PEER REVIEW JOURNAL ISSN:0975-4415 # INTERNATIONAL JOURNAL OF DRUG **DELIVERY TECHNOLOGY** Home About - Editorial Team Current Archives Policies - For Authors - For Reviewers - Contact Home About the Journal ### About the Journal All manuscripts must be prepared in English and are subject to a double-blind peer review process. Generally, accepted papers will appear online within 8 weeks. The journal publishes original papers including but not limited to the following fields: Information For Readers For Authors For Librarians © Copyright 2019. International Journal of Drug Delivery Technology (IJDDT), All rights reserved. # INTERNATIONAL JOURNAL OF DRUG **DELIVERY TECHNOLOGY** Home About - Editorial Team Current Archives Policies - For Authors - For Reviewers - Contact Home | Editorial Team ### **Editorial Team** ### **EDITORIAL BOARD** EDITOR IN CHIEF Prof. Dina Nath Mishra Professor and Head of Pharmaceutics, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, INDIA **Board Members** Dr. Somnath Singh Creighton University, Omaha, USA Dr. Tathagata Dutta University of Queensland, Brisbane, AUSTRALIA Dr. Ashish Suttee Lovely Professional University, Phagwara, INDIA Dr. Kalpesh Gaur Geetanjali College of Pharmaceutical Studies, Udaipur, INDIA Dr. Vishal Gupta Director, Research & Development Covidien, USA Information For Readers For Authors For Librarians Make a Submission Dr. Chandan M. Thomas Department of Pharmaceutical Sciences, Lake Erie College of Osteopathic Medicine and School of Pharmacy 5000 Lakewood Ranch Blvd, Bradenton, Florida-34211 Prof. Kamla Pathak Rajiv Academy of Pharmacy, Mathura, INDIA Prof. V. R. Sinha Panjab University, Chandigarh, INDIA Prof. Pramil Tiwari National Institute of Pharmaceutical Education and Research (NIPER), Mohali, INDIA Prof. Arun Nanda Faculty of Pharm. Sciences, Maharshi.Dayanand.University, Rohtak, INDIA Prof. O.P.Katare Panjab University, Chandigarh, INDIA Dr. Amit Bhatia Lovely Professional University, Punjab, INDIA Dr. Anil Philip Rajiv Academy Academy of Pharmacy, Mathura, INDIA Dr. Dinesh Kaushik Hindu College of Pharmacy, Sonepat, INDIA. Dr. Munish Ahuja Dept. of Pharm. Sciences, Guru Jambheshwar University of Science and Technology, Hisar, INDIA Dr. Sanju Nanda Dept. of Pharm. Sciences, M.D.University, Rohtak, INDIA Dr. Rakesh P. Patel S.K. Patel College of Pharm. Edu. & Res., Ganpat University, Gujarat, INDIA. Dr. Bhaskar Mazumder Dept. of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, INDIA. Dr. Kalpana Nagpal Apeejay Satya University, Sohna, Gurgaon, Haryana, INDIA ISSN: 0975-4415 © Copyright 2019. International Journal of Drug Delivery Technology (IJDDT), All rights reserved. ## INTERNATIONAL JOURNAL OF DRUG DELIVERY TECHNOLOGY Home About - Editorial Team Current Archives Policies - For Authors - For Reviewers - Contact Search Home / Archives / Vol 9 No 4 (2019): International Journal of Drug Delivery Technology Published: 2020-03-03 Research Article Amorphous Mixtures of Albendazole with Carboxylic Acids By Cogrinding Technique: Solid State Characterizations and In Vitro Efficacy Study A S Shete, B Kumbhar, A V Yadav, S Korpale, S S Sakhare, R C Doijad 509-516 PDF Development of Mouth Dissolving Films of Ondansetron Hydrochloride By Using Factorial Experimental Design Siddhant Thakur, Vandana Arora Sethi, Abdul Wadood Siddiqui, Lalit Kumar Tyagi 517-524 PDF Peel-off Mask Formulation From Black Mulberries (Morus Nigra L.) Leaves Extract as a Tyrosinase Inhibitor Arif , Budiman, Zelika Mega R, Nadiatul Khaira y, Diah Lia Aulifa 517-524 PDF Development of Gastro Retentive Floating Microspheres of Roxatidine Acetate Hcl By Emulsion Solvent Diffusion Technique F C Miranda, K K Kamath, A R Shabaraya 530-537 PDF The Phosphatase And Tensin Homolog-Gene (PTEN-Gene) Expression Level is a Novel Indicator for Poor Prognosis in Invasive Ductal Carcinoma Adel Mosa AL-Rekabi, Shoroq Mohammed AL-Temimi 538-543 PDF Mutagenicity Acridine Orange Mutagen On The Biological Activity of S.aureus Isolated From Tonsillitis Nebras Rada Mohammed, Salwa Jaber AL-Auadi AL-Musawi 693-696 PDF Synthesis New Liquid Electrodes For Determination Pyrazinamide Based On A Molecularly Imprinted Polymer Mohammed A. Mudhi, Yehya Kamal Al-Bayati, Khalaf F Al- Samarrai 645-650 PDF Information For Readers For Authors For Librarians Make a Submission ### Preparation of New Molecularly Imprinted Polymers and its Use in The Selective Extraction For Determination Phenylephrine Hydrochloride at Pharmaceuticals Adnan Ridha Mahdi, Suham Towifig Ameen, Yehya Kamal Al-Bayati 651-659 -5--5 PDF ### Synthesis of Molecularly Imprinted Polymers for estimation of Aspirin by Using Different Functional Monomers Fatma N Abd, Yehya Kamal Al-Bayati, Baker A Joda 660-665 PDF # Synthesis, Characterization and Antibacterial Activity of Some Transition Metal Complexes Derived From The Ligand N-Benzylimidazole Against Methicillin-Resistantt Staphylococcus Aureus (Mrsa) Zainab Nashaat Al-Saadi, Abbas Washeel Salmani, Hayder Dawood Arkawazi, Michaele J Hardie 666-670 PDF #### Effect of Storage Period on Silver Nanoparticles Biosynthesized By Pseudomonas Aeroginosa Khawlah Jebur