A NewN,N-Dimethyl Purine from an AustralianDictyoceratidSponge

by Suciati Suciati

Submission date: 19-Feb-2019 12:08PM (UTC+0800)

Submission ID: 1080063224 File name: C7.pdf (1.64M)

Word count: 2043

Character count: 9858

ORIGINAL PAPER

A New N,N-Dimethyl Purine from an Australian Dictyoceratid Sponge

Suciati · Mary J. Garson · Paul V. Bernhardt · Gregory K. Pierens

Received: 24 March 2011/Accepted: 9 June 2011/Published online: 26 June 2011 © Springer Science+Business Media, LLC 2011

Abstract N6-methyl mucronatine ($C_8H_{12}N_5O$) has been isolated from a dictyoceratid sponge collected in South East Queensland. The solid state structure of the new metabolite (I) was confirmed by X-ray crystallography, while an NMR study in d_4 -MeOH reveals the presence of a minor tautomer identified as (II).

Keywords Purine · Marine sponge · Tautomer

Introduction

A number of purine derivatives have been reported from marine organisms, including marine sponges [1-12], sea anemones [13, 14], and ascidians [15-17]. Interesting biological properties have also been reported for these purines, including cytotoxicity [3, 6], antiangiogenic activity [10], cdc2 kinase inhibition [11] and antifouling activity [8]. More recently the neuroactive effects of selected purines have been described [1]. In the search for new secondary metabolites from marine sponges from South East Queensland, we recently isolated a new purine derivative whose structure was revealed as tautomer I (Scheme 1) by X-ray diffraction analysis. However, an

NMR study established that the purine is a mixture of tautomers I and II in solution.

Experimental

Isolation and Purification

A single specimen (code 18-7-09-2-1a) of a pale yellow encrusting Dictyoceratid sponge was collected using SCUBA on 18th July 2009 at a depth of 10-12 m from the Caves dive site, inner Gneerings shoals, near Mooloolaba in South East Queensland, and then frozen for transport to Brisbane. Subsequent identification of the sponge specimen to genus level was not possible owing to the small size of the voucher sample. Frozen sponge (3.8 g wet wt.) was diced and extracted with DCM:MeOH (1:1, 2 × 15 mL). The DCM layer was removed, dried with anhydrous Mg₂SO₄, then evaporated to dryness under a N₂ stream to afford a viscous yellow oil (17.6 mg). The organic extract was then subjected to SiO2 flash chromatography with gradient elution (hexanes -> EtOAc) followed by recrystallization in a 4 mL vial from MeOH using the vapor diffusion technique (with a small volume of EtOAc in an outer chamber) to give the new purine (7.5 mg, m.p. 226-228 °C). The metabolite can be named as either N3, N6-dimethyl-2-methoxyadenine or, less systematically, as the N6-methyl derivative of the known sponge metabolite mucronatine [8].

HRESIMS (M + H)⁺ calcd. for $C_8H_{12}N_5O$, 194.1036. Found: 194.1045. Gradient-enhanced HSQC (900 MHz, $^1J_{CH}$ 145 Hz) and HMBC (900 MHz, $^nJ_{CH}$ 8 Hz) were used in NMR structure analysis. The C-atom numbering is as showever 1 in Fig. 1: for tautomer 1 H NMR (MeOH- d_4) δ 3.17 (3H, s. N6-CH₃), 3.76 (3H, s. N3-CH₃), 4.18

Suciati · M. J. Garson (23) · P. V. Bernhardt (25) School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia e-mail: m.garson@uq.cdu.au

P. V. Bernhardt e-mail: p.bernhardt@uq.edu.au

G. K. Pierens Centre for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia

Scheme 1 The two tautomeric forms ((I) and (II)) of N6-methyl mucronatine and the equivalent tautomeric forms for 1,3-dimethylisoguanine ((III) and (IV)) and for mucronatine ((V) and (VI))

Fig. 1 ORTEP plot of compound (I) (30% probability ellipsoids). The C-atom numbering is the same as that used in the NMR assignments

