Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Expositiones Mathematicae

Managing Editor

Robert C. Dalang

Institut de mathématiques
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Station 8
CH-1015 Lausanne
Switzerland
E-mail: robert.dalang@epfl.ch

Associate Editors

C. Berg, Copenhagen, Denmark
L. Ge, Beijing, China, and Durham, NH, USA
R. Geoghegan, Binghamton, NY, USA
M. Ojanguren, Lausanne, Switzerland
D. Salamon, Zürich, Switzerland
A. Valette, Neuchâtel, Switzerland
V.S. Varadarajan, Los Angeles, USA

Editorial Board

S. Albeverio, Bonn, Germany
P. Cartier, Paris, France
S. D. Chatterji, Lausanne, Switzerland
B. Edixhoven, Leiden, The Netherlands
J. Friedlander, Toronto, Canada
G. Gaudry, Sydney, Australia
K. Seip, Trondheim, Norway

Honorary Members

N. H. Bingham, Sheffield, UK
B. Fuglede, Copenhagen, Denmark
P. J. Hilton, Binghamton, NY, USA
R. V. Kadison, Philadelphia, PA, USA
F. Oort, Utrecht, The Netherlands
P. Ribenboim, Kingston, Canada
E. Zehnder, Zürich, Switzerland

Aims \& Scope

Expositiones Mathematicae publishes articles in English, French or German in all branches of mathematics under the headings "Main Articles" and "Mathematical Notes":

Main Articles: These may be (I) expository essays, (II) surveys, (III) original research articles, (IV) historical studies concerning 19th and 20th century mathematics.
Mathematical Notes: These are shorter articles containing new results, new proofs of known theorems or novel points of view.
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material that presents undergraduate-level mathematics is not appropriate for Expositiones Mathematicae.
Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal.

Mathematical notes can be more focused than main articles. They should address an important mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.

Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication.

All papers are refereed.

Abstracted / Indexed in

CompuMath Citation Index; MathSciNet; ISI Alerting Service; Science Citation Index Expanded; Scopus; Zentralblatt MATH

Showing 1-49 of 49 results for all: Morrey spaces and fractional integral operat

Searching in archive math. Search in all archives.
Morrey spaces and fractional integral operators

```
All fields v
Search
O show abstracts \(\bigcirc\) Hide abstracts
```


1. arXiv:2007.00468 [pdf, ps, other] math.FA

Commutators of integral operators with functions in Campanato spaces on Orlicz-Morrey spaces
Authors: Minglei Shi, Ryutaro Arai, Eiichi Nakai
Abstract: ...on Orlicz-Morrey spaces, where T is a Calderón-Zygmund operator, I_{ρ} is a generalized fractional integral operator and b is a function in generalized Cam... ∇ More
Submitted 30 June, 2020; originally announced July 2020.
Comments: 45 pages. arXiv admin note: text overlap with arXiv:1812.09148
MSC Class: 42B35; 46E30; 42B20; 42B25
2. arXiv:1911.08573 [pdf, other] math.CA

On optimal parameters involved with two-weighted estimates of commutators of singular and fractional operators with Lipschitz symbols
Authors: Gladis Pradolini, Jorgelina Recchi
Abstract: In this paper we prove two-weighted norm estimates for higher order commutator of singular integral and fractional type operators between weighted L^{p} and certain... ∇ More
Submitted 18 November, 2019; originally announced November 2019.
Comments: 21 pages, 3 figures. arXiv admin note: text overlap with arXiv:1910.10315
MSC Class: 42B20; 42B25; 42B35
3. arXiv:1910.10315 [pdf, other] math.AP

On two weighted problems for commutators of classical operators with optimal behaviour on the parameters involved and extrapolation results
Authors: Gladis Pradolini, Wilfredo Ramos, Jorgelina Recchi
Abstract: We give two weighted norm estimates for higher order commutator of classical operators such as singular integral and fractional type operators, between weighted L^{p} and certain... ∇ More
Submitted 22 October, 2019; originally announced October 2019.
4. arXiv:1907.03573 [pdf, ps, other] math.CA

