Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts by Hartati Hartati **Submission date:** 15-Oct-2019 09:13PM (UTC+0800) **Submission ID:** 1193269226 File name: C07. Cyclic Acetalization of Furfural on Porous Alumino.pdf (429.69K) Word count: 4275 Character count: 22898 ### Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts ### Hartati^{1,2,3}, Didik Prasetyoko^{2,*}, and Mardi Santoso³ ¹Department of Chemistry, Faculty of Science and Technology, Airlangga University, Kampus C UNAIR, Surabaya, 60115, Indonesia ²Laboratory of Material Chemistry and Energy, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia ³Laboratory of Natural Products and Chemical Synthesis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia Received September 21, 2015; Accepted January 4, 2016 ### **ABSTRACT** Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde) with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH) and cetyltrimethylammonium bromide (CTAB) and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal. Keywords: acetalization; furfural; propylene glycol; porous aluminosilicates ### **ABSTRAK** Material aluminosilikat yang meliputi ZSM-5 mikropori dan mesopori, aluminosilikat berpori hirarkis, dan aluminosilikat mesopori diuji aktivitasnya untuk asetalisasi furfural (furan-2-karbaldehida) dengan propilena glikol. Metode sintesis material alumonisilikat berpori dan ZSM-5 dimodifikasi untuk menghasilkan material aluminosilikat dengan struktur pori hirarkis. Reaksi katalitik katalis dalam asetalisasi furfural dilakukan dengan merefluks campuran furfural, propilena glikol, dan katalis, menggunakan toluena sebagai pelarut dan nitrobenzena sebagai standar internal, pada suhu 106 °C selama 4 jam. Hasil penelitian menunjukkan bahwa kombinasi dua agen pengarah struktur, tetrapropilamonium hidroksida (TPAOH) dan setiltrimetilamonium bromida (CTAB) dan modifikasi kondisi kristalisasi menghasilkan kerangka aluminosilikat yang dapat diakses oleh reaktan dan memiliki sisi asam yang kuat untuk reaksi katalisis. Struktur pori dan sisi asam Brønsted merupakan hal yang paling berpengaruh untuk mengkonversi furfural menjadi asetal siklis. Kata Kunci: asetalisasi; furfural; propilena glikol; aluminosilikat berpori ### INTRODUCTION In general, acetalization is a viable method to protect carbonyl functionalities in organic compounds [1] and important process in industry and has been widely used to produce active additive in fragrances [2]. The industrial needs of acetal compound especially to be used as additive in fragrances has prompted this study to find alternative ways for designing a simpler synthesis approach and environmentally friendly catalysts [3]. Acetals include a number of 'amber' chemicals. These materials are so-called due to their resemblance to ambergris, a material formed in the stomach of whales probably as a protection against intestinal damage by the 'shelly' parts of plankton. The material is occasionally found washed up on beaches, but the major source was the whaling industry. Unsurprisingly, this is now a rare and expensive material, driving the search for synthetic alternatives [4]. Furfural (furan-2-carboxaldehyde) is produced from plant residues which are rich in pentoses. This is one of important oxygen-containing heterocyclic aroma chemicals occurring in almost every type of food flavor and has a sweet caramel-like, nutty, baked bread, Hartati et al. ^{*} Corresponding author. Tel/Fax: +62-31-5943353/5928314 Email address: didikp@chem.its.ac.id almond odor and flavor, and it is applied in cereal, roasted and meat flavorings [5]. Glycol/diol is the most widely used in the manufacture of acetal [2]. Jermi and Pandurangan [6] showed that propylene glycol is better used than ethylene glycol for acetalization, due to the addition of alkyl group in propylene glycol can increase the nucleophilic properties. The most researchers use glycerol/triol for acetalization [2,7-9]. Conventionally, syntheses of acetals are performed using protic acid catalyst such as hydrochloric acid, sulfuric acid, or *p*-toluenesulfonic acid (PTSA) [10]. Synthesis of acetal is generally done using a weak acid catalyst, whereas the synthesis of ketal using a strong acid, such as sulfuric acid or other catalyst PTSA and number. The methods mostly use reagents that can not be recycled, require neutralization process, and generate waste [2]. Solid acid catalysts, such as zeolites, molecular sieves, and related porous materials have many advantages in this respect [11]. The use