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ABSTRACT

Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include
ease of administration without needles that reduces issues associated with needlestick injuries and
disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate
other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults
and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and
opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus
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should be brought to designing delivery strategies that take into account the broad range of diseases,
populations and healthcare delivery settings that stand to benefit from this unique mucosal route.

In this review the current state of the art in nasal vaccine deliv-
ery will be described along with future prospects. A brief intro-
duction to the anatomy and physiology of the nasal cavity will
highlight the advantages and disadvantages of the route. Encap-
sulation and presentation methods along with particular for-
mulation considerations for the nasal route will also be
discussed.

There are many mucosal routes which have been regarded as
potential sites for vaccine delivery such as oral, nasal, pulmo-
nary, conjunctival, rectal and vaginal mucosa. However, for
practical and cultural reasons researchers have tended to focus
only on oral, nasal, and pulmonary administration." Needle-
free vaccines offer many advantages over traditional
vaccination approaches including convenience, cost, ease of
administration and disposal.

There are several needle free methods of vaccination such as
transdermal delivery and mucosal delivery.”* Mucosal immu-
nization has been successfully used in human vaccination. The
human mucosal immune system is large and specialized in per-
forming inspection for foreign antigens to protect the surfaces
themselves and of course human body interior. Since most
infections affect or start from mucosal surfaces, using a mucosal
route of vaccination is of great interest and provides a rational
reason to induce a protective immune response.’ Nasal delivery
of vaccine offers an easily accessible route to the immune
system.

The nose has the function of olfactory detection (sense of
smell) and also filtration, humidification and temperature con-
trol of air as it enters the respiratory system. Moving from front
to back the areas of the nasal cavity are the nasal vestibule, the
respiratory region, and the olfactory region. The nasal cavity is
divided by the septum to form the left and right nares, which
lead into the left and right choana before opening onto the
nasopharynx at the top of the throat. The turbinates bound the

nasal walls and are responsible for air conditioning and the
large mucosal surface area of the nasal cavity. The nose is also
the main port of entry for many pathogens. The first barrier to
foreign bodies is hair at the entrance to the nares, the nostrils,
which successfully keeps out larger particles. The entire surface
of the nasal cavity is covered in a mucus layer, which traps
smaller particles. Mucus is an aqueous, viscoelastic and adhe-
sive gel' that contains several types of mucins (abbreviated to
MUC) MUC1, MUC4, MUCS5A and MUC5B, MUCIS6, that are
produced by either goblet cells or mucus subglands.>® Cilia per-
form a mechanical clearing role termed mucociliary clearance
by beating and thus transporting the mucus blanket with
entrapped pathogens to the back of the throat at a rate of
5-6 mm per minute, either to be destroyed in the stomach or
expectorated via sneezing and/or coughing. This function mini-
mises the amount of particles able to enter the body through
the mucosal surface.” The nasal route has been used to deliver
vaccines for respiratory infections and sexually transmitted
infections.® The rationale for targeting mucosal tissue in the
genital tracts can be attributed to the mucosal immune system.

The mucosal immune system

The mucosal immune system provides local protection against
pathogens that enter the body through the mucosal mem-
branes. The mucosal immune activities are associated with lym-
phoid tissues, i.e. mucosa-associated lymphoid tissue (MALT),
which is present in mucosal tissue in the nose, lungs, gastroin-
testinal tract and vaginal/rectal surfaces.” The MALT is classi-
fied into specific subcompartments, depending on the location,
including the gut-associated lymphoid tissue (GALT),
nasopharynx-associated lymphoid tissue (NALT),"” bronchus-
associated lymphoid tissue (BALT). The mucosal routes com-
monly used for vaccination strategies are depicted in Fig. 1.
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Figure 1. Routes of mucosal vaccination within the mucosa-associated lymphoid tissue (MALT), with several subcompartments including: the nasopharynx-associated
lymphoid tissue (MALT), bronchus-associated lymphoid tissue (BALT), gut-associated lymphoid tissue (GALT) and genital tract-associated lymphoid tissue, reproduced

from Lycke et al, 2012."*

The mucosal immune systems are protected by immune cells
that populate the region along the mucosal surfaces, and also
epithelial cells and mucus that acts as physical barrier before
the pathogen gain access to the underlying tissues.