Khalaf, Hamzia Ali Ajah, Ashraf Sami Hassan 678-681 PDF # Efficacy of Gelling Agents on The In Vitro Release and Physical Properties of Loxoprofen Sodium Gel Containing Ultra Elastic Vesicles Nidhal K Maraie, Huda S Kadhium 671-677 PDF ### Antibacterial Activity of Some Nanoparticles Against Some Pathogenic Bacteria That Isolated From Urinary Tract Infections Patient Taha H Alnasrawi, Zahraa A Althabet, Ghufran S Salih, Mohammad J Al-Jassani 682-685 ### The Effect of Oral Vitamin D3 Supplements On Lipid Profile and Oxidative Stress In Adult Albino Female Rats Khder Najem Abdulla, Muneef S Ahmed, Saleh Mohammed 686-688 #### Extraction, and Purification of Peroxidase Enzyme from Peganum harmala Seeds Mahmoud Hamid Al-Fahdawi, Albab Fawwaz Al-farras, Hayder Nasser Al-Mentafji 689-692 #### A Novel ADP-Ribosyl Cyclase (ARC) Regulators Zainab N. Al-Abady, Israa Najm Abdullah Al-Ibadi, Oraas Adnan Hatem, Nawal Khinteel Jabbar, Makarim Ali Enad 640-644 # Formulation, Physical Characterization and Wound Healing Activity Evaluation of Carboxymethyl Chitosan-Curcumin Carbomer-Based Hydrogel Retno Sari, Tristiana Erawati, Faza Fauziah, Wiwik M Yuniartii 697-603 PDF # Characteristics And Release Of Gentamicin Sulphate From Sodium Alginate Microspheres Entrapped In Emulgel Tutiek Purwanti, Maimuna Syamsuar, Dewi Melani Hariyadi, Tristiana Erawati 704-710 PDF #### The State of Ferritin in Patients With Diabetes Mellitus Type II/Iraq Ezzate H. Ajeena, Mohammad A Alfawaz, Alaa S Tajaldeen, Sami R. Alkatib 711-714 PDF # Study of Platinum Nanoparticles with Methotrexate as Drug Delivery System for Cancer Therapy on MCF7 Logean Q Al-Karam, Auns Q Al-Neami 575-579 PDF #### Using of the L-Arginine and Co-Enzyme Q10 Shows Improvement of the Male Subfertility Mazin A Hasoon 544-551 #### Evaluation of Sterlle Supply Cycle at One of The Malaysia Government Hospital in Perak Insan Sunan Kurniawansyah, Soraya Ratnawulan Mita, Looi Shu Ying #### Synthesis and Characterization of Poly (CH/AA-co-AM) Composite: Adsorption and Thermodynamic Studies of Benzocaine on from Aqueous Solutions Abbas N. Karim, Layth S Jasim 558-562 ### Simple and Rapid Method For Estimate of Propranolol With Bi (III) Via Long-Distance Chasing Photometer (NAG-ADF-300-2) Utilization Continuous Flow Injection Analysis Nagam S. Turkey, Elham N Mezaal 563-574 PDF #### Synthesis and Modification of Some New Prodrug Polymers Based on Chitosan and Study of Some Applications Tamara F Hassen, Faris H. Mohammed Q Al-Neami 580-586 #### Synthesis, Characterization and Study Biological Activity of Five and Seven Heterocyclic Compounds Fiadh A Neshan, Muna S Al-Rawi, Jumbad H Tomma 587-592 #### The Metabolic Effect of Walnut in Polycystic Ovarian Syndrome Ahmed I Rashid, Iyden K Mohammed, Rusul A Kadhem, Nisreen Al-Bayati, Entisar J Al Mukhtar 593-596 #### Formulation and Evaluation of Lornoxicam Transdermal patches using various Permeation Enhancers Neha I Sharma, S K Sharma, R Kaushik 597-607 #### Stem Cell Factor Antibody: Effective Manipulation of Antihormonal Therapy in Resistant Human Breast Cancer In Vitro Khalid Bahram Arif, Issam Hussain, Carol Rea, Mohamed El-Shee 608-612 PDF #### Synthesis and Biological Studies of Some Diazo Dyes As New Drugs Hanan M Alii, Sanaa Qassem Badr, Asawer Salim Temma 613-616 ### PDF #### Hepatitis C and IL-6 with 174G/C Gene Polymorphism in β-Thaiassemia Aqeel A Alsadawi, Al-Karrar Kais Abdul Jaleel duabel, Haider A Alnaji 617-622 # Isolation of Lytic Bacteriophage Cocktail Against Methicillin-Resistant Staphylococcus Aureus Isolated From Human Skin Infections Saad M Hantoosh, Eman M Jarallah 623-629 PDF #### Diagnostic Values of Some Immunological Markers in Patients With Urinary Tract Infection Thekra Ahmed Hamada AL-Tikrity, Marwa Tariq Ahmed Al-Douri, Nihad Nejres Hilal, Mohammed Mohsin Abdul- Aziz 635-639 Scimago Journal & Country Rank Journal Rankings Home also developed by scimago: SCIMAGO INSTITUTIONS RANKINGS About Us Enter Journal Title, ISSN or Publisher Name # **International Journal of Drug Delivery Technology** Viz Tools Country Rankings ① × SCImago Team ①× lish my paper in your journal ,please could you tell me weither you accept aresearch paper from Iraq /University of baghdad /College of pharmacy and Iwant to asked about the processing fee of your journal. With my best regard reply a href="https://www.scim A SJR 2018 Melanie Ortiz 5 months ago ile Oruz Smortins ago saba hadee 5 months ago Dear Sir, thank you for contacting us. Sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you to visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply. You can see the updated journal's information just above . Best Regards, SCImago Team H Huda salih khadium 9 months ago Hi sir I would like to puplish my research paper in your journal lam huda salih , master student in pharmaceutics department at Al-mustansiryah university college of pharmacy I'm from Baghdad reply D Dr. Zainab Al-Sharifi 11 months ago hi sir I would like to publish my paper in your journal, my name is dr. Zainab Al-Sharifi am from Iraq, Collage of medicine / University of Baghdad reply #### Leave a comment Name Email (will not be