

	Innovare Home	Our Jour	nals Adver	tise With Us	Subscription	Register	$\mathbb{Q}O\left(\frac{1}{2}\right)$
in the	Asian Jour Pharmace		d Clinical	Research		E-ISSN: 24 P-ISSN: 09	
3-5	Pllallide	utical all	u chincai	nescaren (
Hom	e About	Current	Archives	Editorial Boar	d Submissio	ons	
		Instruction	is to Authors	Contact Us	5		
				Sear	ch		

Editorial Board

Editorial Board

AJPCR is committed to have dynamic and potential advisory-editorial board. Those established in the field can directly send their resume. New people are first needed to serve as referee before being considered member of advisory-editorial board. Email your resume to <u>editor@ajpcr.com</u>

Editor-in-Chief

• Dr. Anurekha Jain

Dept. of Pharmaceutical Sciences, Jyoti Mahila Vidyapeeth University, Jaipur, Rajasthan Email: anurekhajain@jvwu.ac.in

Associate Editor

Dr. Nuray Arı

Prof., Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey. Email: ari@ankara.edu.tr

Dr. Neeraj Upmanyu

Prof., Peoples Institute of Pharmacy & Research Center, Bhopal, MP, India. Email: drneerajupmanyu@gmail.com

Assistant Editor

• Dr. Omotoso Abayomi Ebenezer

Prof., Department of Pharmaceutical & Medicinal Chemistry. Faculty of Pharmaceutical Sciences, University of Port Harcourt, Nigeria. Email: abatoseb2001@yahoo.com

• Dr. Vimal Kumar Jain

Principal, ITM School of Pharmacy, ITM Universe, Vadodara & Associate Dean, Pharmacy, GTU, Ahmedabad

Editorial Board Members

Dr. Vikas Sharma

Shri Rawatpura Sarkar Institute of Pharmacy, Datiya, MP, India

Dr. Sadia shakeel

Prof., Department of Pharmacy Practice, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan.

Dr. Rupesh Kumar Gautam

Associate Prof., ADINA Institute of Pharmaceutical Sciences, Sagar, MP, India

Dr. Farhan Ahmed Siddiqui

Faculty of Pharmacy, Federal Urdu University Arts, Science and Technology Karachi, Sindh, Pakistan

Dr. Javad Sharifi Rad

Department of Pharmacognosy, Faculty of Pharmacy, Zabol University of Medical Sciences, P.O. Box 61615-585 Zabol, Iran

- Dr. Rajesh Mohanraj Dept. of Pharmacology, CMHS, UAE
- Dr. Sami Saqf El Hait

Junior Executive - Quality Control At Jamjoom Pharmaceuticals Company Limited jeddah, Saudi Arabia

• Md. Moklesur Rahman Sarker

Faculty of Medicine, University of Malaya, Malaysia

 Dr. Hao Wu Postdoctoral Fellow At Ngm Biopharmaceuticals, Inc, South San Francisco, CA 94080, USA

Dr. Madhu Bala

Scientist 'F' and Joint Director, Institute of Nuclear Medicine and Allied Sciences (INMAS), India

Dr. Mohanraj Rathinavelu

Department of Pharmacy Practice, Raghavendra Institute of Pharmaceutical Education & Research, Riper, India

Dr. Sandip Narayan Chakraborty

Research Asst, Translational Molecular Pathology, Ut Md Anderson Cancer Center, Life Sciences Plaza, Houston, TX 77030

- Dr. Tushar Treembak Shelke Head of Department of Pharmacology and Research Scholar, In Jspms Charak College of Pharmacy & Research, Pune, India
- Dr. D. Nagsamy Venkatesh Associate Prof., Department of Pharmaceutics, JSS College of Pharmacy, Ooty, TN India

Dr. Subas Chandra Dinda

Professor-cum-Director: School of Pharmaceutical Education & Research (SPER), Berhampur University, Berhampur, Orissa, India.

• Dr. Kanagala Vijaya Sri

Associate professor, Malla Reddy College of Pharmacy, Maisammaguda, Dhullapally,

Secunderabad

Dr. Jagdale Swati Changdeo

Professor and Head, Department of Pharmaceutics, MAEER's Maharashtra Institute of Pharmacy, S.No.124,MIT Campus,Kothrud,Pune-411038

• Dr. Biplab Kumar Dey

Principal, Department of Pharmacy, Assam down town University, Sankar Madhab Path, Panikhaiti 781026, Guwahati, Assam, India

Dr. Yogesh Pandurang Talekar Besearch Associate, National Toxicology Centre

Research Associate, National Toxicology Centre

Dr. Indranil Chanda

Assistant Professor, Girijananda Chowdhury Institute of Pharmaceutical Science, Hathkhowapara, Azara Guwahati-17, Assam, India.