of renewable feedstock is the one of 12 principles in green chemistry [12]. Zeolites [2] and molecular sieves [13-14] have been identified as a potential heterogeneous acid catalyst for such reaction. Aluminosilicate material was explored as active catalyst to drive the reaction where researches have been focused only on porous aluminosilicate catalysts [15]. However, the lack of interest in amorphous materials has prompted this study to explore a real potential of this material. We modify the existing recipe for preparation of ZSM-5 and aluminosilicate by combining two structure directing agents, reset mole ratio composition and crystallization conditions for the synthesis of catalysts to create a hierarchical material with high site acid strength. In this paper, we reported the result of our detailed investigations with respect to test of the porous aluminosilicate catalysts in acetalization of furfural with propylene glycol to produce cyclic acetal which is a vital ingredient in fragrances. ### **EXPERIMENTAL SECTION** ### Materials All chemicals in the study were of analytical grade and used without further purification. Tetraethyl orthosilicate (TEOS, \geq 99%), sodium aluminate (Al₂O₃ 50–56%), sodium hydroxide (\geq 98%), and tetrapropylammonium hydroxide (TPAOH, 1 L = 1.00 kg, 40 wt% solution in water), 3,4-dimethoxybenzaldehyde \geq 98%, propylene glycol (\geq 99%), toluene (\geq 99.9%), and nitrobenzene (\geq 99%) were purchased from Merck; hexadecyltrimethyl ammonium bromide (CTAB) were purchased from AppliChem, p-toluenesulfonic acid (PTSA) from Sigma Aldric (> 98.5%), while H-ZSM-5 standard from Zeolyst. ### Instrumentation The apparatus used in synthesis of catalysts consists of 250 mL stainless steel and polypropylene autoclaves, oven, porcelain crucible boat, centrifuge, tubular furnace, hot plate with magnetic stirrer, Leibig condenser, 50 mL two-necked round-bottom flask, and 100 °C thermometer. X-ray diffraction patterns (XRD) were recorded on a Philips X'pert XRD instrument with Cu K α radiation with a step size of 0.02° and counting time of 10 sec. The samples were grinded in agate mortar before analysis. Data were recorded in the 20 range of 5–50°. Fourier transform infrared (FTIR) spectra of the samples were recorded on a Shimadzu 84005 spectrophotometer using the KBr pellet technique, in the range of 400–4000 cm⁻¹ with a spectral resolution of 4 cm⁻¹, 45 scans, at 20 °C. Specific surface areas (SSA) of the different materials were determined by N₂ adsorption-desorption measurements at 77 K by employing the Brunauer-Emmet-Teller (BET) method. Prior to N₂ adsorption, the sample was out gassed at 300 °C for 5 h to desorb moisture adsorbed on the surface and inside the porous network. Mesopore size distributions were calculated using the Barrett, Joyner, and Halenda (BJH) method on Quantachrome Nova version 10.01. Spectra of pyridine adsorbed on the samples also were recorded on the same spectrometer for acidity study. Before measurement of pyridine adsorption, the samples were pressed to thin wafers (around 10 mg/cm²) and placed into a sample holder. The sample disks were evacuated at 400 °C for 4 h in the N₂ and cooled to room temperature. Then 2 drops of pyridine was exposed near the disks at room temperature. After the adsorption at room temperature for 1 h the infrared spectra were recorded. The desorption procedure were conducted at 150 and 300 °C for 3 h in order to determine the acidity of Lewis and Brønsted acid sites by evaluating the amount of remaining adsorbed pyridine as temperature increases. The concentrations of Brønsted (B) and Lewis (L) acid sites were calculated from the peak areas of adsorbed pyridine at around 1540 and 1450 cm⁻¹, using ε(B) and ε(L) extinction coefficients of 1.88 and 1.42 cm.mmol⁻¹, respectively [16]. The apparatus used in catalytic reaction are 50 mL three-necked round-bottom flask, Dean Stark apparatus, spiral condenser, 150 °C thermometer, hot plate with magnetic stirrer, syringe with 10 cm needle for sampling, and rubber stopper. ### **Procedure** ### Synthesis of catalysts Microporous ZSM-5 (ZSM-5) was synthesized according to the procedures by Cheng et al. [17] and TPAB was used as structure-directing agents (SDA). Mesoporous ZSM-5 (ZSM-5-Me) and hierarchical aluminosilicates (Hie-AMS) were prepared modification of the method for the synthesis of mesoporous ZSM-5 [18] and mesoporous titanosilicates [19], with a molar composition of 1SiO₂:xAl₂O₃: 0.2TPAOH: $38H_2O$ (x = $(SiO_2/Al_2O_3)^{-1}$. Sodium