published) The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor. Developed by: Powered by: Follow us on @ScimagoJR Scimago Lab, Copyright 2007-2020. Data Source: Scopus® EST MODUS IN REBUS #### **RESEARCH ARTICLE** # Characteristics And Release Of Gentamicin Sulphate From Sodium Alginate Microspheres Entrapped In Emulgel Tutiek Purwanti*, Maimuna Syamsuar, Dewi Melani Hariyadi, Tristiana Erawati Department of Pharmaceutics, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia Received: 23th Oct, 19; Revised: 25th Nov, 19, Accepted: 15th Dec, 19; Available Online: 25th Dec, 2019 #### ABSTRACT Gentamicin sulfate is a broad-spectrum aminoglycoside antibiotic that can be used for primary and secondary infections of the skin. Microspheres can be used to extend drug release on the skin; the resulting therapeutic effect is constant and has a longer duration of action. Therefore it can reduce the frequency of use and increase patient compliance. This study investigated the appropriate profile and release kinetics model of gentamicin sulfate microspheres entrapped on the emulgel base. Gentamicinalginate microspheres were made by the ionotropic gelation method with aerosolization technique, using 2.5% Na-alginate low viscosity, $CaCl_2$ solution of 1.5M as a crosslinker, maltodextrin as lyoprotectant and were dried using the freeze-drying method. The result of microspheres characterization, gentamicin microsphere was spherical with smooth surface structure and had particle diameter of $3.021 \pm 0.017 \mu m$. Gentamicin microspheres had moisture content 2.89%, and maximum swelling index was $2625 \pm 21.70\%$ was achieved within 5 hours. The drug loading of microspheres was $1.75 \pm 0.11\%$, and entrapment efficiency was $10.96 \pm 0.19\%$. The release evaluation during 720 minutes showed that the amount of gentamicin release from alginate microspheres on emulgel base was $14.857 \pm 0.816\%$, and gentamicin release on emulgel conventional was $49.239 \pm 5.954\%$. The model of release kinetics of gentamicin microspheres on emulgel was Higuchi model that showed the release of the active ingredient through the diffusion process. While the model of release kinetics of gentamicin on emulgel base was first order, that showed the release of active agent depends on remaining concentration. **Keywords:** Characteristics, Gentamicin-alginate microspheres, Gentamicin emulgel, Sodium alginate, Release kinetics International Journal of Drug Delivery Technology (2019); DOI: 10.25258/ijddt.9.4.33 **How to cite this article:** Purwanti, T., Syamsuar, M., Hariyadi, D.M. and Erawati, T. (2019). Characteristics And Release Of Gentamicin Sulphate From Sodium Alginate Microspheres Entrapped In Emulgel. International Journal of Drug Delivery Technology, 9(4): 704-710. Source of support: Funding from Universitas Airlangga. Conflict of interest: None. #### INTRODUCTION Gentamicin sulfate is a broad-spectrum aminoglycoside antibiotic group, its use to treat infections caused by grampositive bacteria and especially gram-negative bacteria. Gentamicin sulfate can be given orally, parenterally and topically. Gentamicin sulfate has a short half-life; systemic use three times a day has serious side effects, and namely nephrotoxic and autotoxic. The local use of antibiotics with extended-release can overcome the side effects that occur. Gentamicin sulfate topical use is applicated 3–4 times a day on the skin to treat primary and secondary infections. Repeated use can reduce adherence to patients. Therefore a certain drug delivery system is needed to extend the duration of action of the drug and reduce the frequency of use. The development of drug delivery systems is carried out to overcome problems that occur in conventional delivery systems. One of the topical drug delivery systems is the microsphere. Microspheres are small spherical particles with a diameter of 1–1000 $\mu m.^5$ The microspheres are designed to trap active ingredients so that they can be used to prolong the release of drugs on the skin. The therapeutic effect produced is constant and has a longer duration; therefore, it can reduce the frequency of use and improve patient compliance. In addition, microspheres can protect active compounds from physical and environmental degradation. 6 Sodium Alginate is a natural polymer that is biodegradable, biocompatible and has low toxicity. This polymer is polysaccharide consisting of polyuronic acids (D manuronic acid and L-guluronic acid). Alginate can forms a gel through reaction with divalent cations. A crosslinking occured between COO⁻ group of guluronic acid and divalent cations formed egg-box structures that is forming unit of microspheres particles, ^{8,9} whereas electrostatic interactions occurred between cationic gentamicin sulfate and COO⁻ group anionic in manuronics. Alginate cannot swelling at low pH (pH < 4) so that active ingredients cannot be released.