The Morphological Endogenous Development of EimeriatenellaWild Strain in Primary and Secondary Infection in Chickens

by Muchammad Yunus

Submission date: 19-Dec-2019 03:32PM (UTC+0800)

Submission ID: 1236916037

File name: Bukti C 03. The Morphological Endogenous.....pdf (348.41K)

Word count: 2694

Character count: 14526

The Morphological Endogenous Development of *Eimeriatenella* Wild Strain in Primary and Secondary Infection in Chickens

Muchammad Yunus¹ and AgusWijaya

Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia

(Received: January, 2019 35/19 Accepted: April, 2019)

Abstract

The endogenous development of E. Tenella wild strain was observed in primary and secondary infected chicken to know protective immunity development on host. Twenty broiler chicks at three weeks old were infected with 5×10^3 oocyst of E. tenella. Morphological parasitic endogenous development was observed at 5 days pi, oocyst production calculated at 6 to 11 days pi for primary infection. Two weeks pi, the same procedure was performed for secondary infection. Total oocyst production at primary infection was higher than at secondary infection. Endogenous development disabilities of parasites occur as a result of protective immunity generated at the first antigen exposure.

Key words: endogenous development, *E* tenella, protective immunity

One of pathogenic *Eimeria* species in chicken is *E. tenella* that causes cecal coccidiosis. The assessment of protective immunity to cecal coccidiosis particularly due to *E. tenella* wild strain can be assessed by knowing host response to antigen exposure. One of the evaluation of antigen exposure of cecal coccidiosis can be done by observation of histomorphology of cecum as site of endogenous development of parasite and the damage caused in initial as well as repeated infection.

Materials and Methods

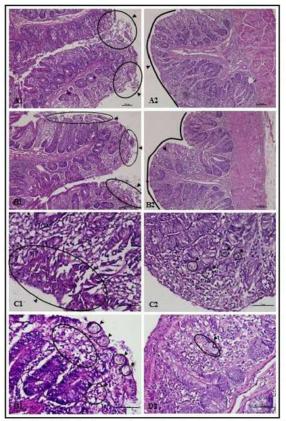
Oocysts of *E. tenella* wild strain were obtained from the non commercial chicken farm around Surabaya city. This strain was propagated in chicks; oocysts were preserved in 2.5% K_oCr_oO_asolution to induce sporulation at 28°C in incubator for 4-7 days.

A total of twenty pathogen-free male broiler chicks (CP 707) aged 3 weeks were infected orally with a suspension of 5×10^3 oocysts E. tenella per chick. All chickens housed in clean individual cages and fed with a standard diet without coccidiostat and tap water ad libitum. At 5 days post infection (pi), five chickens were sacrificed to observe morphological endogenous development of parasites by histopathological changes occurred due to primary infection, while oocyst production calculation was done at 6 to 11 days post infection on other infected chickens. Two weeks pi, the same procedure was performed for secondary infection.

Results and Discussion

The temporal pattern of oocyst output per day was initiated at day 6 to day 11 post infection. Oocyst first appeared on the six days pi, then reached peak on the nine days pi before numbers declined rapidly and the fewest oocysts were detected on 11 days pi. Basically, the same pattern of daily oocyst output was seen in both *E. tenella* primary and secondary infected chicken, but the *E. tenella* secondary infected chicken, oocyst output per day and/or as well as totally were significantly lower than *E. tenella* primary infection.

The total numbers of oocysts produced of E. tenella primary infected chicken in this study was $[4.7 \pm 0.17] \times 10^6$ per chick and E. tenella secondary infection was $[1.3 \pm 0.025] \times 10^6$ per chick. Total of oocyst production in E. tenella secondary infected chicken were significantly decreased (p<0.01) about 72 % compared with primary infected chicken and/or initial infected chicken.


