

Calotetrapterins A-C, three new pyranoxanthones and their cytotoxicity from the stem bark of *Calophyllum tetrapterum* Mig

Mulyadi Tanjung^a, Tjitjik Srie Tjahjandarie^a, Ratih Dewi Saputri^a, Baharrani Dwi Kurnia^a, Muhammad Faisal Rachman^a and Yana Maolana Syah^b

^aNatural Products Chemistry Research Group, Organic Chemistry Division, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia; ^bNatural Products Chemistry Research Group, Organic Chemistry Division, Bandung Institute of Technology, Bandung, Indonesia

ABSTRACT

Three new pyranoxanthones, calotetrapterins A-C (**1-3**) were isolated from the stem bark of *Calophyllum tetrapterum* Miq along with three known xanthones, α -mangostin (**4**), garciniafuran (**5**), and pyranojacareubin (**6**). All structures were elucidated based on their IR, UV, HRESIMS, 1 D (1 H, 13 C) and 2 D (HMBC, HMQC) NMR spectral data. Compounds **1-6** were tested to P-388 cells for cytotoxic activity, compound 2 exhibited high activity with IC₅₀ value 1.0 μ M.

C. tetrapterum Miq

ARTICLE HISTORY

Received 9 April 2019 Accepted 18 June 2019

KEYWORDS

Calotetrapterins A-C; pyranoxanthone; Calophyllum tetrapterum; P-388 cell

1. Introduction

The genus *Calophyllum* (Calophyllaceae) comprises about 198 species found mainly in the restrictive area of Southeast Asia. *Calophyllum* plants are source of phenolic compounds especially xanthones (Ferchichi et al. 2012; Daud et al. 2016), benzofurans (Tanjung et al. 2018) and 4-phenylcoumarins (Zhong et al. 2010) containing isoprenyl as side chain. Isoprenylation of phenolic compounds displays as a major chromophore to increase their cytotoxicity activities against various human cancer cells (Mah et al.