PAPER • OPEN ACCESS

Committee

To cite this article: 2019 IOP Conf. Ser.: Earth Environ. Sci. 217 011002

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

IOP Conf. Series: Earth and Environmental Science 217 (2019) 011002 doi:10.1088/1755-1315/217/1/011002

COMMITTEE

The Chairman

- 1. Dr. Purkan, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia.
- 2. Dr. Sri Sumarsih, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia

Steering Committee

- 1. Dr. Abdulloh, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 2. Dr. Alfinda Novi Kristanti, DEA (Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 3. Dr. Ni'matuzarroh, M.Si, Biology Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 4. Satya Candra Wibawa Sakti, M.Sc, Ph.D, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 5. Harsasi Setyawati, S.Si, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 6. Ahmadi Jaya Permana, S.Si, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 7. Kautsar UI Haq, S.Si, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 8. Dr. Rico Ramadhan, M.Sc, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 9. Dr. Indeswati Diyatri, drg., M.S, Faculty of Dentistry, Universitas Airlangga
- 10. Dr. Dian Mulawarmanti, drg., M.S, Faculty of Dentistry, Hang Tuah University, Surabaya Indonesia

Scientific Committee

Editors:

- 1. Ali Rohman, M.Si, Ph.D, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 2. M. Zakki Fahmi, M.Si, Ph.D, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 3. Dr. Verawat Champreda, M.Sc, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand
- 4. Dr. Sehanat Prasongsuk, Department of Botany, Chulangkorn Universty, Thailand

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution $(\mathbf{\hat{H}})$ of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

IOP Conf. Series: Earth and Environmental Science 217 (2019) 011002 doi:10.1088/1755-1315/217/1/011002

Reviewers :

- 1. Prof. Ni Nyoman Tri Puspaningsih, M.Si, Biochemistry Research Division, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 2. Prof. dr. Soetjipto, MS., Ph.D, Biochemistry Department, Faculty of Medicine, Universitas Airlangga
- 3. Prof. Seung Wook Kim, Dept of Chemical and Biological Eng, Korea University
- 4. Prof. Rendy Kartika, Chemistry Department, Lousiana State University, Baton Rouge, LA
- 5. Prof. Hunsa Punnapayak, Department of Botany, Chulalongkorn University, Thailand
- 6. Prof. Antonius Suwanto, Division of Microbiology, Institut Pertanian Bogor, Indonesia
- Prof. Dessy Natalia, Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
- 8. Prof. Dr, Suraini Abdul Aziz, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia
- 9. Prof. Afaf Baktir, Biochemistry Research Division, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 10. Dr. Mulyadi Tanjung, M.Si, Natural Product Research Division, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 11. Tjitjik Srie Tjahjandarie, Ph.D, Natural Product Research Division, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 12. Prof Fedik Rantam, Stem Cell Research Division, Faculty of Veterinary, Universitas Airlangga, Indonesia
- 13. Prof. Yosephine Sri Wulan Manuhara, Biology Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 14. Dr. Hery Suwito, M.Si (Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 15. Dr. Nanik Siti Aminah, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 16. Dr. rer. nat. Ganden Supriyanto, M.,Sc, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia
- 17. Dr. Pratiwi Pudjiastuti, M.Si, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Indonesia

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

IOP Publishing

Get new quote

IOP Conference Series team

Anete Ashton Publisher, Conference Series

Anete Ashton is the Publisher for the proceedings programme at IOP Publishing. With an MA in linguistics and over ten years' experience in proceedings publication she has developed and grown the IOP Conference Series and has commissioned some of the most prestigious conferences in physics and related subject areas.

E-mail Anete Ashton Tel +44 (0)117 930 1280

Steph Gill Comissioning Editor

Steph joined the Conference Series team after eight years in the Production department. She has a degree in Media and Film from the University of Winchester.

E-mail Steph Gill Tel +44 (0)117 930 1252

Kayleigh Parsons Conference Publishing Co-ordinator, Conference Series

Kayleigh looks after the day-to-day operations of IOP Conference Series, including commissioning content and liaising with conference organizers/editors. Kayleigh joined IOP Publishing back in 2008 working in Publishing, she then took 18 months off to travel but re-joined the company in 2015. Kayleigh then joined the Conference Series team in 2018.

E-mail Kayleigh Parsons Tel +44 (0)117 930 1888

Contact us

Publication procedure and editorial questions can be sent to the individual journal e-mail addresses:

- Journal of Physics: Conference Series jpcs@ioppublishing.org
- IOP Conference Series: Materials Science and Engineering mse@ioppublishing.org
- IOP Conference Series: Earth and Environmental Science ees@ioppublishing.org
- Or to the general address: conferenceseries@ioppublishing.org

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Table of contents

Volume 217

2019

Previous issue
 Next issue

The 12th Congress of Indonesian Soc. for Biochemistry and Molecular Biology in Conjunction With The 2nd Int. Conf. "Collaboration Seminar of Chemistry and Industry (CoSCI)" and AnMicro Workshop 11-12 October 2018, Universitas Airlangga, Indonesia

View all abstracts

Accepted papers received: 21 November 2018 Published online: 9 January 2019

Preface

OPEN ACCESS			011001
The 12th Congres Conjunction With Industry (CoSCI)"	ss of Indonesian So The 2nd Internation and AnMicro Work	iety for Biochemistry and Molecu al Conference "Collaboration Se shop	lar Biology in minar of Chemistry and
➡ View abstract	View article	🔁 PDF	
OPEN ACCESS			011002
Committee			
	View article	🔁 PDF	
OPEN ACCESS			011003
Conference Photo	ographs		
	Tiew article	🔁 PDF	
OPEN ACCESS			011004
Peer review state	ment		
	View article	🔁 PDF	