Editorial office

Asian Journal of Pharmaceutical and Clinical Research B-11, In front of Beema Hospital, Nayi Awadi, Mandasaur 458001, MP, India E-mail:<u>editor@ajpcr.com</u>

Journal Metrics 2018

Source Normalized Impact per Paper (SNIP): 0.655

Innovare I	Home Our Jou	rnals Adver	tise With Us	Subscription	Register Login			
	law and of				E-ISSN: 2455-3891 P-ISSN: 0974-2441			
the second s	Journal of naceutical ar	nd Clinical	Research					
S The Filan	naceuticara							
Home Abo	ut Current	Archives	Editorial Boa	rd Submissi	ons			
	Instructio	ns to Authors	Contact U	S				
			Sea	rch				
HOME ARCHIVES	HOME / ARCHIVES / Vol 8 Issue 1 (January-February) 2015							
CASE STUDY(S)								
FOREIGN BODY T VIBINA NARAYAN, I Pages 1-2		ATING AS CRIG		AL LEAK				
) - I FOR HEPATOTO)		- W					
	FAR SHAMA S, PRIY			A VANI T				
🕒 View PDF	Abstract	🕒 Downloa	d PDF					
SITE SELECTION SUDHAKAR BANG Pages 10-14	FOR CLINICAL RE ERA, LATHA MS	SEARCH IN IN						

		OF TRAUMEEL (A HOMEOPATHIC PREPARATION) IN
ANTI-INFLAMMA EXPERIMENTAL A		FTRADMEEL (A HOMEOFATHIC FILL FILL FILL FILL FILL FILL FILL FI
		AR, PARABATTULA B GANGADHAR
Pages 317-319	•	
🕒 View PDF	Abstract	Download PDF
		ACTIVITIES OF LATEX OF CARICACEAE (CARICA PAPAYA L
		AM, M. A. AL-MAMUN, S. PARVIN, M. E. H. SARKER, M. K.
	A PERVIN, SHAHRIA	
Pages 308-311		
🕒 View PDF	Abstract	Download PDF
METHODS		AN CILEXETIL DISSOLUTION RATE BY USING DIFFERENT
		AN CILEXETIL DISSOLUTION RATE BY USING DIFFERENT
METHODS AL -NUSS RAGHA		AN CILEXETIL DISSOLUTION RATE BY USING DIFFERENT
METHODS AL -NUSS RAGHA Pages 320-326	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 Direw PDF	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI UMA MAGESWAF	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI UMA MAGESWAF Pages 327-330 C View PDF	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI UMA MAGESWAF Pages 327-330 KETOPROFEN-O	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI UMA MAGESWAF Pages 327-330 KETOPROFEN-C CROSSLINKING RETNO SARI, RET	D, EL-ZEIN HIND	Download PDF
METHODS AL -NUSS RAGHA Pages 320-326 View PDF EVALUATION OF MELONGENA LI UMA MAGESWAF Pages 327-330 View PDF KETOPROFEN-C CROSSLINKING	D, EL-ZEIN HIND	Download PDF

ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH

ISSN - 0974-2441 Research Article

KETOPROFEN-CARBOXYMETHYL CHITOSAN MICROPARTICLES PREPARED BY SPRAY DRYING: OPTIMIZATION AND EVALUATION

RETNO SARI*, MELATINA MAGDA, WINI LESTARI, M. AGUS SYAMSUR RIJAL

Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Dharmawangsa Dalam, Surabaya 60286, Indonesia. Email: retno_1963@yahoo.com

Received: 28 October 2014, Revised and Accepted: 12 November 2014

ABSTRACT

Objective: The aim of this research was to investigate the effect of two operating parameters (inlet temperature and pump speed) of laboratory spray dryer to optimize the production of ketoprofen-carboxymethyl chitosan (CM chitosan) microparticles and the effect of carboxymethyl chitosan concentration on microparticles characteristics.