Respiratory epithelial cells

The epithelial cell layers cover the mucosal surfaces including
the respiratory, gastrointestinal and urogenital tracts exposed
to the outer environments. The epithelial cell layer acts as a bar-
rier that is equipped with some supporting elements such as the
mucus and cilia in preventing penetration of pathogens (Fig. 2).

Furthermore, the epithelial cells can detect and uptake path-
ogenic organisms and/or antigenic components by performing
nonspecific endocytosis or interacting with pattern recognition
receptors such as Toll-like receptors (TLRs).''"" The epithelial
cells together with lymphocytes and underlying antigen

presenting cells (e.g. dendritic cells (IDCs) and macrophages),
cytokines and chemokines perform an innate, non-specific and
adaptive immune response to encounter the invasion of patho-
genic organisms or immunogenic substances. 1415

Nasopharynx-associated lymphoid tissue (NALT)

The NALT can be simply defined as organized mucosal
immune system in the nasal mucosa that consist of lymphoid
tissue, B cells, T cells and antigen presenting cells (APCs) and
are covered by an epithelial layer containing memory (M)
cells.'® M cells are present in the epithelial cell layers and have
specialization in transporting antigen across the epithelium.'”"®

Whenever the nasal mucosa is exposed to pathogens or
antigenic substances, the intruder will interact with the muco-
sal immune system. The type of interaction is highly depen-
dent on the characteristics of the antigen. The pathogen or
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Figure 2. Structure and function of respiratory epithelial cells; equipped with mucus layer (not shown) and ciliated cells, reproduced from Grassin-Delyle (2012

immunogenic substances may be able to pass through the
nasal epithelium and interact with the APCs such as macro-
phages and DCs. These APCs will process the antigen and
migrate to the lymph node where the immunogenic portion
will be presented to the T cells. This marks the activation of
the immune response cascade. A soluble antigen might be rec-
ognized by the APCs,"” while particulate antigen is generally
taken up by the M cells and transported to the NALT.? The
NALT is also drained to the lymph node where further anti-
gen processing will occur. A schematic representation of this
process in more detail mechanisms is presented in Fig. 3.*'

Immunoglobulin A (IgA)

In addition to the MALT, the mucosal immune system also
produces the antibody immunoglobulin A (IgA), that plays an

Epithelium
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)'Idi

important role in mucosal immunity at mucosal surfaces.” IgA
constitutes up to 15 % of the total immunoglobulin, which is
predominantly present in external secretions including the
mucus in the bronchial, urogenital and digestive tracts, saliva
and tears.”* It was found that the production of IgA in humans
could be over 1 mg/ml in secretions associated with the muco-
sal surfaces."® A small amount of IgA can be found in the serum
while most of the IgA is located in external secretions known as
secretory IgA (sIgA).*' IgA consist of a dimer or tetramer, a
joining J-chain polypeptide and a polypeptide chain called the
secretory component.”*** IgA has several functions in mucosal
defense including the entrapment of antigens or pathogens in
mucus to prevent them from direct contact with the mucosal
surface.'**® In addition, sIgA may also block or provide steric
hindrance to surfaces of pathogenic molecules that may inhibit
their attachment to the epithe]ium.”

Nose-Associaled Lymphoid Tissue

M Cell

Macrophage prolferation
Th=— Batericidal action of phagocytes

Tha—» Increased antibody response

Th17— Increased inflammatory response

Treg —+ Decreased Th1/Th2 response

Figure 3. Pathways demonstrating how particulate antigen triggers local immune response in the nasal mucosa and systemic immune response via the NALT, adapted

from Csaba (2009)*",
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The predominance of IgA in mucosal areas is a result of
mutual collaboration between plasma cells and epithelial cells.
The activated plasma cells in the lamina propria, adjacent to
mucosal surfaces produce polymeric IgA (pIgA), while the epi-
thelial cells in the mucosal surfaces express an Ig receptor called
the polymeric Ig receptor (pIgR). The released pIgA from acti-
vated plasma cells binds to pIgR, and is then taken up into the
cell via endocytosis. IgA is transported across mucosal epithe-
lial cells before being released onto the luminal surface of the
epithelial cells. Proteolysis cleavage of the pIgR allows IgA to be
secreted into mucosal secretions.'*****