Papers

Chemistry	
OPEN ACCESS	012001
Facile Sol-Gel Synthesis of Calcium Phosphates: Influence of Ca/P Ratio and Calcination Temperature	
A J Permana, A T Utami, U S Handajani and H Setyawati	
➡ View abstract	
OPEN ACCESS	012002
Determination of Brønsted Acid Sites In Porous Aluminosilicate Solid Catalysts Using Volumetric And Potentiometric Titration Method	
A Purwaningsih, A N Kristanti, D Z Mardho, D W Saraswati, N M Putri, N H Saputri and Hartati	
OPEN ACCESS	012003
Carbon Paste Electrode Modified Imprinted Zeolite as a Selective Sensor for Creatine Analysis by Potentiometry	
A. Athiroh, T Fadillah, D F Damayanti, A A Widati, A Abdulloh and M Khasanah	
+ View abstract 💿 View article 😤 PDF	
OPEN ACCESS	012004
Voltammetric Study of Ascorbic Acid Using Polymelamine/Gold Nanoparticle Modified Carbon Paste Electrode	
A N Farida, E Fitriany, A Baktir, F Kurniawan and M Harsini	
OPEN ACCESS	012005
Synthesis of Silver Nanoparticles and the Development in Analysis Method	
H I Badi'ah, F Seedeh, G Supriyanto and A H Zaidan	
+ View abstract 🔄 View article 😤 PDF	
OPEN ACCESS	012006
Two Flavonoids From Stem Bark of <i>Casimiroa edulis</i> and Their Antidiabetic and Antioxidant Activities	
K N W Tun, N S Aminah, A N Kristanti, R Ramadhan and Y Takaya	
+ View abstract 💿 View article р PDF	
OPEN ACCESS	012007
Graphene Oxide from Bagasse/Magnetite Composite: Preparation and Characterization	
M Jannatin, G Supriyanto, Abdulloh, W A W Ibrahim and N K Rukman	

OPEN ACCESS	012008
GO-Fe $_3O_4$ Nanocomposite from coconut shell: Synthesis and characterization	
N K Rukman, M Jannatin, G Supriyanto, M Z Fahmi and W A W Ibrahim	
+ View abstract 🔄 View article 🏷 PDF	
OPEN ACCESS	012009
First Order Kinetics of Salicylamide Release from κ-Carrageenan Hard Shell Capsules in Comparison with Gelatin	
P Pudjiastuti, E Hendradi, S Wafiroh, H Darmokoesoemo, M A R D Fauzi, L Nahar and S D Sarker	
OPEN ACCESS	012010
Chromanone Acid Derivatives from the Stem Bark of Calophyllum incrassatum	
U Hasanah, T S Tjahjandarie and M Tanjung	
OPEN ACCESS	012011
Preparation Hydrophobic Fabric Coated by TiO_2 and Hexadecyltrimethoxysilane	
U S Handajani, A A Widati and I N Yusbainika	
OPEN ACCESS	012012
Kecombrang (<i>Etlingera elatior</i>) Leaves Ethanol Extract Effect to Lens and Erythrocyte Aldose Reductase Activity in Wistar strain white rats (<i>Rattus norvegicus</i>) Streptozotocin indu	iced
S Handayani, H Notopuro and G I Prabowo	
OPEN ACCESS	012013
Adsorption of Isopropyl Alcohol (IPA) in Water Using Activated Bentonite	
A Abdulloh, G Supriyanto and O W Ningsih	
OPEN ACCESS	012014
Production of Nanopropolis Using High Pressure Ball Mill Homogenizer	
D Hamdi, A Wijanarko, H Hermansyah, S C Asih and M Sahlan	
OPEN ACCESS	012015
Synthesis of ZnO-TiO ₂ /Chitosan Nanorods By Using Precipitation Methods and Studying Their Structures and Optics Properties at Different Precursor Molar Compositions	
Y Rilda, D Damara, Syukri, Y E Putri, Refinel and A Agustien	
+ View abstract	

OPEN ACCESS	012016
Phytochemical Screening and Antioxidant Activity of Ethanol Extract of Leilem	
(Clerodendrum minahassae Teijsm. & Binn) as an Antihyperlipidemic and Antiatherosclero	otic Agent
C F Kairupan, F R Mantiri and R R H Rumende	
+ View abstract 💿 View article 🖗 PDF	
OPEN ACCESS	012017
Concentration of Some Metals in Water and Soil Samples at Some Locations near the	012011
Hotmud Flow at Porong Disaster Area, Sidoarjo, East Java, Indonesia.	
A Wiryawan, R Suntari, Z Kusuma and Syekhfani	
+ View abstract 📳 View article р PDF	
	012018
The Effect of Roselle (<i>Hibiscus sabdariffa Linn</i>) Flower Extract To The SGPT Activity In	
Male Wistar Rats (<i>Rattus Norvegicus</i>) induced By High Dose Paracetamol	
D Halim, E J Sihning and Tehupuring	
OPEN ACCESS	012019
Antioxidant Exploration in Cardamom Rhizome Potential as a Functional Food Ingredient	
H Winarsi, A Yuniaty and Warsinah	
OPEN ACCESS	012020
Effect of Gambir Catechin Isolate (Uncaria Gambir Roxb.) Against Rat Triacylglycerol Level (Rattus novergicus)	012020
Y Alioes, R R Sukma and S L Sekar	
+ View abstract 💿 View article р PDF	
Biochemistry and Molecular Biology	
OPEN ACCESS	012021
Exploration of Cellulolytic Microorganism as A Biocatalyst Candidate for Liquid Fertilizer Production	
N Halimah, A Baktir and P Purkan	
+ View abstract 💿 View article 🏷 PDF	
OPEN ACCESS	012022
Antibody Titers in The Sheep which were Immunated Antigen of <i>Whole</i> Protein from Third Instar Larvae <i>Musca domestica</i>	012022
B Ariantini, H Ratnani, E M Lugman and P Hastutiek	
+ View abstract 💿 View article 🏷 PDF	

