shown in Figure 2.

Anti-HCV activities of Sterculia quadrifida R.Br stem bark

The water extract of falok stem bark at the concentration of 50 and 100 μg/mL showed 100% inhibition to HCV JFH1 replication. Lower doses such as 25 μg/mL, 12.5 μg/mL, 6.25μg/mL and 3.125 μg/mL showed the percentage of infectivity at the level of 95.39%, 67.50%, 29.775% and 8.31%, respectively. From the linear regression equation of the percent infectivity, IC₅₀ of water extract of falok stem bark 11.67μg/mL (Figure 3).

Cytotoxic Assay

The cytotoxic test using MTT assay aims to calculate the viability of cells and then compared with the viability after treated with DMSO. The results showed that the treatment using water extract of falok stem bark at the concentration of up to 100μg/mL was not toxic to the cells, while the cell viability decreased at treatment with 200 μg/mL. From the linear regression equation of the percent viability, we found that the CC₅₀ of water extract of falok stem bark was >1000 μg/mL (Figure 4).

![Fig. 3. Linear Regression curve of the inhibition of HCV JFH1 after treated with water extract falok stem bark. The data represent means ± SEM of data from two independent experiments](image)

![Fig. 2. Chromatogram results of the identification of epicatechin identification compounds in the water extract of falok stem bark to determine RT using LC-MS/MS (AB-Sciex 4000). (A) The epicatechin standard at RT 3.90, (B) The epicatechin compounds in the water extract of falok stem bark is shown at RT 3.90. The calculation of epicatechin concentration obtained by using Analyst Instrument Control and Data Processing Software AB Sciex obtained by linear regression equation y=104 x+2.88 and R-value =0.9993. Total epicatechin found in a high concentration of 875mg/kg. These results are in accordance with the initial assumptions that mention falok plants contain epicatechin compounds.](image)

![Fig. 4. Linear regression curve of the viability cell after treatment with water extract of falok stem bark. The data represent means ± SEM of data from two independent experiments](image)
After testing the effect of HCV JFH1 inhibition and Huh7t cell line cytotoxic test, it was continued by determining the selectivity index with the criteria >311. The selectivity index is determined by comparing CC_{50} and IC_{50}. The results of the comparison are obtained with > 8.57, then the next test which is the time of the additional test can be done.

Mode of action anti-HCV

Test to determine the inhibition step of water extract of falook stem bark the HCV JFH1 lifecycle using a concentration of 40 μg/mL and obtained the test results at the entry step was 93.97% inhibition. The post-entry step was 96.75% inhibition. Combination of entry and the post-entry step was 100% inhibition. The results can be seen in Figure 5.

![Figure 5. Linear regression curve of the viability cell after treatment with water extract of falook stem bark. The data represent means a SEM of data from three independent experiments. From the data, 100% inhibition was encountered during and post-inoculation step, the inhibition was 93.968% at the step during inoculation and the inhibition was 96.75% at the post inoculation step. Thus showing the water extract of falook bark can inhibit at three step in the HCV JFH1 life cycle.](image)

DISCUSSION

Water extract of falook stem bark has flavonoid content, namely epicatechin which is soluble in water. This result is similar to previous researchers, epicatechin compounds contained in the extract have the ability as anti-HCV and not toxic.

The results of the inhibitory test of water extract of falook stem bark were 11.67 μg/mL, these results met the criteria of inhibitory extracts in vitro testing that was equal to <25 μg/mL. The results of cytotoxic tests obtained results >1000 μg/mL, these results indicate cell viability at a concentration of 1000 μg/L cell viability was 73.97% and this was according to the criteria of >50%. It also obtained a selectivity index of >8.57. From these data water extract falook stem bark can be continued to the next test.

The test results of the step of inhibition in the HCV JFH1 life cycle obtained by the extract of falook bark water can inhibit at the entry step. In this entry step the water extracts of falook stem bark interacting with binding factors (GAGs and LDL-R), receptors (SR-BI, CD81, Ocludin and Claudin 1) and entry factors (EGFR, EphA2, TIR1 and NPC1L1) and VHC JFH1, which is expected to be able to inhibit the life cycle of JFH1 by inhibiting one of the above things by 93.968%. At the post-entry stage also water extract falook stem bark can inhibit the life cycle of JFH1 HCV. At this stage the water extract falook bark will interact internally, especially the non-structural parts that function in RNA replication such as NS3, NS3 / NS4A, NS4B, NSSA and NSSB20. From the data, it is found that there are obstacles around 96.78%, so that it has obstacles in one or several non-structural proteins. This research can be continued for testing specific proteins in the JFH1 VHC infection process in Huh7t cell line hepatocyte culture in vitro.

CONCLUSION

Falook plants for the first time identified and determined the content of epicatechin compounds. It can inhibit VHC JFH1 replication, is not toxic and can inhibit HCV JFH1 at the entry and post-entry step in the Huh7t hepatocyte cell line.

ACKNOWLEDGEMENT

This work is supported by the Bumi Flores Group Company in Kupang City, Indonesia.