^{7,9} There are several microspheres preparation methods, including emulsion solvent evaporation technique, spray-drying technique, coaservation method, and ionic gelation method. The selected method of making microspheres in this study was the aerosolization technique of ionic gelation. Ionic gelation methods involve the interaction of ionic polymers with oppositely charged ions to produce cross-linked reactions. The aerosolization technique was chosen because of several advantages, namely simple, inexpensive, fast, nontoxic, and drug ingredients in the form of proteins can avoid denaturation. In addition, aerosolization techniques are used to produce uniform microspheres. The polymer used was 2.5% Na-Alginate with a CaCl2 1.5M crosslinking solution. The stirring speed was 1000 rpm in 90 minutes. Drying used freeze-drying technique. 10 Characteristics are important factors because there are affected the release of the active ingredient and the stability of microspheres. The microsphere's characteristics are included the morphology, particles size, swelling index, yield value, drug loading, entrapment efficiency and moisture content. It Gentamicin microspheres were prepared in Hydroxy Propyl Methyl Cellulose (HPMC) emulgel base. Emulgel has the advantage of being able to store drugs efficiently on the skin with even distribution, can release drugs and migrate freely to the site of action, can maintain the drug at therapeutic levels in the target tissue for sufficient duration to provide pharmacological effects and have good acceptability. ^{12,13} To determine the release of gentamicin sulphate a release test was carried out on gentamicin sulfate microspheres gel and conventional gentamicin sulfate gel as a comparison. The concentration determination method is carried out by UV-Vis spectrophotometry. Because gentamicin has a weak absorption at the UV-Vis wavelength, indirect spectrophotometric methods were carried out. Ninhidryn reagent was used for colorimetric reactions at wavelengths of 200–400 nm. In this study, optimization is still needed to determine the ninhydrin level and the heating time to be used. #### MATERIALS AND METHOD #### Material Sodium alginate pharmaceutical grade, $CaCl_2$ pharmaceutical grade, gentamicin sulphate, maltodextrin food grade, HPMC pharmaceutical grade, liquid paraffin pharmaceutical grade, propylene glycol pharmaceutical grade, ninhydrin, phosphate buffer pH 7.4 ± 0.05 , aquademineralisata. #### Instruments Stirer Plate Dragon Lab MS pro, pH meter SCHOTT glass mainz CG 842, Jasco FT-IR 5300, DTA Mettler Toledo FP-65 DTA P-900, Optical Microscope PS 1 AIR FI-31-032, Scanning Electron Microscop inspect S50 Tipe FP 2017/12, Mettler Toledo HB43 S Moisture analyzer, UV-visible spectrophotometer, Franz diffusion cell, cellophane membrane #### Formula of gentamicin-alginate microspheres Microspheres were made with the composition as mentioned in Table 1. 2.5 g of sodium alginate was dissolved in 100 mL aquademineralisata, and were mixed on a plate stirrer with a magnetic stirrer at a speed of 1200 rpm for 15 minutes until sodium alginate dissolved. Gentamicin sulfate 500 mg was dissolved in 20 mL aquademineralisata until dissolved. CaCl₂ 1.5 M solution by weighing 16.65 g CaCl₂.2H₂O dissolved in 50 ml aqua demineralisata. Gentamicin sulfate solution and CaCl2 solution were mixed on a plate stirrer with a magnetic stirrer at a speed of 1200 rpm for 15 minutes until homogeneous. Then agua demineralisata was added up to 100 mL. The sodium alginate solution was sprayed at constant speed into gentamicin sulfate solution-CaCl2 using an aerosol spray, with a 45 µm spray hole diameter, 8 cm spraying distance from the solution surface, and 40 psi pressure. The wet microspheres were stirred at 1000 rpm for 90 minutes to perfect the crosslink reaction. The suspension was filtered, then dryed by the freeze-drying method. #### Microspheres characterization #### Organoleptic The organoleptic examination was performed on the shape, consistency and color of the preparation. #### FTIR spectroscopy Evaluation of the occurrence of crosslinking reactions was carried out by infrared spectra examination using the KBr pellet technique. The results of the examination were compared with the infrared spectrum of gentamicin sulfate, sodium alginate, and physical mixture. 9,10 #### Morphology of the microspheres Shape and surface morphology of the microspheres examination using an optical microscope (XSZ-107 Series Microscope), sightings were taken using a camera and using a scanning electronic microscope (SEM). #### Yield value The recovery of the microspheres was determined by weighing the dry microsphere produced, then recording the results. After the weight of the dry microsphere is known, the yield value was calculated by below equation 9,10: Yield Value = $\frac{\text{weight the dry microsphere Produced}}{\text{weight of microspheres components}} \times 100\%$ #### Moisture content Moisture content analysis begins with the preparation of the moisture analyzer after that the tool lid is opened, inserted a blank pan sample into the panhandler sample on the tool, then lowered the tool cover and automatically tows to the "zero" condition. Then a number of samples were inserted above the sample pan until it shows the minimum weight for measuring the sample, then the tool cover is lowered. The tool will automatically start the measurement. Table 1: Formula of Gentamicin-alginate Microspheres | Material | Function | Amount | |----------------------------|--------------|----------| | Gentamicin sulfate | Active agent | 0.5% w/v | | Sodium Alginate | Polymer | 2.5% w/v | | CaCl ₂ Solution | Crosslinker | 1.5M | The time has been set for 10 minutes after the measurement is complete, the measurement results will be printed on the screen. When finished, the tool lid is opened, the pan sample is taken and cleaned from the rest of the sample. 