OPEN ACCESS	012023
Lemon (<i>Citrus limon</i>) Juice Has Antibacterial Potential against Diarrhea-Causing Pathogen	
ER Ekawati and W Darmanto	
OPEN ACCESS	012024
Genetic Relationship of Hibiscus spp. Based on DNA bands Using RAPD Technique	
Hamidah and A Z Muhtadi	
OPEN ACCESS	012025
Effect of <i>Sticophus hermanii</i> extract on fasting blood glucose and skeletal muscle glut4 on type 2 diabetes mellitus rats model	
I Safitri, B Purwanto, L Rochyani, G I Prabowo and D Sukmaya	
+ View abstract 💿 View article 🏷 PDF	
OPEN ACCESS	012026
Callus Induction and Bioactive Compounds from Piper betle L. var nigra	
Junairiah, A Mahmuda, Y S W Manuhara, Ni'matuzahroh and L Sulistyorini	
OPEN ACCESS	012027
Antimicrobial Activity of Ethanol Extract of <i>Abrus precatorius</i> L. Roots against Planktonic Cells and Biofilm of Urine and Blood Methicillin Sensitive <i>Staphylococcus aureus</i> (MSSA) Is	solate
B Mutmainnah, Ni'matuzahroh and A Baktir	
+ View abstract 💿 View article 🔊 PDF	
OPEN ACCESS	012028
Utilization of Rice Straw Hydrolysis Product of <i>Penicillium</i> sp. H9 as A Substrate of Biosurfactant Production by LII61 Hydrocarbonoclastic Bacteria	
Ni'matuzahroh, S K Sari, N Trikurniadewi, A D Pusfita, I P Ningrum, S N M M Ibrahim, T Nurhariyati, and T Surtiningsih	Fatimah
OPEN ACCESS	012029
Carbon and Nitrogen Sources for Lipase Production of <i>Micrococcus</i> sp. Isolated from Palm Oil Mill Effluent-Contaminated Soil	
S. Sumarsih, S. Hadi, D.G.T. Andini and F.K. Nafsihana	
OPEN ACCESS	012030

19	IOP Conference S	eries: Earth and Environmental Science, Volume 217, 2019 - IOPscienc	e
Cytotoxicity of Con <i>vera</i> using MTT Ass	nbination Chitosar say	n with Different Molecular Weight and Ethanol Extract	ed <i>Aloe</i>
Sularsih, Soetjipto a	ind Retno Pudji Raha	ayu	
➡ View abstract	View article	PDF	
OPEN ACCESS			012031
Hepatoprotective Structure and Fun	Effect of Gamma-n ction in Streptozot	nangostin for Amelioration of Impaired Liver ocin-induced Diabetic Mice	
S A Husen, D Winari	ni, Salamun, A N M A	Ansori, R J K Susilo and S Hayaza	
	View article	PDF	
OPEN ACCESS			012032
Utility of <i>Sacchard</i> Worms Feed Impro	o <i>myces cerevisiae i</i> ovement	As Probiotics to Induce Protease Production For	
R Arissirajudin, S Ha	adi, Abdillah Safa an	d P Purkan	
	View article	🔁 PDF	
OPEN ACCESS			012033
Induction of Angio (Experimental Lab	genesis Process in oratory Study on <i>R</i>	n Mandible Using <i>Anadara granosa</i> Shell Graft <i>Pattus norvegicus</i>)	
Widyastuti, M Rubia	nto and Soetjipto		
	View article	PDF	
OPEN ACCESS			012034
Dehalogenase enz	zyme activity of <i>Ba</i>	<i>cillus</i> sp. D1 isolated from pharmaceutical waste	
K Primasari, D W Sa + View abstract	witri, R Fikri, N Triku T View article	Irniadewi, Ni'matuzahroh and G Supriyanto 🏂 PDF	
OPEN ACCESS			012035
The impact of cont toward apoptosis	ditioned medium c and proliferation o	of umbilical cord-derived mesenchymal stem cells f glioblastoma multiforme cells	
Novi Silvia Hardiany	, Yohana and Septel	lia Inawati Wanandi	
➡ View abstract	View article	PDF	
OPEN ACCESS			012036
Utilization of Brom Against <i>Streptoco</i>	ielain Enzyme from <i>ccus mutans</i>	Pineapple Peel Waste on Mouthwash Formula	
H Rahmi, A Widayar	nti and A Hanif		
View abstract	View article	🔁 PDF	

OPEN ACCESS

Michaelis-Menten Parameters Characterization of Commercial Papain Enzyme "Paya"

Mathias Elsson, Anondho Wijanarko, Heri Hermansyah and Muhamad Sahlan

012037

2	0	2	1	^
3/	9/	21	וע	э

IOP Conference Series: Earth and Environmental Science, Volume 217, 2019 - IOPscience