Morrey spaces for Schrödinger operators with nonnegative potentials, fractional integral operators and the Adams inequality on the Heisenberg groups
Authors: Hua Wang
Abstract: ...be a Schrödinger operator on the Heisenberg group \mathbb{H}^{n}, where $\Delta_{\mathbb{H}^{n}}$ is the sublaplacian on \mathbb{H}^{n} and the nonnegative potential V belongs to the reverse Hölder class $R H_{s}$ with $s \in[Q / 2, \infty)$. Here $Q=2 n+2$ is the homogeneous dimension of \mathbb{H}^{n}. For given $\alpha \in(0, Q)$, the... ∇ More Submitted 3 July, 2019; originally announced July 2019.
Comments: 29 pages. arXiv admin note: substantial text overlap with arXiv:1802.08550
MSC Class: 42B20; 35J10; 22E25; 22E30
5. arXiv:1905.10946 [pdf, ps, other] math.CA
Weighted estimates for bilinear fractional integral operators and their commutators on Morrey spaces
Authors: Qianjun He, Mingquan Wei, Dunyan Yan
Abstract: This paper mainly dedicates to prove a plethora of weighted estimates on Morrey spaces for bilinear fractional integral operators and their
general commutators with BMO functions of the form... ∇ More
Submitted 26 May, 2019; originally announced May 2019 .
6. arXiv:1905.10082 [pdf, ps, other] math.FA

Bilinear estimates on Morrey spaces by using average
Authors: Naoya Hatano

Abstract: This paper is a follow up of [6]. We investigate the boundedness of the bilinear fractional integral operator introduced by Grafakos in [3]. When the local integrability index s falls 1 with weights and t exceeds 1 , He and Yan obtained... ∇ More
Submitted 24 May, 2019; originally announced May 2019.
Comments: 9 PAGES
MSC Class: 42B35
7. arXiv:1904.00574 [pdf, ps, other] math.FA

A note on the bilinear fractional integral operator acting on Morrey spaces
Authors: Naoya Hatano, Yoshihiro Sawano
Abstract: The boundedness of the bilinear fractional... ∇ More
Submitted 1 April, 2019; originally announced April 2019.
Comments: 9 PAGES
MSC Class: 42B35
8. arXiv:1812.03649 [pdf, ps, other] math.FA

Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz--Morrey spaces of the third kind
Authors: Fatih Deringoz, Vagif S. Guliyev, Eiichi Nakai, Yoshihiro Sawano, Minglei Shi
Abstract: In the present paper, we will characterize the boundedness of the generalized fractional integral operators I_{ρ} and the generalized fractional maximal operators M_{ρ} on Orlicz... ∇ More
Submitted 10 December, 2018; originally announced December 2018.
MSC Class: 42B20; 42B25; 42B35; 46E30
9. arXiv:1811.06702 [pdf, ps, other] math.AP math.FA

A characterization of rough fractional type integral operators and Campanato estimates for their commutators on the variable exponent vanishing generalized Morrey spaces
Authors: Ferit Grbz, Shenghu Ding, Huili Han, Pinhong Long
Abstract: In this paper, applying some properties of variable exponent analysis, we first dwell on Adams and Spanne type estimates for a class of fractional type... ∇ More
Submitted 16 November, 2018; originally announced November 2018.
Comments: 26 pages
MSC Class: 42B20; 42B35; 46E30
10. arXiv:1809.08851 [pdf, ps, other] math.FA

On the behaviors of rough fractional type sublinear operators on vanishing generalized weighted Morrey spaces
Authors: Ferit Gürbüz
Abstract: The aim of this paper is to get the boundedness of rough sublinear operators generated by... ∇ More
Submitted 24 September, 2018; originally announced September 2018.
11. arXiv:1808.05189 [pdf, ps, other] math.CA

Some estimates for the bilinear fractional integrals on the Morrey space
Authors: Xiao Yu, Xiangxing Tao, Huihui Zhang, Jianmiao Ruan
Abstract: In this paper, we are interested in the following bilinear fractional integral operator $B \mathcal{I}_{\alpha}$ defined by
B\mathca|\{|\}_a(\{f,g\})(x)=1int_\{\% \%TCIMACRO\{\U\{211d\}\}\% \%BeginExpansion \mathbb\{R\}\%EndExpansion $\wedge\{n\}\} \backslash f r a c\{f(x-y) g(x+y)\}\{y \mid \wedge\{n-a\}\} d y$,
with $0<\alpha<n \ldots . . \nabla$ More
Submitted 15 August, 2018; originally announced August 2018.
Comments: 25 pages
MSC Class: 42B20; 42B25 ACM Class: F.2.2
12. arXiv:1806.09293 [pdf, ps, other] math.FA