Mucosal vaccines

New vaccine formulations should be able to induce innate and
adaptive immune response; involving antigen-specific memory
T and B cells that will respond effectively to the invading patho-
gens.””* Interaction with pathogens or antigens can produce
the IgA secretion as an antibody response.’’ Intracellular anti-
gens, can be produced by invading viruses that replicate within
the host cell, or derive from cytoplasmic bacteria, while the
extracellular antigens include bacteria, parasites, and toxins in
the tissues. Intracellular antigens are generally processed in the
host cells, coupled to a major histocompatibility complex-I
(MHC-I), a cell surface molecule, and transported to the cell
surface.”** The presence of MHC-I on the cell surface will
lead to activation of CD8+ T-cells to become cytotoxic T-lym-
phocytes (CTLs). Extracellular antigens are endocytosed and
presented on MHC-II molecules for activation of CD4+ T-
helper (Th) cells.****

The activation of Th cells will release a specific set of cyto-
kines that modulate the B cell and CD8+ CTL immune
response, depending on the nature of the stimulant.* Th cell
types Th-1, Th-2 or Th-17 will be induced accordingly. A Th-1
response develops in the presence of interleukin 12 (IL-12),
which is in turn synthesized primarily by DCs and/or natural
killer (NK) cells in the presence of bacteria or virus. The Th-1
response is marked by the production of the Th-1 cytokines
e.g., interferon-gamma (IFN-y) and tumor necrosis factor-f
(TNE-g8). A Th-2 response is driven by the presence of IL-4
and results in the production of specific cytokines IL-4, IL-5,
IL-9 and IL-13.% It can be seen that the production of IL-4 gen-
erates a feedback loop that results in increased generation of a
Th-2 response at the local site.

Nasal vaccination can also result in stimulation of Th-17
CD4+ cells. Th-17 cells are responsible for the secretion of the
proinflammatory interleukins IL-17A and IL-22, as well as IL-
17F and IL-21. It Is known that the Th-17 family of cytokines
respond to extracellular bacterial and fungal pathogens, and
Th-17 cells enhance generation of Th-1 cells through an
increased IFN-y activation giving rise to a Th-1/Th-17 immune
response that activates macrophages and other innate
responses.’®** Stimulation of epithelial cells by the Th-17 fam-
ily of cytokines can aid tissue repair and secretion of antimicro-
bial peptides, which can exert a protective effect in pulmonary
infection.” There is contradictory evidence, however, regarding
the role of Th-17 response in nasal immunization. Early work
on the role of Th polarization in nasal immunization indicated
that this route always promotes a Th-17 response."” Later
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research has indicated that the response is more nuanced, with
some contradictory evidence regarding advantages and disad-
vantages of IL-17A induction.*"****

Predominance of one set of cytokines over the other is gen-
erally indicative of polarization of Th responses, for example
the presence of IL-4 and absence of IFN-y indicate a classical
Th-2 polarized immune reaction™ although these cytokines
can also be released at the same time.">*** The varying cyto-
kine profiles related to CTL and antibody production are fun-
damental in affording protection against a specific pathogen.
Specific macrophage activation was found to play a crucial role
in the eradication of Mycobacterium tuberculosis bacterial
infections, ™ showing that the induction of specific immune
responses may play a key role in determining whether a given
vaccine product is effective.

The recently discovered innate lymphoid cells (ILCs) act as
an early source of cytokines to regulate and direct mucosal
immune respl:mses.“g Unlike B or T cells, however, they do not
exhibit antigen specificity. Group 1 ILCs (ILCls) include NK
cells and produce Th-1 type cytokines IFN-y and tumor necro-
sis factor-a (TNF-e ); group 2 ILCs (ILC2s) produce Th-2 type
cytokines IL4, IL-5 and/or IL-13, while group 3 ILCs (ILC3s)
include lymphoid tissue inducer cells that produce Th-17 type
cytokines IL-17 and/or IL-22. Both ILCls and ILC3s have been
implicated in type 1 and Th17 cell-mediated immunity and dis-
ease.”’ Because they are involved in early release of cytokines at
mucosal sites, ILCs have been implicated in directing immune
response at the mucosal surface, as shown by a number of
recent studies.”** NK cells and ILCl-like cells damped the
immune response after vaginal administration of ovalbumin
and cholera toxin to mice.”® NK cells have been shown to
enhance Th proliferation through IFN-y production,® while
ILC2s play a role in directing Th-2 response.*® There is also evi-
dence that ILCs can act as APCs, although this may be specific
to the lymphoid tissue site involved and is thought to occur to
a lesser extent than through the professional APCs.*® Finally
the regulatory T-cells (Tregs) play a role in ILC and Th com-
munication,” as well as helping to directly control Th response,
which is particularly important in autoimmune dysfunction
discussed later.>®