	View article	🔁 PDF	
OPEN ACCESS			012038
The effect of cytog	obin gene inhibitio	n on fibroblast keloid cells proliferation	012000
S W A Jusman, F M S	Siregar, M Sadikin ar	nd N S Hardiany	
	Tiew article	🔁 PDF	
OPEN ACCESS			012039
Effect of IPTG Conc <i>Escherichia coli</i> BL	entration on Recor 21(DE3) ArcticExp	mbinant Human Prethrombin-2 Expression in ress	
S Silaban, S Gaffar, I	M Simorangkir, I P M	laksum and T Subroto	
	Tiew article	🔁 PDF	
OPEN ACCESS			012040
Exploration of <i>Chlo</i> biofilm	<i>orella sp</i> . as antibad	cterial to Aggregatibacter actinomycetemcomitans	
P F Christabel, M V H	lernando, C A Sutant	to and K Parisihni	
➡ View abstract	View article	🔁 PDF	
OPEN ACCESS			012041
The Influence of Et Activity and MDA L	hanolic Root Extrac evel of Rats (<i>Rattu</i>	cts of <i>Ruellia tuberosa L</i> . on Pancreatic Protease <i>s norvegicus</i>) Induced by MLD-STZ	
A Roosdiana, Sutrisr	no, C Mahdi and A Sa	afitri	
	View article	🔁 PDF	
OPEN ACCESS			012042
The Effect of spiruli the Second Trimes	na on Apoptosis (S ter Wich is Inducec	Stored Biology Materials) To Pregnant Rat Wistar in I By IL-6	
Y Rani, H Gondo and	N K Indahsari		
	View article	🔁 PDF	
OPEN ACCESS			012043
Revealing the impo sugarcane with N-t	ortant role of alloste erminal domain de	eric property in sucrose phosphate synthase from eletion	
W D Sawitri and B Su	ugiharto		
➡ View abstract	View article	🔁 PDF	
OPEN ACCESS			012044
Potential of marine phytopathogenic fi	e chitinolytic <i>Bacilli</i> ungi	us isolates as biocontrol agents of	
E Kurniawan, S Panp	ohon and M Leelakria	angsak	
	View article	PDF	

19	IOP Conference Ser	ies: Earth and Environmental Science, Volume 217, 2019 - IOPscience	
OPEN ACCESS			012045
Identification of α -am	nylase gene by PO	CR and activity of thermostable $m{lpha}$ -amylase from	
thermophilic Anoxyba	acillus thermarun	η isolated from Remboken hot spring in Minahasa, Ind	onesia
F R Mantiri, R R H Rume	ende and S Sudew	i	
➡ View abstract	View article	PDF	
OPEN ACCESS			012046
Broccoli Extract (Bras	<i>sica oleracea</i>) De	ecrease Periarticular Malondialdehyde Level and	
Disease Activity Score	e in Rats (<i>Rattus</i>	norvegicus) with Adjuvant Arthritis	
S Prabowo			
	View article	PDF	
OPEN ACCESS			012047
Synthesis of Aldehyde	e-Silica Nanopar	ticle for Matrix Immobilization of Endo- β -1,4-D-	
xylanase			
A A I Ratnadewi, S Triss	a, Suwardiyanto, V _	V Handayani, A B Santoso and Sudarko	
➡ View abstract	View article	PDF	
Medicine			
OPEN ACCESS			012048
Counselling and Scree Dukuh Pakis District,	ening of Hepatiti: Surabaya	s B Virus Infection In Dukuh Kupang Community,	
C D K Wungu, S Khaeru and Suhartati	innisa, I Humairah	, L Lukitasari, E Qurnianingsih, G I Prabowo, Sudarno, R Ha	ndajani
+ View abstract	View article	PDF	
OPEN ACCESS			012049
Correlation Between (Oxidative Stress \	With Clinical Symptoms In Chronic Schizophrenic	
Patients In Psychiatric	c Unit of Dr Soetc	omo General Hospital Surabaya	
G I Prabowo, M M Mara Handajani	mis, E Yulianti, A Z	ulaikha, Z B Syulthoni, C D K Wungu, H M Margono and R	
+ View abstract	View article	PDF	
OPEN ACCESS			012050
Antigenic Protein Prof Caries and Periodonta	file of <i>Streptococ</i> al Disease Risk B	<i>cus mutans</i> Biofilm For Developing of Dental Jiomarker	012000
M Ni'mah. I L Kriswandi	ini and A Baktir		
	View article	PDF	
ODEN ACCESS			04005
Dataation Of Llanatitie		Contian And Its Construm In Datiants At Hansteley	012051
Outpatient Clinic, Dr S	Soetomo General	l Hospital, Surabaya.	

IOP Conference Series: Earth and Environmental Science, Volume 217, 2019 - IOPscience

R Handajani, C D K Wungu, I Humairah, G I Prabowo, U Cholili, M Amin, P B Setiawan and Soetjipto