Mixed Morrey spaces
Authors: Toru Nogayama
Abstract: We introduce mixed Morrey... ∇ More
Submitted 25 June, 2018; originally announced June 2018.
13. arXiv:1805.01846 [pdf, ps, other] math.CA

Bilinear fractional integral operators on Morrey spaces
Authors: Qianjun He, Dunyan Yan
Abstract: We prove a plethora of boundedness property of the Adams type for bilinear fractional integral operators of the form

$$
B_{\alpha}(f, g)(x)=\int_{\mathbb{R}^{n}} \frac{f(x-y) g(x+y)}{|y|^{n-\alpha}} d y, \quad 0<\alpha<n
$$

For $1<t \leq s<\infty$, we prove the non-weighted case through... ∇ More
Submitted 26 May, 2019; v1 submitted 4 May, 2018; originally announced May 2018.
14. arXiv:1804.08718 [pdf, ps, other] math.FA

A characterization for fractional integral and its commutators in Orlicz and generalized Orlicz-Morrey spaces on spaces of homogeneous type
Authors: Vagif S. Guliyev, Fatih Deringoz

Abstract: In this paper, we investigate the boundedness of maximal operator and its commutators in generalized Orlicz-... ∇ More
Submitted 23 April, 2018; originally announced April 2018.
Comments: 28 pages
MSC Class: 42B20; 42B25; 42B35
15. arXiv:1804.01001 [pdf, ps, other] math.FA

A class of sublinear operators and their commutators by with rough kernels on vanishing generalized Morrey spaces
Authors: Ferit Gurbuz
Abstract: In this paper, we consider the boundedness of a class of sublinear operators and their commutators by with rough kernels associated with Calderon-Zygmund...
Submitted 1 April, 2018; originally announced April 2018.
Comments: arXiv admin note: text overlap with arXiv:1602.07853, arXiv:1603.03469
16. arXiv:1802.08550 [pdf, ps, other] math.CA

Morrey spaces related to certain nonnegative potentials and fractional integrals on the Heisenberg groups
Authors: Hua Wang
Abstract: ...be a Schrödinger operator on the Heisenberg group \mathbb{H}^{n}, where $\Delta_{\mathbb{H}^{n}}$ is the sub-Laplacian on \mathbb{H}^{n} and the nonnegative potential V belongs to the reverse Hölder class $R H_{s}$ with $s \geq Q / 2$. Here $Q=2 n+2$ is the homogeneous dimension of \mathbb{H}^{n}. For given $\alpha \in(0, Q)$, the $\ldots \nabla$ More
Submitted 18 February, 2018; originally announced February 2018.
Comments: 22 pages. arXiv admin note: text overlap with arXiv:1802.02481
MSC Class: 42B20; 35J10; 22E25; 22E30
17. arXiv:1802.03743 [pdf, ps, other] math.FA

Morrey meets Muckenhoupt: A note on Nakai's generalized Morrey spaces and applications
Authors: Xian Ming Hou, Qingyan Wu, Zunwei Fu, Shanzhen Lu
Abstract: The goal of this paper is to extend Nakai's generalized Morrey... ∇ More
Submitted 14 September, 2018; v1 submitted 11 February, 2018; originally announced February 2018.
Comments: 25 pages
MSC Class: 42B35; 42B20; 42B99
18. arXiv:1802.02481 [pdf, ps, other] math.CA

Weighted Morrey spaces related to Schrodinger operators with potentials satisfying a reverse Holder inequality and fractional integrals
Authors: Hua Wang
Abstract: ...be a Schrödinger operator on $\mathbb{R}^{d}, d \geq 3$, where Δ is the Laplacian operator on \mathbb{R}^{d} and the nonnegative potential V belongs to the reverse Hölder class $R H_{s}$ for $s \geq d / 2$. For given $0<\alpha<d$, the... ∇ More
Submitted 5 February, 2018; originally announced February 2018.
Comments: 30 pages. arXiv admin note: text overlap with arXiv:1801.10217
MSC Class: 42B20; 35J10; 46E30; 47B47
19. arXiv:1801.05275 [pdf, ps, other] math.CA