Advantages of nasal vaccine delivery

The nasal route has great potential for vaccination due to the
organized immune systems of the nasal mucosa. The nasal epi-
thelium encloses follicle-associated lymphoid tissues that are
important in inducing mucosal immune response. The immune
cells such as nearby B-cells can produce IgA at the mucosal
sites where the respiratory pathogens invade.”” Many published
studies have shown that nasally administered vaccines induce
serum IgG and mucosal IgA that are important for deliberating
enhanced efficacy of vaccine.””® The enhanced induction of
mucosal IgA antibodies has been shown to play a significant
role in neutralizing pathogens such as Streptococcus pneumo-
nia>® and measles viruses®® and preventing further infection.
Moreover, intranasal immunization has also been reported to
induce cross-reactive antibodies that might be indicative of
cross-protection.*"®* This effect can make vaccines more effi-
cient by reducing the number of vaccinations required since
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cross-protective vaccines may produce cross-reactive antibod-
ies that recognize more than one antigen. Given the high cost
of many antigen production systems this offers a distinct
advantage over other routes.

Therapeutic vaccines

While much of the work on nasal vaccine delivery is currently
focused on prophylactic vaccines, the access that the nasal route
provides to the mucosal immune system also has relevance for
therapeutic vaccines used to treat rather than prevent disease.
Nasal immunotherapy for treatment of various cancers and
Alzheimer are currently generating much interest.**** A partic-
ular focus is the use of therapeutic vaccines for the treatment of
autoimmune diseases such as type I diabetes, atherosclerosis,
multiple sclerosis, rheumatoid arthritis, lupus and Crohn’s dis-
ease. These are caused by unchecked immune response to mol-
ecules, termed self-antigens, that are capable of inducing an
immune response in a host but should not induce an immune
response in a healthy individual that produces them, whereas
undesirable response to innocuous environmental antigens
gives rise to allergy. The autoimmune and inflammatory
response is governed by regulatory T-cells (Tregs), with poor
function or reduced numbers of Tregs being associated with
autoimmune disease. Treatments for this family of diseases are
often non-specific, or use immune suppressants that increase
susceptibility to infection. Development of effective therapeutic
vaccine would correct the inappropriate immune response
through generation of tolerance to the self-antigen(s).*® Treg
cells that express the forkhead box P3 transcription factor are
known as FoxP3+T-cells, with dysfunction of this subset of
Tregs being implicated in a range of chronic inflammatory dis-
orders.®® It has long been known that oral delivery is effective
in generating antigen tolerance, through deliberate introduc-
tion of the antigen to food.”” More recently it has been shown
that a similar tolerance induction can be achieved via nasal
delivery through activation of the DCs in the draining lymph
nodes to enhance induction of FoxP3+T-cells.”® Examples of
successful nasal delivery include immunization to suppress ath-
erosclerosis®”” and arthritis.”" The effect of adjuvant on toler-
ance is discussed in a later section.

Formulation approaches

Current nasal formulations include, solutions (drops or sprays),
powders, gels and solid inserts.”” Solutions are often described
in the literature as they are both the easiest way of formulating
a vaccine for an in vivo study or clinical trial, and are the easiest
to administer for example in mice where the liquid is often
pipetted directly into the nostril. In humans this often means
that the subject either has to remain laying down or with their
head held back for a period of time after administration, which
is not realistic in a mass vaccination setting. Sprays are easier to
administer and deliver vaccine further into the nasal cavity, but
may still leak out of the nostril or drip into the oral cavity.
Including a gelling agent in the formulation that is either
mucoadhesive or able to penetrate through mucus offers
increased residence time, while advantages of solid formats
such as powders or solid inserts include ease of manufacture

and stability, while liquids are more prone to degradation.
Taste may also be a factor as formulations may travel into the
oral cavity, although given that vaccines tend to be adminis-
tered once or twice only, this is less of an issue than for medi-
cines that are taken on a regular basis.