View abstract	View article	🔁 PDI
---------------	--------------	-------

 View abstract 	View article	PDF	
OPEN ACCESS			012052
Endothelial Dysfu Dawley By High-C	nction Improvemer holesterol Diet	nt Mechanism By Hyperbaric Oxygen In Sprague	
H Setianingsih, Soe	tjipto, I K Sudiana ar	nd G Suryokusumo	
	View article	🔁 PDF	
OPEN ACCESS			012053
Correlation of Hor Serum Levels In A	nocysteine Levels \ .cute Infark Miocard	With Folate Acid, Cyanocobalamine, and Pyridoxine d Patients	
D Pertiwi and R Yas	wir		
➡ View abstract	View article	PDF	
OPEN ACCESS			012054
Taurine Intakes In	crease Superoxide	Dismutase Activity in Knee Osteoarthritis	
A A E W Saraswati,	D Sunardi, A M T Lut	pis, F Heru and N Mudjihartini	
	View article	PDF	
OPEN ACCESS			012055
Association Betwee Malondialdehyde	een the Ratio of On Level in Patients w	nega-6/Omega-3 Fatty Acids Intake to Plasma rith Knee Osteoarthritis	
S R Angelia, N R M	Manikam, A M T Lub	is, C Siagian and N Mudjihartini	
	View article	PDF	
OPEN ACCESS			012056
Enhance of IL-22 Acanthus ilicifoliu	expression in Oral <i>Is</i> Extract Therapy	Candidiasis Immunosupressed Model with	
D Andriani and A F	Pargaputri		
	View article	PDF	
OPEN ACCESS			012057
Expression Of Run Rat With Diet Extra	nx2 And Osteoblast act Lemuru Fish Oil	Cell On The Periodontal Of Diabetes Mellitus Wistar s Treatment	
W D Damaiyanti, K	Parisihni, D Mulawar	rmanti, H Kurniawan and Widyastuti	
	View article	PDF	
OPEN ACCESS			012058
<i>Stichopus hermai</i> Biomarkers to acc	<i>nii</i> stimulation to Ri celerate Orthodonti	unx2 expression as Periodontal Remodeling ic Tooth Movement	
N Prameswari and	B Handayani		
	Tiew article	🔁 PDF	

OPEN ACCESS			012059
The Differences of E Remodelling of Ten	Effectivness HBO 2 sion Area of Orthod	,4 ATA Between 7 and 10 Days In Bone dontic Tooth Movement	
A Brahmanta, D Mula	awarmanti, F Z Rama	idhani and W Widowati	
	View article	PDF	
OPEN ACCESS			012060
The Effect of Sticop of Diabetic Periodo	us Hermanii-Hyper ntitis	baric Oxygen Therapy to Inflammatory Response	
D Mulawarmanti, K P	arisihni and Widyast	uti	
	View article	PDF	
OPEN ACCESS			012061
Identification of <i>My</i> Test Against Patien Padang Pariaman E Bahar and A E Putr	<i>cobacterium tuber</i> ts with Suspect Pul a	<i>culosis</i> Bacteria with TB Antigen MPT64 Rapid Imonary Tuberculosis in Lubuk Alung Pulmonary Hosp	oital,
	View article	PDF	
OPEN ACCESS			012062
Hypoxia increased HIF-1 α but not to re	malondialdehyde f enin expression in r	rom membrane damages is highly correlated to rat kidney	
A R Prijanti, F C Iswar	nti, F Ferdinal, S W A	Jusman, R R Soegianto, S I Wanandi and M Sadikin	
➡ View abstract	View article	🔁 PDF	
JOURNAL LINKS			
Journal home			
Information for organ	izers		
Information for autho	ors		
Search for published	proceedings		
Contact us			

Reprint services from Curran Associates

IOP Conference Series: Materials Science and Engineering

Ш

Viz Tools

also developed by scimago:

SCIMAGO INSTITUTIONS RANKINGS

SJR

Scimago Journal & Country Rank	Enter Journal Title, ISSN or Publisher Name
	- 1

Home

Journal Rankings

Country Rankings

Help About Us

IOP Conference Series: Materials Science and Engineering

Country	United Kingdom - IIII SIR Ranking of United Kingdom	$7\mathbf{\Lambda}$				
Subject Area and Category	Engineering Engineering (miscellaneous)					
	Materials Science Materials Science (miscellaneous)	H Index				
Publisher						
Publication type	Conferences and Proceedings					
ISSN	17578981, 1757899X					
Coverage	2009-ongoing					
Scope	The open access IOP Conference Series provides a fast, versatile and cost-effective proceedings publication service for your conference. Key publishing subject areas include: physics, materials science, environmental science, bioscience, engineering, computational science and mathematics.					
?	Homepage					
	How to publish in this journal					
	Contact					
	igsir > Join the conversation about this journal					

Citations per document

+

IOP Conference Series: Materials Science and Engineering

0

osamah raad 3 days ago

please how can I know the dates future conferences of IOP? are there any website for that purpose? Regards

reply

Scopus Source details

IOP Conference Series: Earth and Environmental Science	CiteScore 2018	Ū
Scopus coverage years: from 2010 to Present	0.44	
ISSN: 1755-1307 E-ISSN: 1755-1315		
Subject area: (Earth and Planetary Sciences: General Earth and Planetary Sciences) (Environmental Science: General Environmental Science)	sjr 2018 0.170	1
View all documents > Set document alert Journal Homepage	SNIP 2018 0.536	(j)

CiteScore CiteScore rank & trend CiteScore presets Scopus content coverage

CiteScore	2018 ~	Calculated using data from 30 April, 2019		CiteScore rank ①		
0.44 =	Citation Count 2018	8 =	2.434 Citations >	Category	Rank	Percentile
	Documents 2015 - 2017*		5.583 Documents >	Earth and Planetary Sciences	#126/182	30th
*CiteScore include	es all available document types	View	CiteScore methodology > CiteScore FAQ >	General Earth and Planetary		
CiteScoreT	racker 2019 🛈		Last updated on <i>12 August, 2019</i> Updated monthly	Sciences		- 1
0.19 =	Citation Count 2019		2.930 Citations to date >	Environmental Science	#143/192	25th 🝷
	Documents 2016 - 2018		15.183 Documents to date >	View CiteScore trends >		
				Add CiteScore to	your site 🔗	

Metrics displaying this icon are compiled according to Snowball Metrics alpha, a collaboration between industry and academia.

About Scopus	Language	Customer Service
What is Scopus	日本語に切り替える	Help
Content coverage	切换到简体中文	Contact us
Scopus blog	切換到繁體中文	
Scopus API	Русский язык	
Privacy matters		

ELSEVIER

Terms and conditions \neg Privacy policy \neg

Copyright © Elsevier B.V ». All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies.