Two-weight, weak type norm inequalities for fractional integral operators and commutators on weighted Morrey and amalgam spaces
Authors: Hua Wang
Abstract: ...be the fractional integral operator of order $\gamma, I_{\gamma} f(x)=\int_{\mathbb{R}^{n}}|x-y|^{\gamma-n} f(y) d y$, and let $\left[b, I_{\gamma}\right]$ be the linear commutator generated by a symbol function b and $I_{\gamma^{\prime}}\left[b, I_{\gamma}\right] f(x)=b(x) \cdot I_{\gamma} f(x)-I_{\gamma}(b f)(x)$. This paper is concerned with two-weight, weak t... ∇ More
Submitted 9 January, 2018; originally announced January 2018.
Comments: 32 pages. arXiv admin note: text overlap with arXiv:1712.01269
MSC Class: 42B20; 46E30; 47B38; 47G10
20. arXiv:1705.04050 [pdf, ps, other] math.AP

Norm estimates for Bessel-Riesz operators on generalized Morrey spaces
Authors: Mochammad Idris, Hendra Gunawan, Eridani
Abstract: We revisit the properties of Bessel-Riesz operators and refine the proof of the boundedness of these...
Submitted 16 February, 2018; v1 submitted 11 May, 2017; originally announced May 2017.
Comments: 10 pages
MSC Class: 42B20; 26A33; 42B25; 26D10
21. arXiv:1704.05580 [pdf, ps, other] math.PR

Morrey-Campanato estimates for the moments of stochastic integral operators and its application to SPDEs
Authors: Guangying Lv, Hongjun Gao, Jinlong Wei, Jiang-Lun Wu
Abstract: In this paper, we are concerned with the estimates for the moments of stochastic convolution integrals. We first deal with the stochastic singular integral operators and we aim to derive the Morrey-Campanato estimates for the p-moments ($\mathrm{f} \ldots . \nabla$ More
Submitted 18 April, 2017; originally announced April 2017.
Comments: 19 pages
MSC Class: $35 \mathrm{~K} 20 ; 60 \mathrm{H} 15 ; 60 \mathrm{H} 40$
22. arXiv:1703.06395 [pdf, ps, other] math.FA

Sharp estimates for commutators of bilinear operators on Morrey type spaces
Authors: Dinghuai Wang, Jiang Zhou, Zhidong Teng

Abstract: ...the bilinear Calderón-Zygmund operators and bilinear fractional integrals, respectively. In this paper, it is proved that if $b_{1}, b_{2} \in \mathrm{CMO}$ (the $\{\backslash \mathrm{rm} \mathrm{BMO}\}$-closure of $\left.C_{c}^{\infty}\left(\mathbb{R}^{n}\right)\right),[\Pi \vec{b}, T]$ and $\left[\Pi \vec{b}, I_{\alpha}\right]\left(\vec{b}=\left(b_{1}, b_{2}\right)\right)$ are al... ∇ More
Submitted 19 March, 2017; originally announced March 2017.
Comments: 27 pages. arXiv admin note: text overlap with arXiv:1612.01116
23. arXiv:1702.02411 [pdf, ps, other] math.FA

Multilinear BMO estimates for the commutators of multilinear fractional maximal and integral operators on the product generalized Morrey spaces
Authors: Ferit Gurbuz
Abstract: In this paper, we establish multilinear BMO estimates for commutators of multilinear fractional maximal and...
Submitted 8 February, 2017; originally announced February 2017.
MSC Class: 42B20; 42B25; 42B35
24. arXiv:1701.07766 [pdf, ps, other] math.FA