A range of naturally-occurring, synthetic and semi-synthetic
polymers have been investigated as gelling agents in nasal deliv-
ery of vaccine. Administering as a gel should improve retention,
although there is ongoing debate as to whether positively
charged or anionic polymers offer better uptake. Those that
have the ability to adhere to mucosal surfaces and selectively
target M cells or APCs, should be the most effective.'®*® Chito-
san has been much investigated, and is a polysaccharide manu-
factured from chitin found in crustacean shells or fungi by a
deacetylation process. Because of the range of sources this poly-
mer is available in a range of molecular weights, but all are
made up of repeating units of glucosamine and N-acetylglucos-
amine and bear a positive charge making it mucoadhesive.
Varying the degree of deacetylation affects the charge, as does
methylation. Methylating chitosan offers some advantages for
mucosal delivery.

Powder formats have the advantage of increased stability
over their liquid counterparts and ability to target further into
the nasal cavity. An example of this is the Anthrax spray-dried
powder formulation suitable for mass vaccination in developed
and developing world settings.” Possible disadvantages of pow-
ders include the ease and cost of administration if specialist
applicators are required. Solid inserts are tablets designed to
dissolve when in contact with mucus and have been investi-
gated for vaginal delivery in humans and nasal delivery in live-
stock animals,”” and have many similarities with sublingual
formulations.

Soluble antigens tend to be less immunogenic than particu-
late formulations, additionally encapsulating antigen into par-
ticles may improve the transport of the antigens across the
nasal mucosa. For this reason there has been a great interest in
developing particulate systems as carriers for vaccine prod-
ucts.”* ™ Aspects such as vaccine formulations and delivery
strategies are important in designing new vaccines so that effi-
cient induction of the innate and adaptive immune response
can be obtained according to the target pathogen.'®*® Particu-
late delivery systems that can imitate pathogens such as poly-
meric nanoparticles and liposomes are considered a promising
approach for nasal vaccine delivery.

Nanoparticles are particles in the nanometer 1x10™° m
size range and can be made of polymers such as chitosan,
alginate or synthetic co-polymers suich as poly(lactic-co-gly-
colic acid (PLGA). Varying the molecular weight and/or
ratio of lactic to glycolic acid affects the rate of degradation
enabling rate of release to be controlled. But PLGA nano-
particles bear a negative charge, which is not compatible
with mucosal delivery, hence the plethora of papers investi-
gating wvarious coatings or modifications to adjust this.
Those with positive charge and enhanced residence have
tended to give the best immunological responses with high
serum antibody titers and sIgA levels.”” Poly(lactic acid)
(PLA) and polyethylene glycol (PEG) can also be combined
to form co-block polymers able to incorporate antigen,*
varying the molecular weight of the PEG and/or ratio of
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PEG to PLA alters physicochemical characteristics, release
and hence efficacy.®!

Other polymers investigated include pullulan, a naturally
occurring polysaccharide copolymer made up of maltotriose
subunits from fungus;** pectin, a naturally occurring polysac-
charide found in fruits; and the biodegradable synthetic poly-
mer polycaprolactone.®

Liposomes are nano- or micrometre sized particles made up
of one or more lipid bilayers, which have the ability to incorpo-
rate antigen at their surface or inside the aqueous core. There
are numerous examples of coated and un-coated liposomal for-
mulations used to deliver vaccine intranasally in a range of for-
mats.***"  Chen showed that trimethylchitosan-coated
liposome powders offered improved uptake in ex vivo nasal
penetration studies when compared with the same liposomes
coated in chitosan.”’ Liposomes that also comprise lipid or
other material derived from virus are known as virosomes, with
material from influenza virus such as hemagglutinin (HA) and
neuraminidase being commonly used.”*!%*

Currently there is more evidence to support the hypothesis
that particles smaller than 300nm are the most effective at
crossing mucus,'™ but there is also evidence to suggest that
larger particles are also able to penetrate. Results from intrana-
sal administration of mucoadhesive microparticles suggest that
penetration of the entire particle may not be necessary to
induce an immune response.'’* It is likely that the overall com-
bination of size and charge are key to achieving maximum
immunological effect. Some examples of particulate delivery
systems investigated for nasal delivery of vaccine are shown in
Table 1.