RELX

Penerbitan Proceeding IOP > Inbox ×

purkan purkan <purkan@fst.unair.ac.id>

📼 Thu, Oct 25, 2018, 5:33 PM 🛛 🛧 🖌

P C

Turn off for: Indonesian ×

to bmmasadepan9, hamidah, saikhu-a-h, afaf-b, ulfalunks15, mulyadi, miratul, purkan, larsihdentist, bitya.ariantini-2017, UsregSri, retno-h, Citrawati, niarukman, Ganden, miftakhul.jannatin-2015, me, sri, evysain 💌

★A Indonesian > English Translate message

Assalamu'alaikum wr wb

Bpk ibu Author Yth,

Panitia internasional conference cosci dan seminar pbmmi saat ini sedang memproses publikasi proceeding IOP (SCOPUS Indexing) terhadap full paper bapak ibu. Terkait ini naskah bapak ibu akan direview terlebih dahulu oleh tim reviewer sebelum dikirim ke IOP, untuk meminimalkan proses rejection. Biaya publikasi per-naskah sebesar Rp. 1.250.000,- dibebankan kepada authornya. Biaya tersebut diperlukan untuk biaya review dan layout (Rp 250.000) dan penerbitan (Rp. 1.000.000,-). Apabila dikemudian hari ada naskah yang kena reject oleh publisher IOP, maka biaya penerbitan terhadap naskah yang kena reject akan dikembalikan kepada authornya.

Pembayaran biaya publikasi sebesar Rp. 1.250.000,- dapat disetor ke :

Rekening bank mandiri : 141-00-0985024-9

a/n : Purkan

Mohon pembayaran biaya publikasi dilakukan paling lambat hari Selasa 30 Oktober 2018. Bukti setoran mohon dikirim via email atau ke nomor wa: 085861682818.

List full paper bapak ibu yang akan kami proses ke publisher IOP dapat dilihat di attachment file.

Atas perhatiannya, kami sampaikan terima kasih

Salam

Purkan

PAPER • OPEN ACCESS

Determination of Brønsted Acid Sites In Porous Aluminosilicate Solid Catalysts Using Volumetric And Potentiometric Titration Method

To cite this article: A Purwaningsih et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 217 012002

View the article online for updates and enhancements.

IOP ebooks[™]

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

IOP Conf. Series: Earth and Environmental Science 217 (2019) 012002 doi:10.1088/1755-1315/217/1/012002

Determination of Brønsted Acid Sites In Porous Aluminosilicate Solid Catalysts Using Volumetric And **Potentiometric Titration Method**

A Purwaningsih¹, A N Kristanti¹, D Z Mardho¹, D W Saraswati¹, N M Putri¹, N H Saputri¹, Hartati^{1*}

IOP Publishing

¹Departement of Chemistry, Science and Technology Faculty, Airlangga University, Surabaya, East Java, Indonesia

* hartati@fst.unair.ac.id

Abstract. The Brønsted acid site was determined by using volumetric and potentiometric titration method. The result showed that the Brønsted acid sites of synthesized aluminosilicate using volumetric titration method are aluminosilicate-1: 0.5491; aluminosilicate-2: 0.5523; and aluminosilicate-3: 0.5772 mmol/g and using potentiometric titration method are aluminosilicate-1: 4.7087; aluminosilicate-2: 5.5739; and aluminosilicate-3: 8.1059 mmol/g. FTIR-pyridine also showed the same trend line, the Brønsted acid sites concentration increased by the increasing of Si/Al mole ratio. The results of the measurement using FTIRpyridine showed the Brønsted acid sites concentration of aluminosilicate-1; aluminosilicate-2; and aluminosilicate-3 were 0.0293; 0.330; and 0.0336 mmol/g, respectively. The Brønsted acid sites concentration of aluminosilicate was higher using volumetric titration and potentiometric titration methods than using the FTIR-pyridine method, but the trend line was the same, the higher Si/Al mole ratio, concentration of Brønsted acid sites increased.

Keyword : Brønsted Acid, Aluminosilicate Solid, Volumetric, Potentiometric Titration

1. Introduction

The catalysts need for a wide range of organic reactions is currently increasing. The type of catalyst which is the first interest nowadays is the heterogeneous catalyst. Aluminosilicates are widely used as heterogeneous catalysts for many chemical reactions. Aluminosilicate compound can be used as a catalyst because it can react in the surface area, has a good cation-exchange capability, and its Brønsted acid properties can be used for the conversion of hydrocarbons [1, 2].

The acidity of a catalyst play an important role in catalytic properties [3]. The higher the acid site, the surface area, and the larger the pore diameter, the active site of the catalyst will be greater so that the catalytic activity will be higher [4]. The acidity of a catalyst includes the nature, amount, and strength of the acid side [5]. Various methods have been used to quantify and characterize the acidity of aluminosilicate.

Determination of Brønsted acid site can use volumetric titration method, catalyst with cationexchange treatment, catalyst with no further purification, and also catalyst which was milled before use had the concentration of Brønsted acid sites respectively of 0.63; 0.89; and 0.39 mmol/g. Potentiometric titration method indicates a higher Brønsted acid sites concentration compared with using FTIRpyridine method [6]. Total concentration of Brønsted acid sites on H-Beta-25; H-Beta-300; H-Ferrierite-20; and Si-MCM-48 using potentiometric titration method were 1040; 670; 1100; and 280 umol/g, while through FTIR-pyridine method, the concentration of Brønsted acid site on H-Beta-25 acid side; H-Beta-300; H-Ferrierite-20; and Si-MCM-48 were respectively 301; 82; 357; and 12 µmol/g [7]. Potentiometric titration could be used in matters of materials such as zeolite with micro-mesoporus pore size [8].