Boundedness of Fractional Integral operators and their commutators in vanishing generalized weighted Morrey spaces
Authors: Bilal Çekiç, Ayşegül Çelik Alabalık
Abstract: In this article, we establish some conditions for the boundedness of fractional integral operators on the vanishing generalized weighted Morrey spaces. We also investigate corresponding commutators ge...
Submitted 16 May, 2017; v1 submitted 26 January, 2017; originally announced January 2017.
Comments: 8 pages
MSC Class: 42B20; 42B35; 46E30
25. arXiv:1701.00850 [pdf, ps, other] math.FA

Hardy-Littlewood, Bessel-Riesz, and fractional integral operators in anisotropic Morrey and Campanato spaces
Authors: Michael Ruzhansky, Durvudkhan Suragan, Nurgissa Yessirkegenov
Abstract: We analyse Morrey... ∇ More
Submitted 3 January, 2017; originally announced January 2017.
Comments: 29 pages
26. arXiv:1612.00663 [pdf, ps, other] math.FA

Fractional operators on weighted Morrey spaces
Authors: Shohei Nakamura, Yoshihiro Sawano, Hitoshi Tanaka
Abstract: A necessary condition and a sufficient condition for one weight norm inequalities on Morrey... ∇ More
Submitted 2 December, 2016; originally announced December 2016.
27. arXiv:1610.05449 [pdf, ps, other] math.FA

Fractional type multilinear commutators generated by fractional integral with rough variable kernel and local Campanato functions on generalized vanishing local Morrey spaces
Authors: Ferit Gurbuz
Abstract: In this paper, we consider the boundedness of fractional type multilinear commutators generated by...
Submitted 13 December, 2016; v1 submitted 18 October, 2016; originally announced October 2016.
Comments: arXiv admin note: text overlap with arXiv:1602.07853
MSC Class: 42B20; 42B25; 42B35
28. arXiv:1606.02791 [pdf, ps, other] math.FA

A note on the boundedness of discrete commutators on Morrey spaces and their preduals
Authors: Yoshihiro Sawano
Abstract: Dyadic fractional...
Submitted 8 June, 2016; originally announced June 2016.
Comments: This is: Yoshihiro Sawano A note on the boundedness of discrete commutators on Morrey spaces and their preduals. J. Anal. Appl. 11 (2013), no. 1-2, 1-26 MSC Class: 26B33; 41 E17 (Primary); 42B25; 42B35 (Secondary)
29. arXiv:1605.08326 [pdf, ps, other] math.AP math.CA math.FA doi 10.2140/apde.2019.12.605

The BMO-Dirichlet problem for elliptic systems in the upper-half space and quantitative characterizations of VMO
Authors: José María Martell, Dorina Mitrea, Irina Mitrea, Marius Mitrea
Abstract: ...is a Carleson measure. We establish a regularity result for the BMO-Dirichlet problem in the upper-half space: the nontangential pointwise trace of any given smooth null-solutions of L satisfying the above Carleson measure condition belongs to Sarason's space VMO if and only if μ_{u} satsifies a vanishing Carl... ∇ More
Submitted 24 August, 2018; v1 submitted 26 May, 2016; originally announced May 2016.
MSC Class: Primary: 35B65; 35C15; 35J47; 35J57; 35J67; 42B37. Secondary: 35E99; 42B20; 42B30; 42B35
Journal ref: Analysis \& PDE 12 (2019) 605-720
30. arXiv:1603.06739 [pdf, ps, other] math.FA

Some estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces
Authors: Ferit Gurbuz
Abstract: In this paper, we establish BMO estimates for generalized commutators of rough fractional maximal and integral operators on generalized weighted Morrey spaces, respectively.
Submitted 22 March, 2016; originally announced March 2016.
Comments: 16 pages. arXiv admin note: text overlap with arXiv:1603.03469

MSC Class: 42B20; 42B25
31. arXiv:1603.04658 [pdf, ps, other] math.CA

Weighted inequalities for fractional integral operators and linear commutators in the Morrey type spaces
Authors: Hua Wang
Abstract: In this paper, we first introduce some new Morrey type... ∇ More
Submitted 9 March, 2016; originally announced March 2016.
Comments: 34 pages. arXiv admin note: substantial text overlap with arXiv:1603.03912
MSC Class: 42B20; 42B25; 42B35
32. arXiv:1603.00014 [pdf, ps, other] math.FA