aluminate was dissolved in a solution of TEOS by stirring for 30 min. TPAOH and water were added into the reaction mixture and stirred for another 15 h at room temperature. The mixture was then transferred into a polypropylene autoclave and heated at 80 °C for 48 h for synthesis of ZSM-5-Me, while Hie-AMS (Hie-AMS-3, Hie-AMS-2, and Hie-AMS-1) were prepared by heated 80 °C for 24 h. In this research, CTAB was used as a mesophase forming agent (a molar ratio of SiO₂/CTAB = 3.85) was added after the reaction mixture was cooled at room temperature with a gentle stirred for 30 min. The mixture was then aged at room temperature for 3 h. The solid was separated from the supernatant by centrifugation and washed with distilled water until the pH of supernatant is 7. Finally, the solid was dried at 60 °C for 24 h and calcined at 550 °C for 1 h in N2 and 6 h in air to remove any organic compounds. We were also prepared another type of amorphous mesoporous aluminosilicate (AAM) using the similar procedure, but TPAOH was replaced with NaOH. The final reactant compositions in molar ratio and hydrothermal conditions for all samples are summarized in Table 1. All the synthesis products were treated with ammonium acetate solution (0.5 mol/L) at 60 °C for 3 h to produce hydrogen formed catalysts. The solids were centrifuged and washed thoroughly with distilled water before dried overnight at 110 °C and calcined at 550 °C for 1 h in N_2 and 6 h in air. The catalysts tested herein (Microporous ZSM-5, Hie-AMS-3, and AAM) were previously reported [20]. ### Catalytic performance Catalytic reactions of the catalysts in acetalization of furfural by propylene glycol were carried out in 50 mL three-necked round-bottom flask [2], using a Dean Stark apparatus to remove the water formed during the reaction. Furfural (1.12 mmol), propylene glycol (2.15 mmol), nitrobenzene (100 μ L, as internal standard for gas chromatography analysis), and dried catalyst (0.02 g) in toluene (20 mL) were refluxed by oil bath at around 106 °C for 4 h. Samples were taken at regular time periods and analyzed by Techcomp 7900 Fig 1. XRD patterns of the ZSM-5 [20], ZSM-5-Me, Hie-AMS-1, Hie-AMS-2, Hie-AMS-3 [20], and AAM [20], compared with XRD pattern of ZSM-5-std Table 1. Molar ratio composition and crystallization conditions for the synthesis of catalysts | Catalysts | SiO ₂ /Al ₂ O ₃
Mole | Structure
agents | . • | Crystallization condition | Ref. | |----------------------|--|---------------------|------|---------------------------|------| | Calalysis | Ratio ^a | 1 | 2 | (°C; h) | Rei. | | ZSM-5 | 12.87 | TPAB | - | 175; 24 | 20 | | ZSM-5-Me | 43.17 | TPAOH | CTAB | 80; 48 | - | | Hie-AMS-3 | 39.42 | TPAOH | CTAB | 80; 24 | - | | Hie-AMS-2 | 34.13 | TPAOH | CTAB | 80; 24 | - | | Hie-AMS-1 | 11.39 | TPAOH | CTAB | 80; 24 | 20 | | AAM | 49.24 | - | CTAB | 80; 24 | 20 | | 8) determined by CDV | | | | | | a) determined by EDX b) MFI structure template (1) and mesophase forming agent (2) gas chromatography (GC) equipped with HP 88 column and FID detector. The products were also further identified using gas chromatography-mass spectrometer (GC-MS). The conversion of furfural and the selectivity of products were calculated based on equation by Pawar et al. [9] and Tayade, et al. [21], respectively. The results are also compared with *p*-toluenesulfonic acid as a homogeneous acid catalyst. ### RESULT AND DISCUSSION ### **Characterization of the Catalysts** The catalysts were characterized by X-ray diffraction patterns (XRD), Fourier transform infrared spectroscopy (FTIR), N_2 adsorption-desorption, and pyridine adsorption - FTIR spectroscopy. As illustrated in Fig. 1, microporous ZSM-5 (ZSM-5) and mesoporous ZSM-5 (ZSM-5-Me) obtained after the final hydrothermal treatment at 175 °C for 24 h and at 80 °C for 48 h, respectively, are highly crystalline as a standard of ZSM-5 (ZSM-5-std) that can be observed by X-ray diffraction pattern. For the materials prepared with the addition of TPAOH through crystallization conditions for the synthesis at 80 °C for 24 h, the sample Hie-AMS showed amorphous diffraction line although there is very small peak at around 2θ = 7–8° and 22°, may be suggesting the appearance of a crystalline ZSM-5 phase in the samples (Fig.1, circle). AAM only shows hump characteristic for amorphous phase and does not appear the typical MFI peaks at 2θ around 7–8° and around 22°. Fig. 2 shows the FTIR spectra all of materials in the range of 1400-400 cm⁻¹. Interpretations of these spectra were based on