IOP Conf. Series: Earth and Environmental Science 217 (2019) 012002 doi:10.1088/1755-1315/217/1/012002

## **Determination of Brønsted Acid Sites In Porous** Aluminosilicate Solid Catalysts Using Volumetric And **Potentiometric Titration Method**

## A Purwaningsih<sup>1</sup>, A N Kristanti<sup>1</sup>, D Z Mardho<sup>1</sup>, D W Saraswati<sup>1</sup>, N M Putri<sup>1</sup>, N H Saputri<sup>1</sup>, Hartati<sup>1\*</sup>

**IOP** Publishing

<sup>1</sup>Departement of Chemistry, Science and Technology Faculty, Airlangga University, Surabaya, East Java, Indonesia

\* hartati@fst.unair.ac.id

Abstract. The Brønsted acid site was determined by using volumetric and potentiometric titration method. The result showed that the Brønsted acid sites of synthesized aluminosilicate using volumetric titration method are aluminosilicate-1: 0.5491; aluminosilicate-2: 0.5523; and aluminosilicate-3: 0.5772 mmol/g and using potentiometric titration method are aluminosilicate-1: 4.7087; aluminosilicate-2: 5.5739; and aluminosilicate-3: 8.1059 mmol/g. FTIR-pyridine also showed the same trend line, the Brønsted acid sites concentration increased by the increasing of Si/Al mole ratio. The results of the measurement using FTIRpyridine showed the Brønsted acid sites concentration of aluminosilicate-1; aluminosilicate-2; and aluminosilicate-3 were 0.0293; 0.330; and 0.0336 mmol/g, respectively. The Brønsted acid sites concentration of aluminosilicate was higher using volumetric titration and potentiometric titration methods than using the FTIR-pyridine method, but the trend line was the same, the higher Si/Al mole ratio, concentration of Brønsted acid sites increased.

Keyword : Brønsted Acid, Aluminosilicate Solid, Volumetric, Potentiometric Titration

## 1. Introduction

The catalysts need for a wide range of organic reactions is currently increasing. The type of catalyst which is the first interest nowadays is the heterogeneous catalyst. Aluminosilicates are widely used as heterogeneous catalysts for many chemical reactions. Aluminosilicate compound can be used as a catalyst because it can react in the surface area, has a good cation-exchange capability, and its Brønsted acid properties can be used for the conversion of hydrocarbons [1, 2].

The acidity of a catalyst play an important role in catalytic properties [3]. The higher the acid site, the surface area, and the larger the pore diameter, the active site of the catalyst will be greater so that the catalytic activity will be higher [4]. The acidity of a catalyst includes the nature, amount, and strength of the acid side [5]. Various methods have been used to quantify and characterize the acidity of aluminosilicate.

Determination of Brønsted acid site can use volumetric titration method, catalyst with cationexchange treatment, catalyst with no further purification, and also catalyst which was milled before use had the concentration of Brønsted acid sites respectively of 0.63; 0.89; and 0.39 mmol/g. Potentiometric titration method indicates a higher Brønsted acid sites concentration compared with using FTIRpyridine method [6]. Total concentration of Brønsted acid sites on H-Beta-25; H-Beta-300; H-Ferrierite-20; and Si-MCM-48 using potentiometric titration method were 1040; 670; 1100; and 280 umol/g, while through FTIR-pyridine method, the concentration of Brønsted acid site on H-Beta-25 acid side; H-Beta-300; H-Ferrierite-20; and Si-MCM-48 were respectively 301; 82; 357; and 12 µmol/g [7]. Potentiometric titration could be used in matters of materials such as zeolite with micro-mesoporus pore size [8].

In a previous study, the Brønsted acid site test was performed using FTIR-pyridine [9-11]. However, the Brønsted acid site test using FTIR-pyridine was less effective as it resulted in lower acid side concentrations [7]. Therefore, in this paper, the results of the experiments from the Brønsted acid site

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1