Adams-Spanne type estimates for the commutators of fractional type sublinear operators in generalized Morrey spaces on Heisenberg groups
Authors: Ferit Gurbuz
Abstract: In this paper we give BMO (bounded mean oscillation) space estimates for commutators of...
Submitted 14 November, 2016; v1 submitted 29 February, 2016; originally announced March 2016.
MSC Class: 42B25; 42B35; 43A15; 43A80
33. arXiv:1602.08788 [pdf, ps, other] math.AP

Adams-Spanne type estimates for parabolic sublinear operators and their commutators by with rough kernels on parabolic generalized Morrey spaces
Authors: Ferit Gurbuz
Abstract: The aim of this paper is to give Adams-Spanne type estimates for parabolic sublinear operators and their commutators by with rough kernels generated by parabolic...
Submitted 19 August, 2017; v1 submitted 25 February, 2016; originally announced February 2016.
MSC Class: 42B20; 42B25; 42B35
34. arXiv:1602.07853 [pdf, ps, other] math.AP

Sublinear operators with rough kernel generated by fractional integrals and commutators on generalized vanishing local Morrey spaces
Authors: Ferit Gurbuz
Abstract: In this paper, we consider the norm inequalities for sublinear operators with rough kernel generated by... ∇ More
Submitted 31 August, 2016; v1 submitted 25 February, 2016; originally announced February 2016.
Comments: arXiv admin note: text overlap with arXiv:1603.04088, arXiv:1604.01538, arXiv:1603.03469, arXiv:1602.07468, arXiv:1602.08096, arXiv:1602.08788; text overlap with arXiv:1212.6928, arXiv:1208.4788 by other authors
MSC Class: 42B20; 42B25; 42B35
35. arXiv:1602.07468 [pdf, ps, other] math.AP

Multi-sublinear operators generated by multilinear fractional integral operators and commutators on the product generalized local Morrey spaces
Authors: Ferit Gurbuz
Abstract: The aim of this paper is to get the boundedness of certain multi-sublinear operators generated by multilinear... ∇ More
Submitted 10 November, 2016; v1 submitted 24 February, 2016; originally announced February 2016.
Comments: arXiv admin note: substantial text overlap with arXiv:1603.04088; text overlap with arXiv:1212.6928 by other authors
MSC Class: 42B20; 42B25; 42B35
36. arXiv:1410.6327 [pdf, ps, other] math.FA math.CA
$\boldsymbol{B}_{\boldsymbol{w}}^{u}$-function spaces and their interpolation
Authors: Eiichi Nakai, Takuya Sobukawa
Abstract: ...-function spaces which unify Lebesgue, Morrey-Campanato, Lipschitz, B^{p}, CMO, local Morrey-type spaces, etc., and investigate the interpolation property of B_{w}^{u}-function... ∇ More
Submitted 23 October, 2014; originally announced October 2014.
Comments: 43 pages
MSC Class: Primary 42B35; 46B70; Secondary 46E30; 46E35; 42B20; 42B25
37. arXiv:1401.1912 [pdf, ps, other] math.FA

Estimates for multilinear commutators of generalized fractional integral operators on weighted Morrey spaces
Authors: He Sha, Tao Xiangxing
Abstract: ...be the fractional integrals of L for $0<\alpha<n$. Assume that $\vec{b}=\left(b_{1}, b_{2}, \cdots, b_{m}\right)$ is a finite family of locally integrable functions, then the multilinear commutators generated by \vec{b} and $L^{-\alpha / 2}$ is defined by \begin } \{ equation* \} L _ { - } \{ \backslash \operatorname { v e c } \{ b \} \} \wedge \{ - a / 2 \} f = [b _ m , \backslash c ··· \nabla More
Submitted 9 January, 2014; originally announced January 2014.
Comments: 16 pages. arXiv admin note: text overlap with arXiv:1203.4407 by other authors
38. arXiv:1310.2139 [pdf, ps, other] math.CA doi 10.1007/s11118-014-9397-6