¹Corresponding author: Email: muhyunus_99@yahoo.com

Endogenous development of E.tenella (schizogony and gametogony) in E.tenella secondary infected chicken was suppressed and/ or incomplet. Several generations of schizont appeared degenerated consequently un-break schizont, damaged cecal mucosal epithelial cell has not occurred and automatically there were no bleeding in cecum (Fig. 1). Many abnormal endogenous developments of parasites such as gametogony results in disturbance of syngamy of microgamete and macrogamete. Thus, oocyst formation was not perfectly continued. In contrast, endogenous development of parasites in E. tenella primary infected chicken occurred well and no inhibition (Fig. 1). Well development of numerous in 5 acellular schizonts containing merozoites and immature macrogametocytes in the border epithelial cells of cecum at 120 hours (Fig. 1). So, after 72 and 120 hours of E. tenella infection in chicken, severe inflammatory process was observed in the lamina propria. The period of five days pi is the time when the second generation schizogony is in progress and most of the third trophozoites and immature schizonts were morphologically degenerated in the E. tenella secondary infected chicken, whereas in the primary infected chicken, the parasites were histologically normal as well as the multinucleated immature schizonts (Fig. 1). The term of immunity will be used to refer to host that have been previously infected with the coccidia and have subsequently recovered from the disease.

Infection with one species of Eimeria induces protective immunity in the host that is long lasting and exquisitely specific 40 that particular species (Tang et al., 2018). While a large number of inoculating oocysts is generally required to generate an immune response against Eimeria, some exceptions have been noted, e.g. E. maxima is highly immunogenic and requires only a small number of oocysts to induce almost complete immunity. The early endogenous stages of the parasite life cycle are considered to be more immunogenic than the later sexual stages (Tang et al., loc. cit) although Song et al., (2015) and Ahmad et al., (2016) showed that immunization with recombinant gamete associated antigen, induced 2 rtial protection against challenge infection. Immunity to Eimeria is stimulated by the initial developing stages of parasite, particularly the schizonts, and subsequently boosted and maintained by multiple

reexposure to oocysts in the litter. Thus, the recycling of infection following administration of live oocysts is critical for the development of protective immunity (Chapman *et al.*, 2005).

The inherent difference in reproductive potential is high for *E. tenella* and *E. acervulina*, and low for *E. maxima*. Immunity, which is specific to each coccidian species, results in decreased production of oocysts after ingestion of infective oocysts (Arabkhazaeli et al., 2511). The histopathological analyses confirmed more extensive presence of lesions, observed with the light microscope, where more inflammatory cells occur in chickens infected with *E. tenella* than in other *Eimeria* species. This criterion was used previously by 3)ebbou-Iouknane et al., (2018) who identified 5 *Eimeria* species; *E. acervulina*, *E. tenella*, *E. maxima*, *E. brunette* and *E. necatrix*; based on a lesion seen at

Fig 1. Morphological comparison of endogenous development stages of *E. tenella* between primary infection [A1, B1(x100); C1, D1(x400), H&E] and secondary infection [A2, B2(x100); C2, D2(x400), H&E].

3

post mortem examinations of naturally infected birds, dimensions of oocyst and lesion seen in experimentally infected chicks with single oocyst. E. tenella showed considerable numbers of oocyst in lamina propria of caecum beside severe hemorrhage and complete desquamation of epithelium and edema of muscular tissue which preed with the finding of You (2014).

It was discovered that daily inoculations of small numbers of oocysts over twenty days produced a stronger immunity than when a large number of oocysts was given in a single dose (Marugan-Hernandez et al., 2016). This discovery was labeled as a trickle infection. The trickle infection suggests that for chickens Eimeria species protective immunity is developed only after the bird has been infected repeatedly by the parasite through cycling. It was generally found that the motile sporozoites played an important role in conferring an immune response while the gametogonic stages elicited little protective immunity (Blake and Tomley, 2014). Protective immunity is generally regarded as the prevention of oocyst production and absence of clinical signs in birds challenged by the parasites (Blake and Tomley, loc. cit). Once protective immunity is developed for a certain *Eimeria* species (and sometimes strain) the bird is immune against further infection tith this parasite (Shivaramaiah et al., 2014). Eimeria maxima best demonstrates acquired immunity; a single infection initiated with only a few oocysts results in the development of almost complete (>99.99%) immunity (Blake et al., 2017).