In a previous study, the Brønsted acid site test was performed using FTIR-pyridine [9-11]. However, the Brønsted acid site test using FTIR-pyridine was less effective as it resulted in lower acid side concentrations [7]. Therefore, in this paper, the results of the experiments from the Brønsted acid site

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

IOP Conf. Series: Earth and Environmental Science 217 (2019) 012002 doi:10.1088/1755-1315/217/1/012002

test of large porous aluminosilicate catalysts synthesized from a chemical base material was done by using volumetric titration and potentiometric titration method.

2. Experimental Method

The aluminosilicate solid catalyst was inactive if used directly, so that it needed to be activated by exchanging the cations. The first step, 0.5 g of aluminosilicate solid catalyst was refluxed in 20 mL 0.5 M ammonium acetate solutions at 60 °C for 3 hours. Then, it was centrifuged on 40 rpm for 5 minutes and dried at 110 °C for 12 hours. After that, it was calcinated at 550 °C for 6 hours by heating in stages 110 °C/hour.

Determination of Brønsted acid sites which was done by using volumetric and potentiometric titration method. Determination of Brønsted acid sites was done by using volumetric titration method was done by adding 5 mL distilled water and 0.5 mL of 0.1 M NaOH solution to the 0.05 g aluminosilicate solid catalyst in Erlenmeyer flask. The suspension was stirred overnight in a close condition, then the phenolphthalein indicator was added and titrated by 0.1 M HCl solution. Titration was stopped when the solution's color changed from rose red to colorless [6].

Determination of Brønsted acid sites which was done by using potentiometric titration method was done by using glass electrode for pH measurement. 0.01 g aluminosilicate solid catalyst was suspended in 15 mL of 0.1 M NaNO₃ solution. The suspension was titrated by 0.1 M NaOH solution by stepwise addition. The distilled water, which is used to dissolve the NaNO₃, was boiled before using it. Stirring the suspension is necessary in order to achieve an effective reaction between the acid sites and the strong base [7].

3. Results and Discussion

The synthesized Aluminosilicates cannot be used as catalyst as soon as it is made. The cation on the porous site is still Na^+ ion. The Na^+ ion needs to be changed so that the aluminosilicate is in its acid condition. When the cation-exchange has done, the NH_4^+ ion will attach to the porous of aluminosilicates. The rection that happen can be seen in Figure 1.

Figure 1. Cation-Exchange Reaction [12]

After the cation exchanged, the synthesized aluminosilicates solid catalyst were tested on the acid side. The results of the Brønsted acid site test using volumetric titration method showed that the Brønsted acid sites concentration of aluminosilicate-1; aluminosilicate-2; and aluminosilicate-3 were 0.5491; 0.5523; and 0.5772 mmol/g, respectively. The results of the Brønsted acid site test using potentiometric titration method showed that the Brønsted acid sites concentration of aluminosilicate-1; aluminosilicate-2; and aluminosilicate-1; aluminosilicate-2; and aluminosilicate-1; aluminosilicate-2; and showed that the Brønsted acid sites concentration of aluminosilicate-1; aluminosilicate-2; and aluminosilicate-3 were 4,7087; 5.5739; and 8.1059 mmol/g. Potentiometric graph can be seen in Figure 3. Both results show the same trend line, the higher the Si/Al mole ratio, the higher the concentration of Brønsted acid sites.

The Brønsted acid site concentration of aluminosilicate samples using FTIR-pyridine also showed the same trend line, the concentration of Brønsted acid sites increased by the increasing of Si/Al mole ratio. The results of the measurement using FTIR-pyridine showed the Brønsted acid sites concentration of aluminosilicate-1; aluminosilicate-2; and aluminosilicate-3 were 0.0293; 0.330; and 0.0336 mmol/g [13]. The Brønsted acid sites concentration of aluminosilicate samples was higher using volumetric titration and potentiometric titration methods than using the FTIR-pyridine method, but the trend line was the same, the higher Si / Al ratio, concentration of Brønsted acid sites increased [14] (can be seen in Figure 2). The concentration of acid sites of synthesized aluminosilicate with high Si/Al mole ratio can be seen in Table 1.

Figure 2. The Increasing of Brønsted Acid Sites Concentration of Aluminosilicate Solid Catalyst with High Si/Al Mole Ratio A FTIR-Pyridine Method B Volumetric Titration Method C Potensiometric Titration Method

IOP Conf. Series: Earth and Environmental Science 217 (2019) 012002 doi:10.1088/1755-1315/217/1/012002

	Acidity Test Method	Samples	Weight (g)	Concentration of Brø Acid Sites (mmol	Brønsted nol/g)	
		Aluminosilicate-1	0.0142	0.0293		
	FTIR-Pyridine	Aluminosilicate-2	0.0121	0.0330		
		Aluminosilicate-3	0.0123	0.0336		
	Volumetric	Aluminosilicate-1	0.0519	0.5491		
	Titration	Aluminosilicate-2	0.0516	0.5523		
	Thunon	Aluminosilicate-3	0.0518	0.5772		
	Potentiometric	Aluminosilicate-1	0.0128	4.7087		
	Titration	Aluminosilicate-2	0.0115	5.5739		
		Aluminosilicate-3	0.0126	8.1059		
12,4 12,2 12 11,8 11,6 11,4 11,2 11 10,8 10,6	and a second sec	14 12 10 第二。6 4		$H_{10,5}^{13}$ $H_{10,5}^{11}$ $H_{10,5}^{10}$ $H_{20,5}^{9}$ 8,5		
10,4 10,2 0	1 2 3 Vtitran	4 0 0,5	1 1,5 Vtitran	8 0,2 0,4 0,6 0,8 1 2	1,2 1,4 1,6 1,8 2 Vtitran	
30 25 uetitita 15 10 40 0 0	l 2 3 Vtitran	120 100 80 60 100 4 80 60 100 0,5 4 4 80 0,5 4 80 0,5 10 0,5 100 0 0,5 10	ı ı,	32 27 12 17 17 12 2 4 4 7 2 -3 0,2 0,4 0,6 0,8 1	1,2 1,4 1,6 1,8 2 Vtitran	
400 200 0 100 100 1000 200 0 0 0 0 0 0 0	1 2 P	6000 4000 4 2000 4 12000 4 12000 0 0 0 0 0 0,5 0 0 0,5 0 0 0 0,5	l 1,5 Vtitran	1500 1000 1000 2 H 0 -1000 -1000	1,2 1,4 1,6 h,3 2 Vtitran	