Weighted local estimates for fractional type operators

Authors: Alberto Torchinsky
Abstract: ...for general fractional type operators T, where $M_{0, s}^{\sharp}$ is the local sharp maximal function and M_{γ} the fractional maximal function, as well as a local version of this estimate. This allows us to express the local weighted control of $T f$ by $M_{\gamma} f$. Similar estimat... ∇ More
Submitted 8 October, 2013; originally announced October 2013.
Comments: arXiv admin note: substantial text overlap with arXiv:1308.1134

MSC Class: 26A33; 31B10
39. arXiv:1305.6684 [pdf, ps, other] math.FA

Weak and strong type estimates for fractional integral operators on Morrey spaces in metric measure spaces
Authors: I. Sihwaningrum, Y. Sawano
Abstract: We discuss here a weak and strong type estimate for fractional integral operators on Morrey spaces, where the underlying measure μ does not always satisfy the doubling condition.
Submitted 28 May, 2013; originally announced May 2013.
Comments: 6 pages
40. arXiv:1303.4480 [pdf, ps, other] math.CA

Multilinear singular and fractional integral operators on weighted Morrey spaces
Authors: Hua Wang, Wentan Yi
Abstract: In this paper, we will study the boundedness properties of multilinear Calderon--Zygmund operators and multilinear fractional integrals on products of weighted Morrey spaces with multiple weights.
Submitted 18 March, 2013; originally announced March 2013.
Comments: 21 pages
MSC Class: 42B20; 42 B35
41. arXiv:1212.6928 [pdf, ps, other] math.FA math.AP

Generalized local Morrey spaces and fractional integral operators with rough kernel
Authors: Vagif S. Guliyev
Abstract: ...be the fractional maximal and integral operators with rough kernels, where $\$ 0<1 \mathrm{a}<\mathrm{n} \$$. In this paper, we shall study the continuity properties of $\$ M_{-}\{\Omega, \backslash a\} \$$ and $\$ 1 _\{\Omega, \backslash a\} \$$ on the generalized local...
Submitted 31 December, 2012; originally announced December 2012.
Comments: arXiv admin note: text overlap with arXiv:1203.1441 by other authors
42. arXiv:1203.4407 [pdf, ps, other] math.FA

Commutator Theorems for Fractional Integral Operators on Weighted Morrey Spaces
Authors: Zengyan Si
Abstract: ...be the fractional integrals of L for $0<\alpha<n$. For any locally integrable function b, The commutators associated with $L^{-\alpha / 2}$ are defined by $\left[b, L^{-\alpha / 2}\right](f)(x)=b(x) L^{-\alpha / 2}(f)(x)-L^{-\alpha / 2}(b f)(x)$. When $b \in B M O(\omega)$ (weighted $B M O \ldots \nabla$ More
Submitted 21 March, 2012; v1 submitted 20 March, 2012; originally announced March 2012.
Comments: 12 pages; submitted
43. arXiv:1203.4337 [pdf, ps, other] math.FA

Necessary and sufficient conditions for boundedness of commutators of the general fractional integral operators on weighted Morrey spaces
Authors: Zengyan Si, Fayou Zhao
Abstract: ...of the multiplication operator by b and the general fractional integral operator $L^{-\alpha / 2}$ is bounded from the weighed Morrey space $L^{p, k}(\omega)$ to... ∇ More
Submitted 20 March, 2012; originally announced March 2012.
Comments: 12 pages; Classical Analysis and ODEs (math.CA), Functional Analysis (math.FA)
44. arXiv:1203.1441 [pdf, ps, other] math.CA

Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces
Authors: Hua Wang
Abstract: ...be the fractional maximal and integral operators with rough kernels, where $0<\alpha<n$. In this paper, we shall study the continuity properties of $M_{\Omega, \alpha}$ and $T_{\Omega, \alpha}$ on the weighted...
Submitted 7 March, 2012; originally announced March 2012.
Comments: 12 pages
MSC Class: 42B20; 42B25
45. arXiv:1202.5740 [pdf, ps, other] math.CA

Some estimates for commutators of fractional integrals associated to operators with Gaussian kernel bounds on weighted Morrey spaces
Authors: Hua Wang
Abstract: ...be the fractional integrals of L for $0<\alpha<n$. In this paper, we will obtain some boundedness properties of commutators $\left[b, L^{-\alpha / 2}\right]$ on the weighted Morrey spaces $L^{p, \kappa}(w)$ when the symbol b belongs to... ∇ More
Submitted 26 February, 2012; originally announced February 2012.
Comments: 15 pages
MSC Class: 42B20; 42B35
46. arXiv:1111.5463 [pdf, ps, other] math.FA

