ABSTRACT

METHOD VALIDATION OF DETERMINATION OF VITAMIN B1 AND B6 IN MIXTURES BY SPECTROPHOTOMETRY UV – VIS WITH THREE-WAVELENGHT AND DERIVATIF TECHNIQUE

Elfi Zahra Nidzamatu Millah

and derivative techniques of UV three-wavelenght spectrophotometry were used for quantitative analysis of a mixture of vitamin B₁ and B₆ simultaneously. The two tecniques were compared based on the validation parameters included selectivity. linierity, accuracy, and precision. The objective of this study was to obtain a simple and rapid method for determining vitamin B₁ and B₆ in injection dosage form. The three-wavelenght technique used 255nm, 260nm, and 265nm and 319nm, 324nm, and 329nm as optimum λ for determination B_1 and B_6 respectively. The result of this study showed a high linierity degree $(R^2 \ge 0.995)$ for both vitamin with range of concentration for linierity test was 4-24 ppm. The result of accuracy and precision test for vitamin B₁ were (99.77) \pm 2.93)%. Statistic test (α = 0.05) those value indicated a high accuracy and a low precision degrees. Recovery vitamin B₆ was $(96,50 \pm 2,04)\%$ those value indicated a low accuracyand precision degrees. The derivative technique showed selective wavelenght at 292nm for vitamin B₁ and 340nm for vitamin B₆. The result showed a high linierity degree ($R^2 \ge 0.995$) for both vitamin in range of concentration at 4-24 ppm. The result of accuracy and precision test for vitamin B_1 were $(102,19 \pm 1,30)\%$ those value indicated a low accuracy and a high precision degrees. Recovery vitamin B₆ was $(93.05 \pm 3.11)\%$ those value indicated a low accuracy and precision degrees. The conclusion of this study was the two tecniques could not be used for quantitative analysis of a mixture vitamin B₁ and B₆ simultaneously.

Keywords: UV Spectrophotometry, method validation, vitamin B_1 , vitamin B_6 , three-wavelength, derivative