the assignment of the infrared bands of the structural groups in the material framework. The absorption at around 1222 cm-1 (external asymmetric stretching), 1000-1200 cm-1 (internal asymmetric stretching), 795 cm⁻¹ (external symmetric stretching), and 445 cm-1 (T-O bending) are observed in the amorphous materials (Hie-AMS and AAM) and these characteristics are insensitive to the structural changes [21-22]. The infrared spectra of Hie-AMS and AAM also contained a shoulder band at around 980 cm⁻¹ attributed to the terminal silanol group on the wall surface of the mesoporous materials [21]. The additional small band at around 545 cm-1 was only observed for the Hie-AMS samples. These bands are a characteristic of MFI type zeolite that arises from the double rings lattice vibration of the framework (Fig. 2, circle). Spectra FTIR of ZSM-5 and ZSM-5-Me exhibits a band at 550 cm⁻¹, which is commonly assigned to pentasil units in the MFI zeolite topology, while the band at around 1200 cm-1 is clearly resolved, indicating the high crystallinity of this material [23]. The bands at 550 cm⁻¹ and 980 cm⁻¹ in the spectra Fig 2. FTIR spectra of the ZSM-5 [20], ZSM-5-Me, Hie-AMS-1, Hie-AMS-2, Hie-AMS-3 [20], and AAM [20] **Fig 3.** Nitrogen adsorption-desorption isotherm of the ZSM-5 [20], ZSM-5-Me, Hie-AMS-1, Hie-AMS-2, Hie-AMS-3 [20], and AAM [20] | Table 2 | Pore st | ructure | properties | of | catalysts | |-----------|---------|---------|------------|----|-----------| | I able 2. | 101631 | luctule | properties | vı | catalysis | | Catalysts | Surface Area
Mesoporous ^a (m²/g) | Surface Area
Microporous ^b
(m²/g) | Pore
Volume ^a
(cm ³ /g) | Pore Diameter ^a (nm) | Ref. | |-----------|--|--|---|---------------------------------|------| | ZSM-5 | 5.766 | 261.565 | 0.009 | 3.820 | [20] | | ZSM-5-Me | 177.233 | 241.756 | 0.701 | 6.575 | - | | Hie-AMS-3 | 145.986 | 541.411 | 0.311 | 3.059 | [20] | | Hie-AMS-2 | 134.112 | 337.156 | 0.189 | 3.044 | - | | Hie-AMS-1 | 136.108 | 293.274 | 0.300 | 3.400 | - | | AAM | 278.774 | 284.949 | 0.441 | 3.815 | [20] | a. determined by BJH Table 3. Acidity of catalysts | | | Acidity (| mmol/g) | | | |-----------|----------|-----------|---------|--------|------| | Catalysts | Brønsted | | Le | Ref. | | | | 150 °C | 300 °C | 150 °C | 300 °C | | | ZSM-5 | 1.53 | 1.24 | 0.95 | 0.84 | [20] | | ZSM-5-Me | 0.72 | 0.67 | 1.16 | 1.15 | - | | Hie-AMS-3 | 1.29 | 0.78 | 1.19 | 1.00 | [20] | | Hie-AMS-2 | 0.83 | 0.58 | 1.24 | 0.88 | - | | Hie-AMS-1 | 0.96 | 0.00 | 1.47 | 1.37 | - | | AAM | 0.00 | 0.00 | 1.05 | 0.87 | [20] | | | | | | | | **Fig 4.** Pore diameter of the ZSM-5 [20], ZSM-5-Me, Hie-AMS-1, Hie-AMS-2, Hie-AMS-3 [20], and AAM [20] showed that Hie-AMS samples are hierarchical porous aluminosilicates. The N₂ adsorption-desorption isotherm of the microporous ZSM-5 possesses a typical type I according to the IUPAC classification [24], as shown in Fig. 3. The characteristic of this type is shown with a very high adsorption at low relative pressure and an almost flat hysteresis loop appearing at P/Po > 0.10. The adsorption-desorption isotherms of the mesoporous ZSM-5 (ZSM-5-Me) is a typical type IV isotherm with capillary condensation at high relative pressure between 0.6 and 0.9, suggesting a relatively large mesoporous size (Table 2). Hierarchical aluminosilicate (Hie-AMS) and amorphous aluminosilicate (AAM) also show a typical pattern of type IV structure. The hysteresis loop of Hie-AMS at relatively high pressure (0.85–0.95) is assigned to H4 hysteresis loop. Materials containing both microporous and mesoporous generally have H4 hysteresis loops [24]. Correspondingly, the sample mesoporous size distribution is estimated at about 3–6 nm by applying a BJH method (Fig. 4). Fig. 4 also shows that ZSM-5 and ZSM-5-Me have wide distribution with low peaks, while Hie-AMS and AAM show a narrow distribution with a sharper peaks. The surface area of microporous structure of ZSM-5 is very high at around 260 m²/g (Table 2). However this material does not possess a mesoporous structure which can be seen by only 5.77 m²/g (2.2% of total surface area) and 0.01 cm³/g of mesoporous surface area and pore volume were detected. The mesoporous ZSM-5 showed the surface area more than 40% of total surface area, however the Hie-AMS and AAM contain both mesoporous and microporous structure. The surface areas of AAM and pore volume are around 278.77 m²/g (almost 50%) and 0.44 cm³/g, respectively. Meanwhile, the surface area of mesoporous Hie-AMS is less than 50% compared