Adjuvants

Some materials added to form gels or particles may act as adju-
vants as well as delivery vehicles. Alternatively, adjuvants may
be added as a separate component to a vaccine product. Adju-
vants are materials added to a vaccine to boost the immune
response and may also reduce the amount of antigen required
to elicit an immune response. Alum is often used in traditional
vaccines but is not effective when administered mucosally.
Judicious choice of adjuvant can direct the arm of the immune
system, as described previously. Often particulate delivery sys-
tems are believed to confer both the benefits of optimised deliv-
ery across mucus/mucosal tissue and inherent adjuvanting
effects. Many studies have investigated these abilities and
ascribed immune boosting response to one, other or both
qualities.”

Mucosal adjuvants that have been tested for intranasal vac-
cine delivery including: MF59 emulsion (containing squalene
oil, the surfactants Span 85 and Tween 80 and citrate
buffer),!%%1%¢ ]ipopolysaccharide,a"‘m TLR agonists,'“'"’“'wg
chitosan,''® trimethy]chitosan,‘“’l"' bacterial outer membrane
protein''" and cholera toxin''? or heat-labile enterotoxin (LT)
from E.coli.'"® Some side effects have been found with the use
of bacterial toxin when given intranasally, including Bell’s palsy
(Facial paralysis) and other adverse events related to disorders
of the facial nerves.""''® It has been suggested that the central
nervous system was involved in the palsy as the bacterial toxin
was re-directed into the brain.''>'"” Thus, the use of LT as
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vaccine adjuvant is no longer recommended. Mast cell activa-
tors such as compound 48/80 (C48/80) have shown promise in
Anthrax vaccine.”” As described previously, adjuvants can help
to polarize immune response and this effect should be taken
into account when considering adjuvant for a particular vaccine
type. Mice immunized with an influenza vaccine adjuvanted
with a synthetic TLR-4 agonist via the nasal route, exhibited a
transient, enhanced IL-17A pathology, characterized by weight
loss and morbidity, which was significantly greater than
observed in mice given no-adjuvanted antigen."' The effect of
adjuvants on induction of tolerance has also been noted; an
intranasal co-administration of hen egg lysozyme with a TLR2
ligand enhanced Thl-type antibodies in one case,''® while
another TLG2 ligand, Pam3Cys, was shown to increase the risk
of developing autoimmune disease''” PLGA nanoparticles have
been shown to boost tolerance in suppression of arthritis'’
and further research by the same group has shown that they
are responsible for generation of enhanced Treg cell
induction.®®

Current nasal vaccine products

Licensed intranasal vaccines for humans include the influenza
vaccines FluMist/Fluenz™ (MedImmune, MD, USA)"' and
the Nasovac™ live attenuated influenza nasal spray manufac-
tured by the Serum Institute of India, which was developed
alongside its live attenuated A(H1N1), more commonly known
as swine flu.'** No serious side effects have been reported asso-
ciated with the administration of Nasovac indicating its
safety,'” although its efficacy data are not sufficiently available
yet.'** Until recently FluMist was considered one of the most
successful intranasal vaccines, it is well tolerated and had exhib-
ited good efficacy.'*® A runny nose/nasal congestion has been
reported as the most common adverse events of Flumist, with
mild to moderate in severil:yfz' However The US CDC (Centre
for Disease Control) Advisory Committee on Immunization
Practices (ACIP) recently voted that the Flumist nasal spray
live attenuated influenza vaccine (LAIV) (sic), should not be
used during the 2016-2017 flu season, based on “data showing
poor or relatively lower effectiveness of LAIV from 2013
through 2016.”'* At the time of writing no further detail was
available. It should be noted that a nasal Live Attenuated Influ-
enza Virus (LAIV) influenza vaccine has been used for over 50
y in Russia and previously the USSR. Data published from a
study using the Russian intranasal vaccine showed better herd
immunity for intranasal LAIV than inactivated vaccine.'?’
Herd immunity is a crucial impact of mas vaccination pro-
grams; it is the immunity given to the whole population, even
those who have not received a vaccine, because enough of the
population (the herd) have received the vaccine that the infec-
tion cannot effectively spread. However, it should be noted that
the Russian LAIV is administered in 2 doses 3 weeks apart,
which increases cost and has the possibility of reducing
compliance.

Targeting school age children for influenza has 2 benefits,
first this age group tend to have the highest rates of influenza
infection. Secondly targeting children reduces infection rates in
through transmission from this group, although transmission
rates can vary.sz In the European Union an intranasal
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Table 1. Examples of particulate formulations with published in vivo data.