Table 1. Concentration of Brønsted Acid Sites

Figure 3. Potentiometric Titration Graphic (a) Aluminosilicate-1 (b) Aluminosilicate-2 (c) Aluminosilicate-3

4. Conclusions

In this study, it can be concluded that the acidity test can be done by using volumetric titration and potentiometric titration method. The results showed that the concentration of Brønsted acid sites was higher using volumetric titration and potentiometric titration method than using the FTIR-Pyridine method, with the same trend line, the higher Si/Al mole ratio, concentration of Brønsted acid sites increased.

IOP Conf. Series: Earth and Environmental Science 217 (2019) 012002 doi:10.1088/1755-1315/217/1/012002

References

- [1] Lopes, A. C., Martins, P., and Lanceros-Mendez, S., 2014, Aluminosilicate and Aluminosilicate Based Polymer Composites: Present Status, Applications and Future Trends, *Progress in Surface Science*, 89 (3), 239-277.
- [2] Caillot, M., Chaumonnot, A., Digne, M., and Bokhoven, J. A., 2014, The Variety of Brønsted Acid Sites in Amorphous Aluminosilicates and Zeolites, *Journal of Catalysis*, 316, 47-56.
- [3] Auroux, Aline, 2006, Acidity and Basicity: Determination by Adsorption Microcalorimetry, *Springer-Verlag Berlin Heidelberg*, 59-138.
- [4] Čejka, J., Bekkum, H., Corma, Avelino, and Schuth, F., 2007, Introduction to Zeolite Science and Practice. 3rd Revised Edition, *Studies in Surface Science and Catalysis*, 168, 747-987.
- [5] Harber, J., Block, J. H., and Delmon, B., 1995, Manual of Methods and Procedures for Catalysts Characterization, *Pure and Applied Chemistry*, 67, 1257-1306.
- [6] Torres, M. D, Jiménez-osés, G., Mayoral, J.A., Pires, E., and de los Santos, M., 2012, Glycerol ketals: Synthesis and Profits in Biodiesel Blends, *Fuel*, 94, 614–616.
- [7] Yu, K., Kumar, N., Aho, A., Roine, J., Heinmaa, I., Murzin, D. Y., and Ivaska, A., 2016, Determination of Acid Sites in Porous Aluminosilicate Solid Catalysts for Aqueous Phase Reactions Using Potentiometric Titration Method, *Journal Of Catalysts*, 335, 117-124.
- [8] Shcherban, N, D., Filonenko, S. M, Barkov, R. Y., Sergiienko, S. A., Yu, K., Heinmaa, I., Ivaska, A., and Murzin, D. Y., New Insights in Evaluation of Acid Sites in Micro-Mesoporous Zeolite-Like Materials Using Potentiometric Titration Method, *Applied Catalysisi A: General*, 543, 34-42.
- [9] Rodriguez, I., Climent, M.J., Iborra, S., Fornds, V., and Corma, A., 2000, Use of delaminated zeolites (ITQ-2) and Mesoporous Molecular Sieves in the Production of Fine Chemicals: Preparation of Dimethylacetals and Tetrahydropyranylation of Alcohols and Phenols, *Journal of Catalysis*, 192(2), 441-447.
- [10] Ajaikumar, S., and Pandurangan, A., 2008, Reaction of Benzaldehyde with Various Aliphatic Glycols in The Presence of Hydrophobic Al-MCM 41: A Convenient Synthesis of Cyclic Acetals, *Journal of Molcular Catalysis A: R Chemical*, 290, 35-43.
- [11] Lin, F. A. N. G., Zhang, K., Lu, C. H. E. N., and Peng, W. U., 2013, Carbon- Coated Mesoporous Silica Functionalized with Sulfonic Acid Groups and Its Application to Acetalization, *Chinese Journal of Catalysis*, 34 (5), 932-941.
- [12] Augustine, R. L., 1995, Heterogeneous Catalysis for Synthetic Chemist, *Marcel Dekker, Inc.*, New York, p.190.
- [13] Putri, N. M., 2016, Activity Test of High Si/Al Mole Ratio Aluminosilicate in The Acetalization and Ketalization Reaction, Undergraduated Thesis, Airlangga University, Surabaya.
- [14] Ramirez, A., Sifuentes, C., Manciu, F.S., Komarneni, S., Pannell, K.H., Chianelli, R.R., 2011, The Effect of Si/Al Ratio and Moisture on An Organic/Inorganic Hybrid Material: Thioindigo/ Montmorillonite, *Applied Clay Science*, 51, 61-67.

Acknowledgement

We acknowledged RISTEKDIKTI (Grant: Program Unggulan Perguruan Tinggi (PUPT)).