Methods: Microparticles with various concentration of CM chitosan were prepared by ionic gelation with CaCl₂, then dried by spray drying with various inlet temperature and pump speed. The obtained microparticles were evaluation for particle size, drug entrapment efficiency and drug release.

Results: The results showed that inlet temperature at 100°C and pump speed at 9.0 ml/min was known to be the optimum condition since the drying process was relatively faster and it could produce the most yield. The obtained CM chitosan microparticles have irregular and hollow shape with the size of $1.1 - 2.1 \mu$ m. As carboxymethyl chitosan concentration increased, mean particle size and drug entrapment efficiency of the drugs increased. In simulated intestinal fluid media pH 6.8, the release rate of ketoprofen from microparticles was delayed up to 0.43 times slower than ketoprofen powder.

Conclusion: The optimal condition for spray drying in this study was at pump speed 9.0 ml/min with inlet temperature 100° C, since it gave the most yield compare to other conditions. The size of ketoprofen-CM chitosan microparticles were between the range of $1.1 - 2.1 \mu$ m with high drug entrapment. In general, microparticles of CM chitosan could delay ketoprofen release in simulated intestinal fluid media.

Keywords: Microparticles, Spray drying, Ketoprofen, Carboxymethyl chitosan.

INTRODUCTION

Microparticles are small particles with size range from 1 to 1000 μ m, contained drug that is entrapped or encapsulated in polymeric, waxy, and other protective materials that is biodegradable synthetic polymer or modified natural product. Microparticles could be developed for reducing local high concentration of drug that may lead to irritation or toxic effect; sustained release, controlled release and drug targeted [1].

One of the chitosan derivates, carboxymethyl (CM) chitosan, is favorable to be developed as microparticles. Besides nontoxic, biodegradable, biocompatible, CM chitosan is a water-soluble polymer due to the CM group. Compared with chitosan that is soluble in acidic condition, CM chitosan is more advantageous especially for materials that are unstable to pH acid. These polymers can form solid particles through crosslinking between divalent cations Ca^{2+} and carboxyl ion (COO') of CM chitosan [2,3]. Factors affecting microparticles formation is the number of crosslinker, the polymer viscosity, *homogeneity*, type of polymer, polymer concentration, and the ratio of drug-polymer [4,5].

Spray drying generally could produce spherical particles with smooth surfaces and range of size from a few to tens micron with narrow size distribution. Spray drying technique proved to be fast, simple and reliable to produce microspheres. Factors that influence the formation of microparticles are inlet temperature, gas flow rate, pump speed, nozzle diameter. Increasing pump speed and inlet temperature can improve the yield and size of microparticles [4,6,7].

Ketoprofen, a non-steroidal anti-inflammatory drug has a short half-life (1.5-4 hrs) so it must frequently be given to maintaining fixed levels in the blood. This drug has side-effects on gastrointestinal tract due to inhibition of cyclooxygenase-1, which can be reduced when given

in modified drug delivery systems to improve bioavailability and reduce side-effects, therefore ketoprofen is appropriate to develop in microparticles [8,9].

This study was conducted to determine the effect of inlet temperature, pump speed on spray drying and CM chitosan amount on the physical characteristics and release profiles of ketoprofen-CM chitosan microparticles prepared by ionic gelation then spray dried.

METHODS

Materials

Ketoprofen pharmaceutical grade was obtained from PT. Kimia Farma, CM chitosan with degree of substitution 81.9%, 96.5% degree of deacetylation from China Eastar Group Co., Ltd., CaCl₂-2H₂O pro analysis from Merck and all other reagents are pharmaceutical grade.

Methods

Preparation of ketoprofen-CM chitosan microparticles

Microparticles of ketoprofen-CM chitosan (drug-polymer ratio=2:5) with polymer concentration 0.25%, 0.375% and 0.50% were prepared by ionic gelation. CM chitosan was dissolved in aquadest then added to ketoprofen solution while stirring with a magnetic stirrer. Afterward, $CaCl_2$ solution was added drop-wise into ketoprofen-CM chitosan solution and continuously stirred for 3 hrs. Particles formed in the liquid media were dried by Spray dryer (SD-Basic Lab Plant UK Ltd.) at certain condition.

Optimization condition of spray drying

The particles in the liquid medium were dried at various conditions with different inlet temperature and pump speed as listed in Table 1. Formula

of microparticles dried was ketoprofen:CM chitosan: $CaCl_2=0.4$:1:0.4 and prepared as described in preparation method. The yield was calculated from obtained particles weight divided by total mass weight. All experiment was carried out in triplicate.