9,10 #### Particle size Particle size measurements were carried out by microscopy with Biological Microscope Model XSZ-107 Series. Measured microspheres by placing microspheres on glass objects and measuring the diameter of the microsphere (300 particles). After that, grouping of sizes from the smallest to the largest is done and divided into several intervals and classes. Then a particle size distribution curve is made. 9,10 #### Swelling index Measuring swelling index by weighing the microspheres weighing 50 mg is then put into 50 ml of aqua dest and then observed at 1, 2, 3, 4, 5, and 6 hours. After the time passed, the microspheres are taken dried on the filter then weighed. The value of the swelling index is calculated by the below equation. 8,11 $$SI = \left| \frac{Initial \ weight - final \ weight}{Initial \ weight} \right| x 100\%$$ #### Entrapment efficiency and drug loading The determination of gentamicin sulfate wavelength was determined in the visible wavelength region because the gentamicin sulfate standard solution was reacted with ninhydrin reagent with a ratio of 5:1. The results of both reactions will form a purplish red solution. Then, a gentamicin sulfate standard curve was made in sodium citrate pH 8.5 \pm 0.05 The standard curve is made with five different concentrations of gentamicin sulfate solution in sodium citrate, then heated for 20 minutes at 95°C and observed using a UV-Vis spectrophotometer at a wavelength of 399 nm. After that, the microspheres were removed using a certain amount of sodium citrate. Demolition is carried out using a stirrer at a speed of 1000 rpm and for eight hours. 9,10 Entrapment Efficiency = $$\frac{\text{the amount of gentamic in contained in the microsphere system}}{\text{the amount of initial gentamic in}} \times 100\%$$ $$\text{Drug Loading} = \frac{\text{gentamic in mass added to microsphere system}}{\text{microsphere total mass}} \times 100\%$$ ### **Emulgel preparation** Emulgel preparation can be seen in Table 2. #### Formula (1) Each component was weighted with the amount as listed in Table 2. Mix gentamicin sulfate and propylenglycol stir ad homogeneous. HPMC dispersed into a number of aquadest, which had previously been heated to 80-90°C 20 times the number of HPMC to be swelled. Stir for two hours with the stirrer until the HPMC have optimal swelling. Then mixture of gentamicin-propylenglycol was added and stirred the mixture ad homogeneous, the amount of paraffin liquid was added step by step into the gel mass, stirring homogeneously. The remaining aquadest was added and stirred the mixture ad homogeneous. #### Formula (2) HPMC was dispersed into a number of aquadest which had previously been heated to 80–90°C 20 times the number of HPMC to be swelled. Stir for two hours with the stirrer until the HPMC have optimal swelling. Amount of paraffin liquid was added step by step into the gel mass, stirring homogeneously. The remaining aquadest was added and stirred the mixture ad homogeneous. Gentamicin sulfate microspheres was weighed equivalent to 0.6% gentamicin sulfate. HPMC emulgel base was mixed and stirred ad homogeneous. #### Gentamicin sulfate release The standard solution of gentamicin sulfate was made in the 20,50,60,70 and 80 ppm coccentration by diluting gentamicin sulfate with phosphate buffer pH 7.4 to a certain volume. Take 5.0 ml of each standard working solution of 20 ppm and 80 ppm. Then add 1.0 mL ninhydrin reagent 1.25%. It is then heated in a water bath at a temperature of 95°C and within 20 minutes. Then cooled and measured uptake at a wavelength of 200-700 nm. The maximum number of waves is selected based on the highest absorption value. The blank used was a mixture of 1.0 ml ninhydrin 1.25% with phosphate buffer pH 7.4. Franz diffusion cells was prepared, filled the receptor compartment with the media. magnetic stirrer until it is full. Then attach the cellophane membrane that has been soaked in distilled water overnight and paste it with parafilm. Connect donor compartments and receptors with parafilm. The gel preparation (± 2 g) was filled into the donor compartment. The gentamicin sulfate study, the temperature of the experiment was set at $32 \pm 0.05^{\circ}$ C, stirring speed of 600 rpm and immediately recorded as a time to zero. Take 1 ml of the sample and add the same amount of buffer solution. The sample solution was taken at the 0, 5 10, 15, 30, 45, 60, 90, 120, 150, 240, 300, 360, 480, 600, 720 minutes. Each sample taken was carried out in the level determination and then corrected by the Wurster equation to obtain the actual level by taking into account the