Summary

The endogenous development of *E. Tenella* wild strain was observed at primary and secondary infected chicken to know protective immunity development on host. Total oocyst production at primary infection was higher than at secondary infection. Endogenous development disabilities of parasites in secondary infection occur as a result of protective immunity generated the first antigen exposure in primary infection.

Acknowledgment

This research was supported by Directorate of Higher Education, Ministry of Education and Culture of the Republic of Indonesia for funding through higher education excellence research grant for a research contract number 004/SP2H/LT/DRPM/IV/2017.

References

Ahmad, T.A., El-Sayed, B.A. and El-Sayed, L.H. (2016) Development of immunization trials against *Eimeria* spp. *Trials in Vaccinology*, **5**: 38–47.

Arabkhazaeli, F., Nabian, S., Modirsaneii, M., Mansoori, V. and Rahbari,S. (2011) Biopathologic characterization of three mixed poultry *Eimeria* spp. Isolates. *Iran J.Parasitol.*6 (4): 23–32.

Blake, D.P. and Tomley, F.M. (2014) Securing poultry production from the ever-present *Eimeria* challenge. *Trends Parasitol.***30**:12–9. doi:10.1016/j.pt.2013.10.003

Blake, D.P., Pastor-Fernández, I., Nolan, M.J. and Fiona M. Tomley, F.M. (2017) Recombinant anticoccidial vaccines - a cup half full? *Infection, Genetics and Evolution*, **55**: 358–65.

Chapman, H.D., Roberts, B., Shirley, M.W. and Williams, R.B.(2005) Guidelines for evaluating the efficacy and safety of live anticoccidial vaccines, and obtaining approval for their use in chickens and turkeys. *Avian Pathol.* **34**(4): 279-90.

Debbou-louknane, N., Benbarek, H. and Ayad, A.(2018) Prevalence and aetiology of coccidiosis in broiler chickens in Bejaia province, Algeria. *Onderstepoort J. Vet. Res.* **85**(1): 1590. https://doi.org/10.4102/ojvr.v85i1.1590

Marugan-Hernandez, V., Cockle, C., Macdonald, S., Pegg, E., Crouch, C., Blake, D.P. and Tomley, F.M. (2016) Viral proteins expressed in the protozoan parasite *Eimeriatenella* are detected by the chicken immune system. *Parasit Vectors*, 9:463. doi:10.1186/s13071-016-1756-2

Shivaramaiah, C., Barta, J.R., Hernandez-Velasco, X., Téllez, G. and Hargis, B.M. (2014) Coccidiosis: recent advancements in the immunobiology of *Eimeria* species, preventive measures, and the importance of vaccination as a control tool against these Apicomplexan parasites. *Veterinary Medicine: Research and Reports*, 5: 23-34.

Song, X., Gao, Y., Xu, L., Yan, R. and Li, X. (2015) Partial protection against four species of chicken coccidia induced by multivalent subunit vaccine. *Vet. Parasitol.* **212**:80–5. doi:10.1016/j.vetpar.2015.08.026

Tang, X., Liu, X., Yin, G., Suo, J., Tao, G., Zhang, S. And Suo, X. (2018) A Novel Vaccine Delivery Model of the Apicomplexan *Eimeriatenella* Expressing *Eimeria maxima* Antigen Protects Chickens against Infection of the Two Parasites. *Front. Immunol.* **28**:1-11.doi: 10.3389/fimmu.2017.01982

You, M.J. (2014) The comparative analysis of infection pattern and occyst output in *Eimeriatenella*, *E. maxima and E. acervulina* in young broiler chicken. *Veterinary World* **7**(7): 542-47.