CONFLICT OF INTEREST

Declared none

REFERENCES

2. Ranta, F.; Nawawi, D.; Pribadi, E.; Syafii, W.
Editorial Board

Editor in Chief

Dr. S.A. Iqbal
editor@orientjchem.org

Dr. Iqbal is currently serving as the Director of Research at the Crescent College of Technology, affiliated to the Rashid Ghandi Technical University, Bhopal, India. He is also serving as an Editor of the Journal of Chemistry as Chief Editor since 1996. Dr. Iqbal has conducted research on environmental, co-ordination, and drug chemistry and has a record of producing over 50 research papers in international journals and co-author of 25 books on various topics of chemistry. He has presented his research work in many international conferences and is the reviewer for Elsevier publications and is the visiting scientist of Japan and Saudi Arabia.

Honorable Members of International Advisory Board

Prof. Marek Wesołowski
Medical University of Gdańsk, Department of Analytical Chemistry, Gdansk Polnad
marwe@umed.edu.pl
Scopus ID: 7003025637

Dr. Abdul Wahab Omari
Laurentian University, Ontario, Canada
omarri@laurentian.ca
Scopus ID: 3549095056

Dr. Pavel Mokrej
Department of Polymer Eng, Tomas Bata University, Zlín 76005, Czech Republic
mokrej@tuy.cz
Scopus ID: 1903153390

Prof. Sakaiti Chandra
Department of Chemistry, University of Sikkim, India
sakaih@skku.ac.th
Scopus ID: 6502496426

Dr. Ayasah Ahle
Department of Chemistry, College of Science, University of Sharjah, Sharjah, United Arab Emirates
akhal@sharjah.ac.ae
Scopus ID: 8603539686

Managing Editors and Advisers

Prof. Dr. Sanwar Alam
Jamia Hamdard, (University) New Delhi,

Dr. Ponnraj Thanasekaran
Institute of Chemistry Academia Sinica, Nankang, Taipei, Taiwan

Prof. E. M. R Kiremire
Faculty of Science, University of Namibia,
Members of International Editorial Board

Dr. Cafer SAKA
Srii University Healthy of School Sirtat.
56100-TURKEY
sakaca1975@gmail.com
Scopus ID: 0266759660

Dr. Cecilia de Melo Correlo Baptistta
Polytechnic Institute of Tomar (IPT),
Department of Engineering Unit Campus da
Quinta do Contento, Estrada da Serra,
2300-313 Tomar, Portugal
ceclia@ipt.pt

Dr. Celina Soares
University of Bucharest Bucharest,
Romaia
iscil@yahoocom
Scopus ID: 0124341100

Dr. Sheela Mahadev
Barkatullah University Bhopal,
India
ck1262000@yahoo.com

Dr. Nour Azhar Mohamed Hazzli
(UNOS) Universiti Malaysia
Teneguan,Malaysia
nadh@amt.edu.my
Scopus ID: 5845687560

Dr. Attilio Naccarato
CNR-Institute of Atmospheric Pollution
Research Rende (CS)
Italy
attilio.naccarato@lia.cnr.it
Scopus ID: 3575683680

Dr. Sunday J. Ojo
University of Lagos, Lagos,
Nigeria
ojosunday@yahoo.com
Scopus ID: 2064823600

Dr. Basam M. Al-Ansari
Unn Al-Qura University Mekah, Saudi
Arabia
bashar@uqu.edu.sa
Scopus ID: 1572758500

Dr. Nitesh Zaware
Dept. Of Chemical Biology Mount Sinai
School of Medicine,
New York, U.S.A
hitlaz.zaware@nmsum.edu
Scopus ID: 3702032000

Dr. Melody Anak Kimi
Univirisi Malaysia Sarawak 94300 Kota
Samahran,
Sarawak
kmelody@unimas.my
Scopus ID: 3070039200

Dr. Abdul Jabbar Al-Rajab
Center for Environmental Research
and Studies, Jazan University, Kingdom of
Saudi Arabia
airajab@hotmail.com
Scopus ID: 2446132700

Dr. Jeythi Dhuburu
University of Massachusetts Medical
School,
Massachusetts, U.S.A
Scopus ID: 2206733220

Dr. Vijay Kumar
University of the Free State, Bloemfontein,
Dr. Jing-Jing Zhang
University of Illinois Urbana Champaign, Urbana, U.S.A.
jhgan@illinois.edu

Dr. Amne Hamane
Université d'Oran 1, Ahmed Benbella, Algeria
aminehamane@yahoo.fr

Dr. Dr. Mingqing Sun
Department of Plant & Soil Sciences, University of Delaware, Newark, DE, USA
sun@udel.edu

Dr. Dalin Banerjee
Department of Chemistry, BITS-Pilani, K.K. Birla Goa Campus, NH 17 B, Bye Pass Road, Zuanagar, 403726, Goa, India
malinb@.bits-pilani.ac.in

Dr. Malinee Srijariyapan
King Mongkut's University of Technology North Bangkok 1518 Pracharat 1 Rd, Bangsue, Bangkok, Thailand
macinuss@gmail.com

Dr. Atthar Adil Hashmi
Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025
anasim@jmi.ac.in

Dr. Vandana Magarde
Barktallah University, Bhopal, India
vmanagarte@yahoo.co.in

Dr. Sibi Jose
Barktallah University, Bhopal, India
kojose@yahoo.com

Dr. Khurshedd Akaram
Jamia millia Islamia University New Delhi, India
maxram@jmi.ac.in

Dr. Naeem Uddin Siddiqui
M.J.P. Rohilkhand University Shahjahapur, India
naeemuddin.siddiqui@gmail.com

Dr. Farhana Afridi
Barktallah University, Bhopal, India
drfranfarhana@gmail.com