to microporous structure. It is interesting to note that the Hie-AMS also has a high pore volume (ca. 0.189-0.311 cm³/g). This finding proved that the Hie-AMS has hierarchical porous structure that will allow a good accessibility. The acid sites of hydrogen formed catalysts were quantified by using FTIR spectra of adsorbed pyridine. FTIR spectra after pyridine desorption at 150 and 300 °C are shown in Fig. 5. The band at around 1444 cm⁻¹ corresponds to the chemisorption of pyridine (C–C stretching of a coordinative bonded pyridine complex) on Lewis (L) acid sites. The band at around 1544 cm⁻¹ is attributed to the C–C stretching vibration of the pyridinium ion and has been used to identify the presence of Brønsted (B) acid sites [25-26]. The intensity of these bands show a significant reduction when desorption temperature was increased up to 300 °C. This effect can be clearly seen on Brønsted acid b. determined by BET method at P/P₀ = 0.3 **Fig 5.** FTIR spectra of pyridine desorption on ZSM-5 [20], ZSM-5-Me, Hie-AMS-1, Hie-AMS-2, Hie-AMS-3 [20], and AAM [20], at 150 °C (A) and 300 °C (B) Fig 6. Conversion of furfural to acetal in the presence of H-Hie-AMS-3 (▲), H-Hie-AMS-2 (•), H-Hie-AMS-1 (■), H-AAM (▼), PTSA (♦) as catalyst sites due to the interaction between pyridine and Brønsted acid sites are relatively weaker than Lewis acid sites (Table 3). The pyridine adsorption studies showed that H-Hie-AMS-3 has strong acid sites with both Lewis and Brønsted acid sites were observed in the structure. Different from H-ZSM-5 and H-Hie-AMS, H-AAM has no band observed at around 1544 cm⁻¹, indicating that the sample has a low acid strength. ### **Catalytic Activity** Acetalization of furfural with propylene glycol was done to evaluate the activity of the catalysts. The reaction was conducted at 106 °C using toluene as a solvent. This reaction requires a strong acid catalyst; and due to a bulky structure of chemical reactant, a large mesoporous channel is important to allow the reactant to reach the active acid site in the catalysts. The conversion of furfural for 4 h of reaction on H-ZSM-5, H-ZSM-5-Me, H-Hie-AMS, and H-AAM catalysts was shown in Fig. 6. Hie-AMS-3 is the most active catalysts with more than 20% of conversion within 15 min into the reaction. However, the conversion of furfural in the acetalization reaction with H-Hie-AMS-3 for 4 h is not up by 40% and in previous studies this catalyst were successfully used as catalysts in acetalization of 3,4dimethoxy-benzaldehyde [20]. H-Hie-AMS-2 and H-Hie-AMS-1 catalysts which have mole ratio of Si/Al lower than H-Hie-AMS-3 catalyst (Table 1) showed slightly less active than H-Hie-AMS-3 catalyst. The Brønsted acid sites may play important role in the reaction, therefore H-Hie-AMS-3 more active than H-Hie-AMS-1 and H-Hie-AMS-2. The important of active acid sites for the reaction can be seen by no conversion of furfural by H-AAM catalysts. H-ZSM-5 and H-ZSM-5-Me was shown trace of conversion of furfural to acetal. Furfural propylene glycol acetal was observed as the only product from the reaction on the porous aluminosilicate catalysts as also shown on GC-MS spectra (100% selectivity). The result showed that the catalysts were highly selective for the synthesis of furfural propylene glycol acetal compared to PTSA that showed 94.7% selectivity. ### **Mechanism for Acetalization** Acetalization reaction in general is carried out by reacting aldehyde with an alcohol in the presence of an acid catalyst. The proposed reaction mechanism of furfural (1) with propylene glycol was shown in Scheme 1. In the first step of reaction, the formation of carbocation on the carbonyl group of furfural takes place over the Brønsted acid sites associated to tetrahedrally coordinated aluminium. Then, the carbocationic species were combined with nucleophilic Scheme 1. Mechanism for the formation of furfural propylene glycol acetal oxygen of propylene glycol. Hemiacetals (2) was formed after deprotonation, which then subsequently react with hydroxyl group on propylene glycol. This followed by the cyclodehydration to eliminate water molecule and produced 2-(furan-2-yl)-4-methyl-1,3-dioxolane (3) [15]. ### CONCLUSION Improving the procedure for synthesizing mesoporous ZSM-5 has produced hierarchical aluminosilicate materials. The materials have strong acidic site. In addition, the material also has mesoporous structure beside still quite a lot of microporous structure. The use of hierarchical aluminosilicate materials for catalysis in acetalization