(3H, s, OCH₃), 7.73 (1H, br s, H8); 13 C NMR (MeOH- d_4) δ 28.0 (N6-CH₃), 32.0 (N3-CH₃), 57.2 (2-OCH₃), 116.4 (C5), 152.0 (C8), 154.2 (C4), 154.6 (C2), 155.3 (C6). HMBC: -OCH₃ to C2, N3-CH₃ to C2, N6-CH₃ to C6, H8 to C4 and C5; For tautomer II, partial data 1 H NMR (MeOH- d_4) δ 3.42 (3H, s, N6-CH₃), 3.72 (3H, s, N3-CH₃), 4.08 (3H, s, OCH₃). 13 C NMR (MeOH- d_4) δ 31.0 (N6-CH₃), 31.8 (N3-CH₃), 56.9 (2-OCH₃), 153.3 (C2), 153.7 (C4), 155.7 (C6). HMBC: N3-CH₂ to C2 and C4. N6-CH₃ to C6. Signals for H8 and for C5 and C8 were not observable.

Physical Methods

1D and 2D NMR spectra were acquired on a Bruker AV III-900 instrument fitted with a TCI triple resonance cryoprobe (5 mm) at room temperature. Spectra were measured in MeOH- d_4 and chemical shifts (2 were referenced internally to MeOH ($\delta_{\rm H}$ 3.30 or $\delta_{\rm C}$ 49.0). Positive ion electrospray mass spectra (LRESMS) were determined using a Bruker Esquire HCT instrument or (HRESMS) using a MicroTOF Q instrument each with a standard ESI source. Samples were introduced into the source using MeOH as solvent Table 1.

Structure Determination and Refinement of (I)

Intensity data were acquired on a non-merohedrally twinned specimen of (I) on an Oxford Diffraction Gemini CCD diffractometer with Cu-K\u03b2 radiation and operating in the \u03b2 scan mode. Data reduction was performed resolving both twin components with the CrysAlisPro package (Oxford Diffraction vers. 171.33.42). The structure was solved with data taken from the major twin component and then refinement of both twins was carried out with SHELXL [18]. All non-H atoms were refined anisotropically whereas II-atoms were included in calculated positions and constrained using a riding model. All calculations were performed with the WinGX package [19]. The thermal ellipsoid diagram was drawn with ORTEP3 [20] while packing diagrams were produced with PLUTON [21].

Results and Discussion

The new purine was isolated as a colourless powder which was further recrystallised from MeOH using the vapor diffusion method. The HRESIMS exhibited a m ion at m/z 194.1045 (M+H) corres 2 ding to the molecular formula C₈H₁₂N₅O. Inspection of the 'H NMR revealed the presence of two N-methyl signals (δ_H 3.17 and 3.76), a methoxy group ($\delta_{\rm H}$ 4.18) and an isolated methine signal (δ_H 7.73, br s), which suggested a purine derivative [8, 17]. NMR assignments were made by comparison with data for other purines [5, 8, 12], and from 2D NMR data. In both the 1H and 13C NMR spectra, a second set of purinc signals were observed. For this minor component, unobserved resonances for H8, C5 and C8 presumably overlap with corresponding signals of the major species. The NMR data suggested that the metabolite exists as a mixture of tautomers in solution, inferred to be (I) and (II) (Scheme 1), in a ratio of ~8:1 in solution. No N-H 1H NMR signals were observed due to exchange with the solvent (MeGH-d.). 15N NMR work, not pursued here. could also provide a way of resolving the two tautomers.

Table 1 Crystal data

CDC deposition number	817620
Formula	
Formula weight	C ₈ H ₁₁ N ₅ O 102.21
Temperature	***************************************
Wavelengh	293 K
The state of the s	1.54180 Å
Crystal system	triclinic
Space group	P1 (no 2)
Unit cell dimensions	a = 7.164(1) Å
	b = 7.418(1) Å
	c = 8.952(1) A
	$\alpha = 79.71(1)^{\circ}$
	$\beta = 73.47(1)^{\circ}$
	$\gamma = 85.32(1)^{\circ}$
Volume	448.5(1) Å ³
Z	2
Density (calculated)	1.431 g cm ⁻³
Absorption coefficient	0.845 mm ⁻¹
F (000)	204
Crystal size	$0.15 \times 0.10 \times 0.16 \text{ mm}$
Theta range for data collection	5.22.60.49
Index ranges	$-8 \le h \le 8, -8 \le k \le 8,$ $-10 \le l \le 10$
Reflections collected	6.159
Independent reflections	6.159 R(int) = 0.01
Observed reflections	3,489
impleteness to theta = 62.4°	99.7%
Goodness-of-fit	0.896
Final R indices	$R_1 = 0.0619$ (obs. data), $wR_2 = 0.1736$ (all data)
peak and hole	0.26 and -0.25 e.A -3