dilution of 1.0 ml of the release medium. Table 2: Formula of Gentamicin Emulgel | Gentamicin Sulphate Emulgel (. | 1) | Microsphere Gentamicin Sulphate Emulgel (2) | | | |--------------------------------|-------|---------------------------------------------|---------------------------------------|--| | Material | % | Material | % | | | Gentamicin Sulphate | 0.6 | Microsphere gentamicin sulphate | Equivalent to 0.6 gentamicin sulphate | | | HPMC | 2 | HPMC | 2 | | | Propylene Glicol | 15 | Propylene Glicol | 15 | | | Liquid Paraffin | 5 | Liquid Paraffin | 5 | | | Aquadest ad | Ad100 | Aquadest ad | Ad100 | | #### Release kinetic determination In vitro gentamicin sulfate release, kinetic study of the system was determined by entering the gentamicin sulfate release profile into the zero-order model equation, first-order model, and Higuchi. 14,15 ### Zero-order model The linear regression equation is made by entering the release time as the x-axis and cumulative % of the drug, which releases the y-ordinate into the release graph #### · First-order model The linear regression equation is made by entering the release time as the x-axis and the cumulative log percentage of the drug remaining in the y-ordinate into the release graph. ### Higuchi's model The linear regression equation is made by entering the square root of the release time as the x-axis and cumulative percentage of the drug that releases the y-ordinate into the release graph. The release rate of gentamicin sulfate can be obtained from the graph of the release profile of gentamicin sulfate in the steady-state phase. A regression equation was made in the steady-state region, the slope of the regression equation is the gentamicin sulfate release rate from the base. ^{15,16} ### RESULTS AND DISCUSSION #### Organoleptic The result of organoleptic, gentamicin sulfate microspheres had a white powder, odorless, and tasteless. ### Infrared spectra The physical mixture spectra of sodium alginate and gentamicin sulfate (A) had absorption in guluronic fingerprints (900-890 cm⁻¹) and manuronic (850-810 cm⁻¹), The sodium alginate spectra (B) had absorption in guluronic and manuronic fingerprints. The gentamicin sulfate microsphere hadn't absorption in guluronic and manuronic fingerprints because the guluronic in sodium alginate binds to the Ca²⁺ cation through crosslinking reactions.¹¹ #### Shape and surface of Particles The results of the examination of particle shape microspheres Figure 1: Comparison of infrared spectra (A) physical mixture of sodium alginate and gentamicin sulphate, (B) Sodium alginate, (C) gentamicin sulphate microspheres, (D) gentamicin sulphate. using XSZ-107 Series Biological Microscope and Scanning Electron Microscope (SEM) showed that the microspheres had a spherical and smooth surface. #### Yield From the results of the yield, gentamicin sulfate microsphere had a yield value of more than 50% so that they had the opportunity to be developed in a large scale manufacturing process. #### Moisture content From the results of moisture content, gentamicin sulfate microspheres dried using freeze-dry for 24 hours had low water content. The results requirements are <10% (Table 4). The low results were good because higher moisture content can cause the growth of microorganisms. #### Particle size distribution Results of the particle size distribution of gentamicin sulfate microspheres had a range of $1.38\text{-}4.72~\mu m$ (Figure 4). The spherical particles can be seen in the result of the examination using optical microscope (Figure 2) and SEM (Figure 3). The results of the average particle size, the gentamicin sulfate microspheres had a particle size of 3.01 \pm 0.02 μ m (Table 5). #### Swelling index The results showed the microspheres particles swelling gradually until the fifth hours. The swelling process depends Figure 2: The results of the examination of particle shape of gentamicin sulfate dry microspheres using Biological Microscope Model XSZ-107 Series with 400x magnification. Figure 3: The results of the examination of shape and morphology particles of gentamicin sulfate microspheres using SEM at magnification (A) 10.000x and (B) 5.000x on the ease with which water penetrates into the particles of the microspheres, the more compact the particle structure of the microspheres is the harder to penetrate water. High swelling power will cause the active ingredient to detach from the matrix easily. The swelling index and swelling profile can be seen in Table 6 and Figure 5. #### Entrapment efficiency and drug loading Results of entrapment efficiency and drug loading can be seen in Table 7 and 8. The results of efficiency entrapment of the gentamicin sulfate microsphere, the percentage data of entrapment efficiency were 11.12 ± 0.43 %. The value of entrapment efficiency depends on the ingredients of the microspheres, polymers, and crosslinking solutions. Optimization processes are needed regarding the concentration of polymers and crosslinking solutions to increase the efficiency entrapment of active ingredients in the matrix. The higher level of the polymer used causes the viscosity to increase so the particle