ABSTRACT

THE EFFECT OF CURCUMIN ON CASPASE-3 EXPRESSIONS IN OXALIPLATIN INDUCED PERIPHERAL NEUROPATHY MICE MODEL

RUSWIEN NONA AMINE

Oxaliplatin-induced peripheral neuropathy (OIPN) is caused by neurotoxicity majorly on peripheral neural system. It affects on somatosensory neuron system. OIPN pathogenesis involves mytochondria dysfunction, Reactive Oxygen Species (ROS) product enhancement, oxidative stress, as well as apoptosis. Apoptosis induced by caspase, MAPK, and PKC. Caspase-3 is an apoptosis marker which expressed in terminal phase of procaspase activation that triggered DNA fragmentation, nucleus and sitoskeletal protein degradation, protein cross-linked, and ligand expression for fagositosis.

Cucumin is a potent antioxidant that has role as antiinflammatory and antiapoptosis. Therefore, curcumin possibly expect to attenuate caspase-3 expression in primary somatosensory cortex (S1) and thalamic brain area during OIPN. This experiment exerted 9 mice and divided into control group, OIPN group, and OIPN with curcumin $120 \mathrm{mg} / \mathrm{kg}$ group. OIPN was induced by oxaliplatin $3 \mathrm{mg} / \mathrm{kg}$ on day $0,2,4,6$ followed by intraperitoneal curcumin administration per day for 7 days. Mice were sacrificed on day 22, brain were extracted, somatosensory cortex (S1) and thalamus were analysed. mRNA obtained from brain extraction is amplified by Reverse Transcriptase-Polymerase Chain Reaction (RTPCR). PCR product then applicated on 2.0% agarose gel and exceeded electrophoresis stage. Gel was documeted by ultraviolet light as band emergence. Caspase-3 expressions were measured using PCR method. The results suggest that thalamus area showed attenuation on caspase-3 expression in OIPN with curcumin group by intraperitoneal curcumin administration. Nevertheless, its expression in somatosensory cortex (S1) tend to decrease.

Keywords: Caspase-3, Curcumin expression, OIPN, Oxaliplatin, Polymerase Chain Reaction (PCR)