Structure determination of methylated purines by spectroscopic methods alone can often be ambiguous [1], and does not always provide insight into the tautomeric composition of the metabolite. For example, for 1,3-dimethylisoguanine (III/IV) or its trihydrate, different tautomeric forms were deduced by NMR and by X-ray crystallographic analysis; the major tautomeric form has been shown to be III by X-ray analysis [7, 12] rather than IV deduced from NMR study [4, 5]. In contrast, for mucronatine (V/VI, Scheme 1) NMR investigations have confirmed tautomer V rather than VI in solution [7, 8].

In order to confirm the solid state structure of the isolated purine, its crystal structure was determined. The ORTEP diagram of tautomer (I) is apparent in Fig. 1. This corresponds with the major tautomer identified in solution by NMR. The H-atoms were all identified during refinement thus unequivocally confirming that tautomer (I) is the form present in the solid state. The purines form

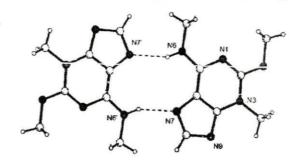


Fig. 2 PLUTON plot of the centrosymmetric H-bonded dimers of (I)

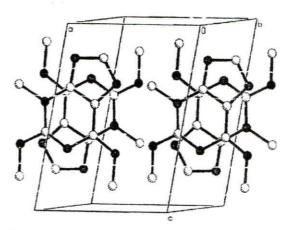


Fig. 3 PLUTON plot showing stacking of the purine rings in the structure of (I) (H-atoms omitted)

centrosymmetric H-bonded dimers (Fig. 2) comprising pairs of symmetry related N6-H...N7' contacts (N6-N7' 2.14 Å, N6...N7' 2.946(2) Å, N6-H...N7' 156.5°, symmetry operation $-\mathbf{r}-1$, $-\mathbf{y}+1$, -z+1). The purines also stack in an expected anti-parallel fashion (Fig. 3) with an interplanar separation of 3.37 Å.

Although numerous N-methylated purines are documented in the natural products literature, mucronatine and the N6-methyl analogue reported here represent rare examples of purines with a 2-methoxy group. Our data also indicate a preference for the amino tautomer rather than the imino tautomer in both solution and the solid state.

Supplementary Material

Crystallographic data reported in this paper have been deposited with the Cambridge Data Centre (CCDC deposition number 817620). The data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ (email deposit@ccdc.cam.ac.uk).

Acknowledgments We thank the University of Queensland and the Australia Research Council for financial support. The assistance of Sharna K. Graham and Daniel Holdsworth with sample collection, and Mr Graham McFarlane for mass spectrometry is gratefully acknowledged. Permission to collect sponge samples was provided by the Queensland Department of Primary Industries and Fisheries.

References

- 1. Sakurada T, Gill MB, Frausto S, Copits B, Noguchi K, Shimamoto K, Swanson GT, Sakai R (2010) J Med Chem 53-6089-6099
- Perry NB, Blunt JW, Munro MHG (1987) J Nat Prod 50:307–308
- 3. Yagi H, Matsunaga S, Fusetani N (1994) J Nat Prod 57:837-838
- 4. Mitchell SS, Whitehill AB, Trapido-Rosenthal HG, Ireland CM (1997) J Nat Prod 60:727-728
- 5. Chehade CC, Dias RLA, Berlinck RGS, Ferreira AG, Costa LV, Rangel M, Malpezzi ELA, De Freitas JC, Hajdu E (1997) J Nat Prod 60:729-731
- 6. Moon B. Baker BJ. McClintock JB (1998) J Nat Prod 61:116-118
- 7. Do Prado Gambardella MT, Dias RLA, Chenade CC, Berlinck RGS (1999) Acta Cryst C55:1585-1587
- 8. Bourguet-Kondracki ML, Martin MT, Vacelet J, Guyot M (2001) Tetrahedron Lett 42:7257-7259