size increases. Increasing of particle size causes the amount of drug trapped in particles to increase, causing an increase in entrapment efficiency. An increase in the level of crosslinking solutions (eg calcium chloride) caused the particles to structure more compact so that it increases the amount of drug trapped in the microspheres. ⁹ The value of drug loading is small because the reaction between the manuronic (M) in sodium alginate and NH₂ gentamicin sulphate is influenced by the ratio of mannuronic (M) and guluronic (G) to sodium alginate. The use of alginate with a high M/G ratio (high viscosity) will result in a more compact microspheres conformation compared to the use of low viscosity alginates, 2 whereas in this study low viscosity alginates were used. In further research, optimization can be made regarding the use of high viscosity alginate polymers as an effort to increase the value of drug loading. Table 3: Results of Yield | Yield (%) | Average \pm SD (%) | |-----------|----------------------| | 74.03 | 73.72±0.91 | | 74.43 | | | 72.69 | | | | 74.03
74.43 | Figure 4: Particle size distribution of gentamicin sulphate microspheres. Figure 5: Swelling index profile of gentamicin sulfate microspheres for 6 hours in aqua demineralisata. Table 4: Results of Moisture Content | Replication | Moisture Content (%) | Average + SD (%) | |-------------|----------------------|------------------| | 1 | 2.85 | | | 2 | 2.82 | 2.90 ± 0.11 | | 3 | 3.02 | | Table 5: Particle Size Analysis | Replication | Diameter (µm) | Average ± SD | CV (%) | |-------------|---------------|-----------------|--------| | 1 | 3.00 | 3.01 ± 0.02 | 0.66 | | 2 | 2.99 | | | | 3 | 3.03 | | | Table 6: The Result of Swelling Index | | Swelling Index (%) | | | | |--------------|--------------------|------|------|------------------| | | Replication | | 3 | Average ± SD (%) | | Time (hours) | 1 | 2 | | | | 1 | 1160.5 | 1150 | 1168 | 1159.5±9.04 | | 2 | 1692.7 | 1650 | 1694 | 1678.9±25.40 | | 3 | 1785 | 1735 | 1789 | 1769.7±30.09 | | 4 | 2370 | 2320 | 2376 | 2355.3±30.75 | | 5 | 2636 | 2600 | 2639 | 2625.0±21.70 | | 6 | 1960 | 1940 | 1965 | 1955± 13.23 | Replication | Table 7 | · Results | of Entrapment | efficiency | |---------|-----------|---------------|------------| | Replication | EE (%) | Average ± SD (%) | |-------------|--------|------------------| | 1 | 10.75 | 11.12 ± 0.43 | | 2 | 11.02 | | | 3 | 11.59 | | | Table 8: Results of Drug Loading | | | |----------------------------------|------------------|---| | Drug Loading (%) | Average ± SD (%) | | | 1.63 | | _ | | 1.76 | 1.75 ± 0.11 | | | 1.85 | | | 2 ### Characteristics of gentamicin sulfate emulgel The color of droplet From examination with an optical microscope with oil-soluble reagent (Sudan III) coloring oil droplets on the preparation. Whereas with water-soluble reagents (methylene blue) coloring the outside of the droplet. Figure 6 showed, oil droplets are found in the phase in the preparation. Because, the active ingredient (gentamicin sulfate) dissolves in water, the active ingredient in the outer phase. Standard curve of gentamic in sulfate in buffer solution with pH 7.4 \pm 0.05 The result of absorbance standar solution can be seen in Table 9 The linear regression from the above standart curve is used to determine the level of gentamicin sulphate in phosphate buffer pH 7.4 ± 0.05 . The intercept value is (a) 0.02496, the slope value (b) is 0.0101 and the correlation coefficient value is 0.9997. The result of release gentamicin sulfate from alginate microspheres Until the 720th minute, gentamicin sulphare was released from gentamicin sulfate emulgel 49.239 + 5.954% while in the emulgel gentamicin sulfate microspheres were 14.857 + 0.816%, as shown in Table 10 and Figure 7. The amount of gentamicin sulfate microspheres was smaller because the release of active ingredients depends on the swelling process and the diffusion process of the active ingredients from the matrix into the skin. Determination of release kinetics of gentamicin sulfate from emulgels From the result of the determination of release kinetics as shown in Table 11, obtained gentamicin sulfate in the emulgel followed the first-order release kinetics because it had a correlation coefficient of 0.840 while gentamicin sulfate microspheres in the emulgel followed the Higuchi release kinetics because it had a correlation coefficient of 0.9786. Table 9: Results of Absorbance of Standart Solutions at a Wavelength of | 401 nm | | | |---------------|------------|--| | Concentration | Absorbance | | | 20.0 ppm | 0.231 | | | 50.0 ppm | 0.520 | | | 60.0 ppm | 0.630 | | | 70.0 ppm | 0.733 | | | 80.0 ppm | 0.836 | | Figure 6: The color of droplet with (A) coloring with Sudan III reagents; (B) coloring with methylene blue reagents. Figure 7: The release profile of gentamicin sulphate microsphere in emulgel base. Table 10: Gentamicin Sulphate Release Test Results from the Microspheres | | Amount of release Gentamicin Sulphate (%) \pm SD | | | | |----------------------------|--|--|--|--| | Sampling time