of furfural showed the acidity of the catalyst and the mesoporous structure of the aluminosilicate framework are crucial factor to ensure high conversion acetalization reaction. The reactivity of catalysts in acetalization of furfural especially influenced by pore structure and Brønsted acid sites. The mole ratio of Si/Al of the material catalyst also affects the reactivity of the hierarchical aluminosilicates as catalyst in acetalization. The activities of hierarchical porous aluminosilicates material in the acetalization of furfural with prolylene glycol are better than PTSA based on conversion of furfural and selectivity. ### **ACKNOWLEDGEMENT** The authors gratefully acknowledge the financial support from Ministry of Education and Culture, Indonesia, No.: 01664/IT2.11/PN.08/2016. ### **REFERENCES** - Rubio-Caballero, J.M., Saravanamurugan, S., Maireles-Torres, P., and Riisager, A., 2014, Catal. Today, 234, 233–236. - Climent, M.J., Corma, A., and Velty A., 2004, Appl. Catal., A, 263 (2), 155–161. - Venkatachalam, K., Palanichamy, M., and Murugesan, V., 2010, Catal. Commun., 12 (4), 299– 303. - Rowe, D.J., 2005, "Aroma Chemicals I: C, H, O Compounds" in *Chemistry and Technology of Flavors and Fragrances*, Blackwell Publishing Ltd., Victoria, 72–73. - Zviely, M., 2005, "Aroma Chemicals II: Heterocycles" in Chemistry and Technology of Flavors and Fragrances, Blackwell Publishing Ltd., Victoria, 88– 90 - Jermy, B.R., and Pandurangan, A., 2006, J. Mol. Catal. A: Chem., 256 (1-2), 184–192. - Umbarkar, S.B., Kotbagi, T.V, Biradar, A.V., Pasricha, R., Chanale, J., Dongare, M.K., Mamede, A.S., Lancelot, C., and Payen, E., 2009, *J. Mol. Catal. A: Chem.*, 310, 150–158. - Khayoon, M.S., Abbas, A., Hameed, B.H., Triwahyono, S., Jalil, A.A., Haris, A.T., and Minett, A.I., 2014, Catal. Lett., 144 (6), 1009–1015. - Pawar, R.R. Jadhav, S.V., and Bajaj, C.H., 2014, Chem. Eng. J., 235, 61–66. - Bruckner, R., 2010, Organic Mechanisms Reactions, Stereochemistry and Synthesis, Springer-Verlag, Berlin Heidelberg, 373. - Sheldon, R., Arends, I.W.C.E., and Hanefeld, U., 2007, Green Chemistry and Catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 10. - Sharma, S.K., and Mudhoo, A., 2011, Green Chemistry for Environmental Sustainability, NRC Press, Tailor and Francis Group, New York, 2. - 13. Rodriguez, I., Climent, M.J., Iborra, S., Fornés, V., and Corma, A., 2000, *J. Catal.*, 192 (2), 441–447. - Liang, X.Z., Gao, S, Wang, W.J., Chen, W.P., and Yang, J.G., 2007, Chin. Sci. Bull., 52 (13), 1780– 1784. - 15. Ajaikumar, S., and Pandurangan, A., 2008, *J. Mol. Catal. A: Chem.*, 290 (1-2), 35–43. - 16. Emeis, C.A., 1993, J. Catal., 141 (2), 347-354. - 17. Cheng, Y., Wang, L.J., Li, J.S., Yang, Y.C., and Sun, X.Y., 2005, *Mater. Lett.*, 59 (27), 3427–3430. - Gonçalves, M.L., Dimitrov, L.D., Jordão, M.H., Wallau, M., and Urquieta-González, E.A., 2008, Catal. Today, 133-135, 69–79. - Eimer, G.A., Díaz, I., Sastre, E., Casuscelli, S.G., Crivello, M.E., Herrero, E.R., and Perez-Pariente, J., 2008, Appl. Catal., A, 343 (1-2), 77–86. - Hartati, Prasetyoko, D., Santoso, M., Bahruji, H., and Triwahyono, S., 2014, *Jurnal Teknologi*, 69 (5), 2180–3722. - Tayade, K.N., Mishra, M., Munusamy, K., and Somani, R.S., 2014, *J. Mol. Catal. A: Chem.*, 390, 91–96. - 22. Meenakshi, S., Sahu, A.K., Bhat, S.D., Sridhar, P., Pitchumani, S., and Shukla, A.K., 2013, *Electrochim. Acta*, 89, 35–44. - Yang, J., Yu, S., Hu, H., Zhang, Y., Lu, J., Wang, J., and Yin, D., 2011, Chem. Eng. J., 166 (3), 1083–1089. - 24. Zhou, J., Hua, Z., Liu, Z., Wu, W., Zhu, Y., and Shi, J., 2011, *ACS Catal.*, 1, 287–291. - 25. Thommes, M., 2010, Chem. Ing. Tech., 82 (7), 1059–1073. - 26. Jin, F., and Li, Y., 2009, Catal. Today, 145 (1-2), 101–107. - Hensen, E.J.M., Poduval, D.G., Degirmenci, V., Ligthart, D.A.J.M., Chen, W., Maugé, F., Rigutto, M.S., and van Veen, J.A.R., 2012, J. Phys. Chem. C, 116, 21416–21429. ### Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts **ORIGINALITY REPORT** **25**% 11% 23% 1% SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS ### **PRIMARY SOURCES** Zongtao Zhang, Yu Han, Feng-Shou Xiao, Shilun Qiu et al. "Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures", Journal of the American Chemical Society, 2001 1% Publication Yousheng Tao, Yoshiyuki Hattori, Akihiko Matumoto, Hirofumi Kanoh, Katsumi Kaneko. "Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating", The Journal of Physical Chemistry B, 2005 1% Publication 3 