- 9. Tasdemir D, Mangalindan GC, Concepción GP, Harper MK, Ireland CM (2001) Chem Pharm Bull 49:1628-1630
- 10. Jeong SJ, Inagaki M, Higuchi R, Miyamoto T, Ono M, Kuwano M. Van Soest RWM (2003) Chem Pharm Bull 51:731-733
- 11. Killday KB, Yarwood D. Silis MA. Murphy PT, Hooper JNA. Wright AE (2001) J Nat Prod 64:525-526
- Panthong K, Garson MJ, Bernhardt PV (2006) Acta Cryst C62:0193-0195
- 13. Zelnik R, Haraguchi M, Matida AK, Lavie D, Frolow F, Weis AL (1986) J Chem Soc Perkin Trans 1:2051-2053
- 14. Cooper RA, De Freitas JC, Porreca F, Eisenhour CM, Lukas R, Huxtable RJ (1995) Toxicon 33:1025-1031
- 15. Pearce AN, Babcock RC, Lambert G, Copp BR (2001) Nat Prod Leii 15.237-241
- 16. Appleton DR, Page MJ, Lambert G, Copp BR (2004) Nat Prod Res 18:39-42
- 17. Berry Y. Bremner JB, Davis A, Samosorn S (2006) Nat Prod Res 20:479-483
- Sheldrick GM (2008) Acta Crystallogr S A Found Crystallogr A64:112-122
- Farrugia LJ (1999) J Appl Crystallogr 32:837–838
- 20. Farrugia LJ (1997) J Appl Crystallogr 30:565
- 21. Spek AL (2009) Acta Crystallogr S D D65:148-155

A NewN,N-Dimethyl Purine from an AustralianDictyoceratidSponge

ORIGINA	LITY REPORT				
SIMILAF	3% RITY INDEX	7% INTERNET SOURCES	10% PUBLICATIONS	0% STUDENT PAP	ERS
PRIMARY	Y SOURCES		NA PARAMETER COMMUNICATION AND PROCESSION AND PROCE		and the second s
1	Garson. " Australia	Yong, Angela A New oxygenate n nudibranch of loris", Tetrahedr	d diterpenes f the genus		3%
2	media.pr	oquest.com			2%
3	sesquite the genu for enant	N.L "Stereocherpene quinones son pactylospongitioselective processionsynthesis", Te	from two spor a and the imp esses in mari	nges of olication ne	1%
4.	web.mit.				1%
5	zfn.mpdl				1%
6		l A. Khan. "Syntl Iquinolin-4-ones			1%

Chemie Che	emical Mont	hly, 03/1983
------------	-------------	--------------

	Publication	3
7:	d-nb.info Internet Source	1%
8	N. Sampath. "Crystal Structure and Conformation of a Piperidine-Containing Thiosemicarbazone Derivative", Molecular Crystals and Liquid Crystals, 8/1/2006	1%
-9	docserv.uni-duesseldorf.de Internet Source	1%
10	eprints.ucm.es Internet Source	<1%
11.	link.springer.com Internet Source	<1%
12	www.coursehero.com Internet Source	<1%
13	TASDEMIR, Deniz, Gina C. MANGALINDAN, Gisela P. CONCEPCIÓN, Mary Kay HARPER, and Chris M. IRELAND. "3,7-Dimethylguanine, a New Purine from a Philippine Sponge Zyzzya fuliginosa.", CHEMICAL & PHARMACEUTICAL BULLETIN, 2001.	<1%
		4

Marijana Hranjec. "Crystal structure and

<1%

synthesis of benzimidazole substituted acrylonitriles and benzimidazo[1, 2-a]quinolines", Structural Chemistry, 02/2009

Publication

Exclude quotes

On

Exclude matches

Off

Exclude bibliography

On

. ,,,,

A NewN,N-Dimethyl Purine from an AustralianDictyoceratidSponge

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
,	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	