THE INDIAN VETERINARY JOURNAL

Vol. 96 August 2019 No. 08

AUTHOR INDEX

Abeena,B.	76	Durairajan,R.	78	Murugan,M.	43,78
Adikara,R.T.S.	40	Erma Safitri	40	Nabil FarizNoor Rahman	29
Aditya,S.	55	Faizal Ulkhaq	12	Nair,N.D.	76
AgusWijaya	46	Ganang Pudyastungkara	53	Ninu,A.R.	62,69,71
Amle,M.B.	59	Ganesan,A.	43	Niranjan,S.K.	20
Andreas BernyYulianto	29	Gurpreet Singh	49	Prabhakaran, K.P.	56,72
Andrey Vladimirovich Valoshin	23	Hana CipkaPramudaWardhan	i 29	Prakash,S.	65,74
Anjan Kour	60	Hanumantha Raju	55	Prima Ayu Wibawati	17
Anna,T.	69	Harjap Singh	49	Ragavi,K.	72
Arun Anand 6	0,66	Harsh Bathini	09	Ramprabhu,R.	43,62
Ashwani Kumar	66	Herinda Pertiwi	53	Ranjan,P.	20
Babu Prasath,N.	77	Herry A. Hermadi	40	Ravikumar,K.	65,74
Bajekal, N.	59	Iqbal, M.	20	Ravikumar,R.	77
Balakrishnan,V	09	Jeyathilakan,N.	27	RifkyNajwan	29
Balasubramaniam, G.A.	72	Jobling, R.	32	Rizka Mulia Ananda	53
Behl,J.	20	Khanvilkar, A.V.	38	Sangaran,A.	27
Behl,R.	20	Khoirul Huda	29	Sasikala,M.	77
Bhalerao,S.M.	38	Koesnoto Soepranianondo	35	Selvaraj,J.	77
Bharathidasan,M. 6	2,71	Kokila,S. 6	2,69	Selvaraju,M.	65,74
Bharti, V.K.	20	Kokila,S.	71	Shashi Nayyar	49
Bhaskaran Ravi Latha	27	Madheswaran,R.	72	Sheikh, C.S.	32
Bino Sundar, S.T.	27	Mahajan, S.K.	60	Soelih Estoepangestie, A	.T. 17
Bodhi Agustono	12	Mammen J.Abraham	76	Sreelakshmi, M.S.	76
Budiarto	35	Manoharan,S. 5	5,56	Sunaryo H. Warsito	40
Chandan Kumar Singh	66	Maya Nurwartanti Yunita	12	Suresh Kumar, P.	15
Changan, S.D.	38	Mirajkar,S.	59	Suryawanshi,R.V.	58,59
Chhavi Gupta	43	Mohammad Anam Al Arif	12	Thangathurai,R.	77
Compston,P.C.	32	Mohan,P.	55	Tri Bhawono Dadi	53
Dhandapani,K.	69	Mohanapriya,M.	72	Ulemale, A.H.	58
Dhande, V.U.	38	Mohite, D.S.	32	Upjohn, M.M.	32
Dhandy Koesoemo Wardhana	35	Mote,C.S. 5	8,59	Valli,C.	09
Dhanush Krishna,B.	76	Muchammad Yunus	46	Vandana Sangwan	60,66
Dharmaceelan,S. 62,6	9,71	Mufasirin	17	Varudharajan, V.	65,74
Dina D. Guntaran	53	Muhammad Thohawi		Vishnugurubaran,D.	62,69,71
Diyantoro	35	Elziyad Purnama	12	WidyaParamitaLokapirna	sari 29