D. P. Serrano, J. Aguado, G. Morales, J. M. Rodríguez, A. Peral, M. Thommes, J. D. Epping, B. F. Chmelka. "Molecular and Meso- and Macroscopic Properties of Hierarchical Nanocrystalline ZSM-5 Zeolite Prepared by 1% | 4 | Verboekend, Danny, Maria Milina, Sharon Mitchell, and Javier Pérez-Ramírez. "Hierarchical Zeolites by Desilication: Occurrence and Catalytic Impact of Recrystallization and Restructuring", Crystal Growth & Design, 2013. Publication | 1% | |---|--|----| | 5 | Jingjing Zhao, Yaquan Wang, Chao Sun, Aijuan Zhao et al. "Synthesis of hierarchical ZSM-5 aggregates by an alkali-treated seeds method with cetyltrimethylammonium bromide for the methanol to gasoline reaction", Reaction Kinetics, Mechanisms and Catalysis, 2019 Publication | 1% | | 6 | Michael Zviely. "Aroma Chemicals II:
Heterocycles", Chemistry and Technology of
Flavors and Fragrances, 10/26/2004
Publication | 1% | | 7 | www.mdpi.com
Internet Source | 1% | | 8 | Submitted to iGroup Student Paper | 1% | | 9 | Ajaikumar, S "Reaction of benzaldehyde with various aliphatic glycols in the presence of | 1% | hydrophobic Al-MCM-41: A convenient | synthesis of cyclic acetals", Journal of Molecular | |--| | Catalysis. A, Chemical, 20080701 | | Publication | | 10 | Antje Ota, Jutta Kröhnert, Gisela Weinberg, Igor
Kasatkin et al. " Dynamic Surface Processes of
Nanostructured Pd Ga Catalysts Derived from
Hydrotalcite-Like Precursors ", ACS Catalysis,
2014
Publication | 1% | |----|---|----| | 11 | S. Ajaikumar, A. Pandurangan. "Reaction of benzaldehyde with various aliphatic glycols in the presence of hydrophobic Al-MCM-41: A convenient synthesis of cyclic acetals", Journal of Molecular Catalysis A: Chemical, 2008 Publication | 1% | | 12 | Duo Xu, Jinghong Ma, Aixia Song, Zhiping Liu, Ruifeng Li. "Availability and interconnectivity of pores in mesostructured ZSM-5 zeolites by the adsorption and diffusion of mesitylene", Adsorption, 2016 Publication | 1% | | 13 | oatao.univ-toulouse.fr Internet Source | 1% | | 14 | fcee.utm.my Internet Source | 1% | Avelino Corma, Sara Iborra, Alexandra Velty. "Chemical Routes for the Transformation of Biomass into Chemicals", Chemical Reviews, 2007 Publication journals.sagepub.com 1% Weiwei Fan, Zhu Sun, Junkai Wang, Jun Zhou, Kai Wu, Yonghong Cheng. "A new family of Cedoped SmFeO 3 perovskite for application in symmetrical solid oxide fuel cells", Journal of Power Sources, 2016 <1% Publication Hongyao Li, Yaquan Wang, Fanjun Meng, Fei Gao, Chao Sun, Chunyang Fan, Xiao Wang, Shuhai Wang. "Controllable fabrication of single-crystalline, ultrafine and high-silica hierarchical ZSM-5 aggregates via solid-like state conversion", RSC Advances, 2017 <1% Publication R. Sabarish, G. Unnikrishnan. "Synthesis, characterization and evaluations of micro/mesoporous ZSM-5 zeolite using starch as bio template", SN Applied Sciences, 2019 <1% Kaur, Balwinder, and Rajendra Srivastava. "Nanocrystalline Metallosilicate Modified Electrodes for the Simultaneous, Sensitive, and <1% | Selective Determination of Riboflavin, Rutin, a | ınd | |---|-----| | Pyridoxine", Electroanalysis, 2014. | | Publication Ki-Yong Lee, Seung-Woo Lee, Son-Ki Ihm. <1% 21 "Acid Strength Control in MFI Zeolite for the Methanol-to-Hydrocarbons (MTH) Reaction", Industrial & Engineering Chemistry Research, 2014 Publication link.springer.com 22 Internet Source ejournal2.undip.ac.id 23 Internet Source Ahmadpour, Javad, and Majid Taghizadeh. 24 "One-pot synthesis of hierarchically mesoporous ZSM-5 using different combinations of mesogenous templates", Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2015. Publication dl.uctm.edu Internet Source Heru Setyawan, Ratna Balgis. "Mesoporous 26 silicas prepared from sodium silicate using gelatin templating", Asia-Pacific Journal of Chemical Engineering, 2012 **Publication** | 27 | Serguei Alejandro, Héctor Valdés, Marie-Hélène Manéro, Claudio A. Zaror. "Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: The influence of zeolite chemical surface characteristics", Journal of Hazardous Materials, 2014 Publication | <1% | |----|--|------------| | 28 | Zhang, Y "Mixed-matrix membranes composed of Matrimid^(R) and mesoporous ZSM-5 nanoparticles", Journal of Membrane Science, 20081115 Publication | <1% | | 29 | vdocuments.site Internet Source | <1% | | | | | | 30 | www.chemweb.com Internet Source | <1% | | 31 | | <1%
<1% | | _ | Maria Bevilacqua, Daniela Meloni, Franca Sini, Roberto Monaci, Tania Montanari, Guido Busca. "A Study of the Nature, Strength, and Accessibility of Acid Sites of H-MCM-22 Zeolite", The Journal of Physical Chemistry C, 2008 | <1%