Particle size evaluation

Particle size evaluation was done for 300 particles using an optical microscope (Olympus C41, US) with magnification ×1000.

Particle morphology evaluation

Particles surface and morphology of particles were observed by scanning electron microscope (SEM) (Inspect S50 type FP2017/12, Japan) in different magnification.

Drug loading and entrapment efficiency

Ketoprofen microparticles were dissolved in phosphate buffer pH 6.8 then filtered. The solution was assayed for drug content by ultravioletvisible (UV-Vis) spectrophotometer (Carry 50 Conc., USA) at a wavelength of 259 nm. The drug loading and entrapment efficiency was calculated by the following formula:

Drug loading = $\frac{\text{Drug amount}}{\text{Particle weight}} \times 100$

Entrapment efficiency = $\frac{\text{Actual drug amount}}{\text{Theoritically drug amount}} \times 100$

In vitro drug release

In vitro drug release test was performed by Dissolution Tester (Erweka DT-700, Germany) with a basket in 900 ml simulated intestinal fluid media pH 6.8 at 37°C, 50 rpm. A volume of 5 ml sample were taken at predetermined time during 3 hrs and assayed by UV-Vis spectrophotometer at a wavelength of 259 nm.

Table 1: Experimental design for optimization of spray drying

Pump rate	Inlet temperature (°C)			
(ml/minutes)	80	100	120	
3.5	ΡI	P III	ΡV	
9.0	P II	P IV	P VI	

Table 2: Yield value (%) and size of particle dried at various condition

Condition	Yield (%)	Size (µm)
PI	11.25±0.61	1.40
P II	14.82±0.60	1.86
P III	13.95±0.56	1.78
P IV	17.66±0.76	2.10
ΡV	4.30±0.06	1.19
P VI	13.48±0.41	1.59

RESULTS AND DISCUSSION

In this study, microparticles of ketoprofen-CM chitosan were prepared with ionic gelation using $CaCl_2$ as crosslinker, then spray dried in various condition. Ionic gelation is based on the ability of polyelectrolytes (polymer) to crosslink in the presence of counter ions (crosslinker) to form hydrogel particles which are stabilized by electrostatic interactions [5].

Table 2 shows the yield of spray drying with various condition. The results show that at the same inlet temperature, increasing the pump speed led to improve yield. It can be due to the larger particles formed at higher pump rate and hence that the microparticles are more easily captured by the cyclone [6,7].

Yield product was also affected by inlet temperature alteration. At the same pump speed, drying with inlet temperature 100°C gave higher yield product than drying at 80°C and 120°C. Increasing inlet temperature will also increase outlet temperature thus particles become drier and non-sticky hence improving yield as well [6]. In other hand, drying at 120°C produce less yield than at 100°C. It can be explained that particles are too dry and small so could not fall down into the reservoir tube. Statistical analysis factorial design with general linear model (univariate) in SPSS 17 (α =0.01) indicate there was an interaction effect between the two variables.

From SEM image at Fig. 1, it appeared that the particles morphology were non-spheris with hollow. It can be due to the composition of polymer and crosslinker (CaCl₂) that could not build optimal bond on the particle surface. Furthermore with the pressure and hot temperature during spray drying process, the droplets were depressed so sunken particles formed.

Particle size evaluation of particles produced by different condition of spray drying process gave result as stated in Table 2. At same inlet temperature, increasing pump speed of 3.5-9.0 ml/minutes led to an enlargement in particle size since faster pump rate at the same pressure will produce larger droplets so particles formed also enlarge [6,7]. At the same pump speed, particles dried at inlet temperature of 100°C were larger than particles dried at 80°C due to agglomeration of particles at high temperature [6,10]. However, in this study, particles dried at 120°C had the smallest size compared to others.

Further, microparticles with different CM chitosan concentration were prepared with spray drying condition: Inlet temperature 100° C and pump speed 9.0 ml/minutes. Drying process of particles with CM chitosan concentration 0.5% (F3) could not succeed since the mixture was too viscous. Particles with CM concentration 0.25% (F1) and 0.375% (F2) had average particle size 1.60 µm and 1.90 µm respectively.