Particle type

Vaccine

Study type

Chitosan and HSA (human
serum albumin)

polycaprolactone /chitosan
T™MC

chitosan and glycol chitosan
coated PLGA

PEG-PLA

Liposomes

Esterified hyaluronic acid
microparticles

Glycol chitosan coated
liposomes

Liposomes/ hyaluronic acid

Chitosan-coated PLGA

Cationic cholesteryl-group-
bearing pullulan

Hepatitis B Plasmid DNA

Hepatitis B surface antigen
(HBsAg)

ovalbumin compared with PLGA
and TMC-coated PLGA

HBsAg

HBsAg

Influenza plasmid DNA (HIN1)
hemagglutinin (HA)

Commercial Influenza HINT HA
and LTK63 or LTR72
adjuvants

Hepatitis B Plasmid DNA

Yersinia pestis (plague)
foot-and-mouth disease plasmid
DNA

Clostridium botulinum type-A
neurotoxin subunit antigen

Female C57/BL mice compared with
plasmid DNA alone and protein
antigen

C57BL/6 mice IN only. Varying doses of
HBsAg no comparator formulations

Female Balb/c compared with PLGA
and TMC-coated PLGA {IM and IN)

Female BALB/c mice compared with
chitosan coated PLGA and PLGA,
HBsAg-Alum sub-cut.

BALB/c mice compared with PLA
nanoparticles and conventional
alum-HBsAg based vaccine

BALB/c mice challenge study IN
compared with IM DNA alone (IN
and IM)

mice, rabbits and micro-pigs IN
compared with soluble HA +
LTK63, or IM with HA

BALB/c mice prime boost compared

with DNA alone (IN) and HBsAg
protein (IM)

C57BL/6 mice No IM comparison

Challenge study in cattle

BALB/c mice

Key findings Literature source
humoral and mucosal immune Lebre et al
response 2016'*

Dose-independent serum IgG Jesus et al 2016%

and nasal IgA

Serum IgG superior to other IN Slutter et al
but inferior to all IM 2010
GC-PLGA NPs could induce Pawar et al
significantly higher systemic 2013'%°
and mucosal immune
response than other IN
nanoparticles.
Higher systemic and mucosal Jain et al 2000™
response than PLA
Protective effect against Wang et al 2004%
challenge
Significantly enhanced serum Singh et al
1gG responses and higher 2001"%
hemagglutination inhibition
(HI) titers than other groups
Humoral mucosal and cellular Khatri et al
response higher than DNA 2008™"

alone, Cellular response
better than IM protein
antigen

Th1/Th2 humoral immune
response

Higher mucosal, systemic, and
cell-mediated immunity than
Chitosan - Inactivated
antigen nanoparticles

Strong tetanus-toxoid-specific
systemic and mucosal
immune responses

Fan et al 2015%

Pan etal 2014'

Nochi et al 2010%*

influenza vaccine was licensed in 2011. Damm et al explored
the possible effect of introducing this product in Germany and
concluded that introducing the vaccine to German schoolchil-
dren would lead to a “substantial reduction in influenza-
associated disease at a reasonable cost to the German statutory
health insurance system.”'*” Researchers looking into the same

Table 2. Currently marketed technology for nasal delivery.

question for Thailand reached similar conclusions with provi-
sos based on willingness to pay and contact between age
groups.”® This study raised the issue of effectiveness across
countries where healthcare systems are either new or emerging
and differences in rates and timing of seasonal outbreaks. These
findings highlight the differences between high and low- to