(minutes) | Emulgel gentamicin sulphate | Emulgel loaded with gentamicin sulphate microspheres | | | | 0 | 0.000 ± 0.000 | 0.000 ± 0.000 | | | | 5 | 2.885 ± 1.178 | 0.544 ± 0.943 | | | | 10 | 3.744 ± 1.028 | 1.850 ± 1.501 | | | | 15 | 6.076 ± 3.622 | 2.585 ± 1.653 | | | | 30 | 8.832 ± 3.062 | 3.032 ± 1.820 | | | | 45 | 10.235 ± 3.311 | 3.764 ± 2.288 | | | | 60 | 13.339 ± 2.476 | 4.707 ± 2.384 | | | | 90 | 15.287 ± 2.940 | 5.961 ± 3.049 | | | | 120 | 17.723 ± 3.395 | 7.137 ± 2.115 | | | | 150 | 20.522 ± 4.423 | 8.832 ± 0.793 | | | | 240 | 22.688 ± 5.252 | 10.110 ± 0.201 | | | | 300 | 29.234 ± 6.404 | 10.640 ± 0.280 | | | | 360 | 36.186 ± 4.313 | 11.467 ± 0.584 | | | | 480 | 41.265 ± 4.470 | 13.547 ± 0.679 | | | | 600 | 45.271 ± 5.166 | 14.293 ± 0.782 | | | | 720 | 49.239 ± 5.954 | 14.857 ± 0.816 | | | Table 11: Results of the Regression Equation and Release Kinetic Model. | Sample | Orde 0 | Orde 1 | Higuchi | |-------------------------|--------------------|-------------------|--------------------| | GS Emulgel | y = 0.0443x-18.443 | y = 0.0003x-1.932 | y = 1.9755x-3.0374 | | | r = 0.9726 | r = 0.9840 | r = 0.9827 | | Micros-phere GS emulgel | y = 0.0103x-7.9108 | y = 0.0005-1.9648 | y = 0.459-2.9056 | | | r = 0.9660 | r = 0.9672 | r = 0.9786 | Table 12: Results of the Determination of Gentamicin Sulphate Release Rate | - Contained of Contained Sulphice Release Rate. | | | |---|------------------------|--| | Sample | Average $Slope \pm SD$ | | | GS Emulgel | 2.088 | | | Microspheres GS emulgel | 0.004 | | this data is based on replication average data 3 times Determination of release rate of gentamicin sulfate on emulgel. From the results of the determination of the release rate as shown in Table 12, the value of the flux (slope) of gentamicin emulgel was greater than the value of the flux (slope) of the gentamicin sulfate microspheres emulgel. #### CONCLUSION Gentamicin sulfate microspheres entrapped in sodium alginate matrix at a concentration of 2.5% alginate was found to have good characteristics. The release of gentamicin after 12 hours from microspheres were slower than from emulgel conventional, and the release kinetics of microspheres followed Higuchi model. This optimum formula can be further tested for the stability study. #### REFERENCES - Forge, A. and Schacht, J. (2000). Aminoglycoside Antibiotics. Audiol Neurootol, 5, 3–22. - McKinnon, P.S. and Davis, S.L. (2004). Phar macokinetic and Pharmacodynamic Issues in the Treatment of Bacterial Infectious Diseases. - Zalavras, C. G., Patzakis, M. J., Holtom P. (2004). Local Antibiotic Therapy in the Treatment of Open Fractures and Osteomyelitis. Clin Orthop Relat Res, 427, 86-9. - Sahil, K., Akansha, M., Premjeet, S., Bilandi, A., and Kapoor, B. (2011). Microsphere: A Review. International Journal of Research in Pharmacy and Chemistry, 1(4), 1184-1198. - Sree Giri Prasad, B., Gupta, V. R. M., Devanna, N., & Jayasurya, K. (2014). Microspheres as Drug Delivery System-A review. Journal of Global Trends in Pharmaceutical Sciences, 5(3), 1961–1972. - Dinkarrao Basarkar, G., Shirsath, G. N., & Patil, S. B. (2013). An Official Publication of Association of Phar macy Professionals. Development if Microspheres Containing Diclofenac Diethylamine as Sustained Release Topical Formulation. Bulletin of Pharmaceutical Research, 3 (1), 14–22. - Ahirrao, S. P., Gide, P. S., Shrivastav, B., & Sharma, P. (2014). Ionotropic Gela-tion: A Promising Cross Linking Tech-nique for Hydrogels. Journal of Phar-maceutic and Nanotechnology, 2(1), 1–6. - Manjanna, K.M., Pramod Kumar, T.M. and Shivakumar, B. (2010). Calcium Alginate Cross-Linked Polymeric Microbeads for Oral Sustained Drug Delivery in Arthritis. Drug discoveries & therapeutics, 4(2), 109-22 - Nagpal, M., Maheshwari, D. K., Rakha, P., Dureja, H., Goyal, S., & Dhingra, G. (2012). Formulation Development and Evaluation of Alginate Microspheres of I buprofen. Jour nal of Young Pharmacists, 4(1), 13–16. - Hariyadi, D. M., Purwanti, T., Nirmala, R. N. (2014). Effect of Lactose and Maltodextrin on the Physical Characteristics of Ovalbumin-loaded Alginate Microspheres Produced by Aerosolization. 2nd A n nual I nter national Conference on Pharmacology and Pharmaceutical Sciences, 5(2), 26-29. - Patel, J., Patel, D., and Raval, J. (2010). Formulation and Evaluation of Propranolol Hydrochloride-loaded Carbopol-934p/ Ethyl Cellulose Mucoadhesive Microspheres. Iranian Jour nal of Pharmaceutical Research, 9(3), 221–232. - Hardenia, A., Jayronia, S., & Jain, S. (2014). Emulgel: an Emergent Tool in Topical Drug Delivery, 5(5), 1653–1660. - Singla, V., Saini, S., Joshi, B., & Rana, A. C. (2012). Emulgel: A New Platform for Topical Drug Delivery. International Journal of Pharma and Bio Sciences, 3(1), 485–498. - Dash, S., Mur thy, P.N., Nath, L. (2010). Kinetic Modelling on drug release from controlled drug delivery system, Acta Poloniae Pharmaceutica-Drug Research, 67(3), 217-223. - Mhlanga, K., dan Ray, S.S. (2014). Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide/ metal oxide-based hybrids. The Complex World of Poly- saccharides, Chapter 16, 429-454. - Perrie, Y. and Rades, T. (2009). Pharmaceutics: Drug Delivery and Targeting. European Journal of Pharmaceutical Sciences, 8(3), 1–24.