<1% | Isothermal Binary Vapor–Liquid Equilibrium for Diethyl Carbonate + Isooctane/ - Heptane/Toluene Systems ", Journal of Chemical & Engineering Data, 2017 Publication - A. Corma, B. W. Wojciechowski. "The Chemistry of Catalytic Cracking", Catalysis Reviews, 2007 - <1% - Ana Palcic, Vitaly V. Ordomsky, Zhengxing Qin, Veselina Georgieva, Valentin Valtchev. "Tuning zeolite properties for highly efficient synthesis of propylene from methanol", Chemistry A European Journal, 2018 <1% Publication S. Narayanan, J. Judith Vijaya, S. Sivasanker, Sihai Yang, L. John Kennedy. "Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method", Chinese Journal of Catalysis, 2014 <1% Publication Zongtao Zhang, Yu Han, Lei Zhu, Runwei Wang, Yi Yu, Shilun Qiu, Dongyuan Zhao, Feng-Shou Xiao. "Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure", Angewandte Chemie International Edition, 2001 <1% Publication | 38 | Kore, R "Synthesis of triethoxysilane imidazolium based ionic liquids and their application in the preparation of mesoporous ZSM-5", Catalysis Communications, 20120210 Publication | <1% | |----|--|-----| | 39 | Xu, C "Methane non-oxidative aromatization on Mo/ZSM-5: Effect of adding triethoxyphenylsilanes into the synthesis system of ZSM-5", Applied Surface Science, 20110115 Publication | <1% | | 40 | www.readbag.com Internet Source | <1% | | 41 | etheses.uin-malang.ac.id Internet Source | <1% | | 42 | izbamleka.pl
Internet Source | <1% | | 43 | Jiahui Huang, Lihong Xing, Hongsu Wang, Gong Li, Shujie Wu, Tonghao Wu, Qiubin Kan. "Tertiary butylation of phenol over hexagonal p6mm mesoporous aluminosilicates with enhanced acidity", Journal of Molecular Catalysis A: Chemical, 2006 Publication | <1% | | 44 | eprints.whiterose.ac.uk Internet Source | <1% | Uthen Thubsuang, Hatsuo Ishida, Sujitra Wongkasemjit, Thanyalak Chaisuwan. "Novel template confinement derived from polybenzoxazine-based carbon xerogels for synthesis of ZSM-5 nanoparticles via microwave 50 <1% ## irradiation", Microporous and Mesoporous Materials, 2012 Publication Clay Science, 2016 | 51 | Rekha Yadav, Arvind Kumar Singh, Ayyamperumal Sakthivel. "Synthesis and Catalytic Application of Mesoporous Titanium Silicoaluminophosphate-37 (MESO-TSAPO-37) Molecular Sieves Assembled from Microporous TSAPO-37 Precursor", Catalysis Letters, 2016 Publication | <1% | |----|---|-----| | 52 | d-nb.info
Internet Source | <1% | | 53 | Teng Xue, Sisi Li, Haihong Wu, Peng Wu, Mingyuan He. "Eco-Friendly and Cost-Effective Synthesis of ZSM-5 Aggregates with Hierarchical Porosity", Industrial & Engineering Chemistry Research, 2017 Publication | <1% | | 54 | epub.uni-regensburg.de Internet Source | <1% | | 55 | Ebrahim Mohiuddin, Yusuf Makarfi. Isa, Masikana M. Mdleleni, Nonyameko Sincadu, David Key, Themba Tshabalala. "Synthesis of ZSM-5 from impure and beneficiated Grahamstown kaolin: Effect of kaolinite content, crystallisation temperatures and time". Applied | <1% | | 56 | Vinh-Thang, H "Effect of the acid properties on
the diffusion of C"7 hydrocarbons in UL-ZSM-5
materials", Microporous and Mesoporous
Materials, 20060620
Publication | <1% | |----|--|-----| | 57 | Yang Zong, Liting Yang, Shanyu Tang, Longjia Li, Wanjie Wang, Bingxin Yuan, Guanyu Yang. "Highly Efficient Acetalization and Ketalization Catalyzed by Cobaloxime under Solvent-Free Condition", Catalysts, 2018 Publication | <1% | | 58 | X Meng. "Catalytic oxidation of olefins and alcohols by molecular oxygen under air pressure over Cu2(OH)PO4 and Cu4O(PO4)2 catalysts", Journal of Catalysis, 2003 Publication | <1% | | 59 | Anatoli Davydov. "Molecular Spectroscopy of Oxide Catalyst Surfaces", Wiley, 2003 Publication | <1% | | 60 | "Zeolites and Catalysis", Wiley, 2010 Publication | <1% | | 61 | Juan Miguel Rubio-Caballero, Shunmugavel
Saravanamurugan, Pedro Maireles-Torres,
Anders Riisager. "Acetalization of furfural with
zeolites under benign reaction conditions",
Catalysis Today, 2014 | <1% | 62 Silvana A. D'Ippolito, Adriana D. Ballarini, Carlos L. Pieck. "Influence of Support Acidity and Ir Content on the Selective Ring Opening of Decalin over Ir/SiO –Al O ", Energy & Fuels, 2017 <1% Publication Exclude quotes Off On Exclude bibliography Exclude matches Off ## Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts | GRADEMARK REPORT | | |------------------|------------------| | FINAL GRADE | GENERAL COMMENTS | | /0 | Instructor | | | | | PAGE 1 | | | PAGE 2 | | | PAGE 3 | | | PAGE 4 | | | PAGE 5 | | | PAGE 6 | | | PAGE 7 | | | PAGE 8 | |