THE INDIAN VETERINARY JOURNAL

Vol. 96 August 2019 No. 08

SUBJECT INDEX

Canines, Equines and Felines		Cellulolytic Bacteria as Candidate Probiotic in	29
Chronic Feline Idiopathic Cystitis on Cat	53	Distillers Grain Solubles Performance in Cows	38
Urinary Incontinence in a Tom Cat	60	Yea Sacc1026 effect on Rumen Liquor in Buffalo	49
Acute Ileocolic Intussuception in a Puppy			
		Pathology and Parasitology	
Cattle and Buffaloes		Epidemiology of Nematodosis in Goats	15
Cotton Gin Waste - A Potential Cattle Feed	09	Blocking Effect of Plant Extracts on the Cattle Tick	27
Vitamin-A into the Diets of Dairy Cows	23	Eimeriatenella in Chicken	46
Blocking Effect of Plant Extracts on the Cattle Tick	27	Chronic Feline Idiopathic Cystitis on Cat	53
Cellulolytic Bacteria as Candidate Probiotic in cattle	29	Tail Fibrosarcoma in Holstein Fressian Cow	58
Distillers Grain Solubles Performance in Cows	38	Intramedullary Pinning Femoral Fracture in Goats	66
human Chorionic Gonadotropin in vivo	40	Multiple Coenurus Cysts in Kids	69
Yea Sacc 1026 effect on Rumen Liquor in Buffalo	49	Basal Cell Carcinoma in a Mecheri Sheep	72
Dystocia Malnadgidda Cow	55	Rhabdomyosarcoma in a Kadaknath Chicken	76
Tail Fibrosarcoma in Holstein Fressian Cow	58	Pathology of Intestinal Coccidiosis in a Kid	77
Bovine Harlequin Ichthyosis Fetalis in a Jersey Cow	74	Babesiosis in Crossbred Dairy Cattle	78
Babesiosis in Crossbred Dairy Cattle	78		
		Piggery and Poultry Science	
Goats and Sheep		Stunning effect on Broiler Meat	17
Epidemiology of Nematodosis in Goats	15	Surgical Repair of Crop Fistula in a Pigeon	71
Prolapse in Small Ruminants	43	Rhabdomyosarcoma in a Kadaknath Chicken	76
Fetal Hydrocephalus in a Non-descript Doe	56		
Uterine Prolapse with Fetal Mummification in a Doe	65	Surgery and Clinical	
Intramedullary Pinning Femoral Fracture in Goats		human Chorionic Gonadotropin in vivo manipulation	.40
Multiple Coenurus Cysts in Kids	69	Prolapse in Small Ruminants	43
Basal Cell Carcinoma in a Mecheri Sheep		Chronic Feline Idiopathic Cystitis on Cat	53
		Dystocia Malnadgidda Cow	55
Horses and Donkey		Tail Fibrosarcoma in Holstein Fressian Cow	58
Morphometric Attributes - Ladakhi Donkeys	20	Mixed Tumour of Ear Canal in a Great Dane	59
Heat Stress in Equids	32	Urinary Incontinence in a Tom Cat	60
		Acute Ileocolic Intussuception in a Puppy	62
Meat Science and Technology		Uterine Prolapse with Fetal Mummification in a Doe	65
Effect of Halal Slaughters on Blood parameters	35	Intramedullary Pinning Femoral Fracture in Goats	66
		Multiple Coenurus Cysts in Kids	69
Nutrition		Surgical Repair of Crop Fistula in a Pigeon	71
Cotton Gin Waste - A Potential Cattle Feed	09	Basal Cell Carcinoma in a Mecheri Sheep	72
Sunflower Seed Flour for broilers	12	Bovine Harlequin Ichthyosis Fetalis in a Jersey Cow	74
Vitamin-A into the Diets of Dairy Cows and Bull	23	Pathology of Intestinal Coccidiosis in a Kid	77

The Morphological Endogenous Development of EimeriatenellaWild Strain in Primary and Secondary Infection in Chickens

Chic	ckens				
ORIGIN	ALITY REPORT				
	2% 17% 15% 0% ARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT	T PAPERS			
PRIMAR	RY SOURCES				
1	www.criticalimprov.com Internet Source	11%			
2	researchonline.jcu.edu.au Internet Source	3%			
3	www.jofamericanscience.org Internet Source	3%			
4	Hong, Y.H "Molecular cloning and characterization of chicken lipopolysaccharide-induced TNF-@a factor (LITAF)", Developmental and Comparative Immunology, 2006 Publication				
5	Urara Kawazoe, Edson Luiz Bordin, Cirene Alves de Lima, Lúcio André Viana Dias. "Characterisation and histopathological observations of a selected Brazilian precocious line of Eimeria acervulina", Veterinary Parasitology, 2005	2%			

"Diseases of Poultry", Wiley, 2020 Publication

1 %

Exclude quotes Off Exclude matches Off

Exclude bibliography On