Name Company Presentation Drug type Regulatory status  Marketed products Company web-site
Criticalsorb Critical Pharmaceuticals  Powder or aerosol Small molecule - GRAS status? None www.criticalpharmaceut
peptide, HGH,insulin icals.com
Juco™ Nasal Delivery System Powder-based Anti-emetic Migraine, flu  Phase Il, Phase |, None www.snbl-nds.cojp/en/
Business mucoadhesive drug vaccine pre-clinical
carrier plus device
Optinose Optinose Powder or liquid plus Small molecule Clinical trials None optinose.com/
device (various)
Kurve Kurve Liquid plus device Includes Alzheimer Phase Il None www.kurvetech.com
vaccine
MAD nasal Teleflex Liquid plus device Attachment for syringe to  Device only/ not ~ Marketed as stand-  www.teleflex.com
atomize liquids vaccines alone device
None Drug Delivery Solid insert Small molecules and None found None found www.bddpharma
International insulin
FlumistFluenz Medimmune Nasal gel Flu vaccine FDA & EMA FlumistFluenz www.flumistquadriva
(AstraZeneca) lent.com/
Bacterial S antigen Tufts University - US Oral/nasal format not Tetanus toxin and None None www.tufts.edu/
pores stated rotavirus VP6 antigen
Vaccinetab Queen's University Liposomal liquid, powder Small molecules and GRAS None www.vaccinetab.com
Belfast, UK or nasal insert antigen
ChiSys Archimedes Pharma Nasal gel Small molecules and Phase |, pre- Small molecule
antigen clinical
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middle-income countries and demonstrate the need to carefully
evaluate the target population and seasonal factors before
designing or selecting a vaccine product.

A recent review describes most of the commonly encoun-
tered nasal delivery devices currently on the market.”* Addi-
tionally, there is a range of nasal delivery strategies at various
stages along the pre-clinical-clinical pipe-line, some of these
may be suitable for vaccine delivery either in their current for-
mats or with some adaptation. A selection of these is shown in
Table 2 and will be described briefly. Criticalsorb is a penetra-
tion enhancing formulation based on PLGA and PLA, devel-
oped by a spin-out from University of Nottingham, UK,
currently there are no details for vaccine application. The web-
site of peco™ System (Muco System) shows data for a nasal flu
vaccine in a non-human primate immunogenicity study, stat-
ing that more sIgA was produced in the mucosal membrane
compared to injection and nasal liquid spray. and 4-times
greater sIgA than a nasal liquid spray.'*' Optinose is a breath-
actuated device for delivering powder or liquid, a schematic of
the device has been published in the literature,'** as has data
on the use of sumitriptan delivered via the Optinose
device."**"** Kurve is a device for delivering liquid formula-
tions “via a controlled, turbulent flow,”"** the makers have pub-
lished results of a pilot clinical trial detailing their intranasal
insulin therapy for Alzheimer disease and amnestic mild cogni-
tive impairment A,'*® while Archimedes Pharma developed a
chitosan-based formulation, ChiSys®, that achieved good suc-
cess in a clinical trial for a Norovirus vaccine.'*” Because of the
proprietary and often pre-approval nature of the devices
described (with the exception of Flumist/Fluenz and MAD
Nasal), there is a paucity of information regarding design of
some of the devices described in this section. The interested
reader is referred to the relevant company websites (Table 2),
which will offer more current information than is possible in
this review.

Conclusion

Safety profiles are yet to be established in humans for many of
the formulation approaches described in this review. However,
the ever-increasing range of clinical trials indicates the accepted
need for nasal vaccines that are easy to administer and offer
improved benefits over other mucosal routes in terms of cost of
formulation and need for skilled personnel to administer. The
obvious benefits of directly stimulating the mucosal immune
response are clear, but as yet have not been fully realized with
the exception of those for influenza, which demonstrate the
efficiency of this route. The recent US CDC press release will
no doubt impact on the pharmaceutical industry view of riski-
ness of nasal formats. But with increased need to immunize
large populations, potentially in swift response to pandemics
such as avian, swine flu and Ebola there is a clear need to have
strategies in place. The interplay between formulation or carrier
and adjuvant in directing immune response should be investi-
gated. Unfortunately, the high cost of clinical trials and issues
with correlating immune responses in animal models with
humans have created a bottleneck. There is a growing body of
evidence to suggest that genetic material can be successfully
delivered wvia this route, while recent studies have also
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demonstrated the advantages associated with combining the
nasal with other routes of delivery or even combining vaccine
with microbicide.'*® This review has focused primarily on pro-
phylactic vaccines but there is encouraging evidence that nasal
delivery will have a role to play in the design of therapeutic vac-
cines for e.g. cancers Alzheimer and autoimmune diseases. The
role of presentation is also important when designing pre-
clinical studies - instillation of drops is relatively facile even in
mice, while more advanced formulations require more careful
consideration than those administered via pipette. The design
of ex vivo, cell culture or tissue models that provide better pre-
diction of response in humans is extremely desirable. A “one
size fits all” approach is not appropriate for vaccine design
where factors relating to target population, disease type and
mode of infection, will all impact on both formulation and anti-
gen optimization.
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