Drug loading and entrapment efficiency of microparticles were high, and it was observed that higher polymer concentration improved

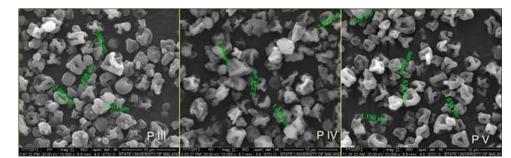


Fig. 1: Scanning electron microscope of ketoprofen-carboxymethyl chitosan dried at different condition: 100°C, pump rate 3.5 ml.minutes (P IV); 9 ml/minutes (P IV); 120°C, 3.5 ml/minutes (P V) (magnification ×10,000)

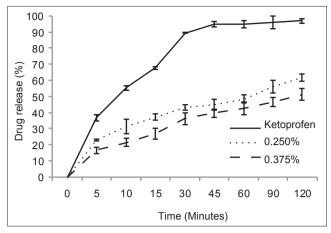


Fig. 2: Drug release from carboxymethyl chitosan microparticles in simulated intestinal fluid media pH 6.8

Table 3: Drug loading and EE and slope of microparticles with different polymer concentration and dried in condition: Inlet temperature 100°C and pump speed 9.0 ml/minutes

Polymer concentration (%)	Drug loading (%)	EE (%)	Slope mg/ ml.minutes ^½	
0.250	20.73±0.12	93.23±0.52	5.9157±0.5001	
0.375	21.98±0.40	98.86±1.82	5.5152±0.3886	

EE: Entrapment efficiency

the entrapment efficiency (Table 3). Nonetheless, the polymer concentration increment was limited since formula with high polymer concentration could not be dried successfully.

Fig. 2 presented that *in vitro* release in simulated intestinal fluid media pH 6.8, microparticles of ketoprofen-CM chitosan gave retarded release with slope value 5.9157 ± 0.5001 mg/ml.minutes^{1/2} and 5.5152 ± 0.3886 mg/ml.minutes^{1/2} for F1 and F2, since ketoprofen gave slope value of 12.7154 ± 0.3752 mg/ml.minutes^{1/2} (Table 3).

From statistical analysis ANOVA (p=0.05), release rate between ketoprofen and ketoprofen-CM chitosan microparticles was significantly different, however there was no significant difference as polymer concentration increase from F1 to F2. From the result, it was

indicated that ketoprofen release from CM chitosan microparticles could be delayed up to 0.43 times slower compared to ketoprofen itself.

CONCLUSION

The optimal condition for spray drying in this study was at pump speed 9.0 ml/minutes with inlet temperature 100°C, since it gave the most yield compared to other condition. The size of ketoprofen-CM chitosan microparticles were between the range of 1.1-2.1 μ m. As polymer concentration increase, the particle size enlarged and entrapment efficiency enhanced. In general, microparticles of CM chitosan could delay ketoprofen release in simulated intestinal fluid media.

ACKNOWLEDGMENT

This research was financially supported by Research Project Grant from Faculty of Pharmacy, Airlangga University.

REFERENCES

- Burgess DJ, Hickey AJ. Microspheres technology and applications. In: Swarbrick J, Boyla JC, editors. Encyclopedia of Pharmaceutical Technology. 3rd ed., Vol. 10, Ch. 1. New York, USA: Pharmaceutech Inc.; 2007. p. 1-31.
- Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci 2010;55(7):675-709.
- Mourya VK, Inamdar NN, Ashutosh T. Carboxymethyl chitosan and its applications. Adv Mater Lett 2010;1(1):11-33.
- Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004;100(1):5-28.
- Patil P, Daksha C, Milind W. A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. Int J Pharm Pharm Sci 2012;4(4):27-32.
- Amaro MI, Tajber L, Corrigan OI, Healy AM. Optimisation of spray drying process conditions for sugar nanoporous microparticles (NPMPs) intended for inhalation. Int J Pharm 2011;421:99-109.
- He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm 1999;187:53-65.
- Del Gaudio P, Russo P, Rosaria Lauro M, Colombo P, Aquino RP. Encapsulation of ketoprofen and ketoprofen lysinate by prilling for controlled drug release. AAPS PharmSciTech 2009;10(4):1178-85.
- Sweetman SC. Martindale the Complete Drug Reference. (36th ed). London: Pharmaceutical Press; 2009. p. 73-4.
- Patel AS, Soni TG, Thakkar VT, Gandhi. TR. Effect of polymeric blend on the dissolution behavior of spray-dried microparticles. Int J Res Pharm Chem 2011;1(3):690-701.