The Boundedness of Multilinear operators with rough kernel on the weighted Morrey spaces
Authors: He Sha
Abstract: ..., the multilinear fractional... ∇ More
Submitted 6 November, 2012; v1 submitted 23 November, 2011; originally announced November 2011.
47. arXiv:1111.5109 [pdf, ps, other] math.FA

Boundedness of oscillatory integral operators and their commutators on weighted Morrey spaces

Authors: Zunwei Fu, Shaoguang Shi, Shanzhen Lu
Abstract: It is proved that both oscillatory integral...
Submitted 22 November, 2011; originally announced November 2011.
Comments: 15 pages
MSC Class: 42B20 (Primary) 42B25 (Secondary)
48. arXiv:1010.2638 [pdf, ps, other] math.CA

Some estimates for commutators of fractional integral operators on weighted Morrey spaces
Authors: Hua Wang
Abstract: ...be the fractional integral operator. In this paper, we shall use a unified approach to show some boundedness properties of commutators $\left[b, I_{\alpha}\right]$ on the weighted Morrey spaces $L^{p, \kappa}(w)$ under appro...
Submitted 22 January, 2013; v1 submitted 13 October, 2010; originally announced October 2010.
Comments: 22 pages. arXiv admin note: substantial text overlap with arXiv:1010.2637
MSC Class: 42B20; 42B35
49. arXiv:0806.2391 [pdf, ps, other] math.FA

Morrey Spaces and Fractional Integral Operators
Authors: Eridani, Vakhtang Kokilashvili, Alexander Meskhi
Abstract: The present paper is devoted to the boundedness of fractional... ∇ More
Submitted 14 June, 2008; originally announced June 2008.
Comments: 13 pages
MSC Class: 42B35; 47B38

About	- Contact
Help	1 Subscribe
Copyright	Web Accessibility Assistance
Privacy Policy	arXiv Operational Status >
	Get status notifications via =email or slack

Access through your institution

:三
Download
Share
Export

Expositiones Mathematicae

Volume 27, Issue 3, 2009, Pages 227-239

Morrey spaces and fractional integral operators

Show more
https://doi.org/10.1016/j.exmath.2009.01.001
Get rights and content
Under an Elsevier user license
open archive

Abstract

The present paper is devoted to the boundedness of fractional integral operators in Morrey spaces defined on quasimetric measure spaces. In particular, Sobolev, trace and weighted inequalities with power weights for potential operators are established. In the case when measure satisfies the doubling condition the derived conditions are simultaneously necessary and sufficient for appropriate inequalities.

Previous

MSC

primary, 26A33; secondary, 42B35; 47B38

Keywords
Fractional integrals; Morrey spaces; Non-homogeneous spaces; Trace inequality;

```
Loading[MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
```


1. Introduction

The main purpose of this paper is to establish the boundedness of fractional integral operators in (weighted) Morrey spaces defined on quasimetric measure spaces. We derive Sobolev, trace and two-weight inequalities for fractional integrals. In particular, we generalize: (a) Adams [1] trace inequality; (b) the theorem by Stein and Weiss [18] regarding the two-weight inequality for the Riesz potentials; (c) Sobolev-type inequality. We emphasize that in the most cases the derived conditions are necessary and sufficient for appropriate inequalities.

In the paper [9] (see also [10, Chapter 2]) integral-type sufficient condition guaranteeing the two-weight weak-type inequality for integral operator with positive kernel defined on nonhomogeneous spaces was established. In the same paper (see also [10, Chapter 2]) the authors solved the two-weight problem for kernel operators on spaces of homogeneous type.

In [12] (see also [5, Chapter 6]) a complete description of non-doubling measure μ guaranteeing the boundedness of fractional integral operator Ia (see the next section for the definition) from $\operatorname{Lp}(\mu, X)$ to $\mathrm{Lq}(\mu, X), 1<\mathrm{p}<\mathrm{q}<\infty$, was given. We notice that this result was derived in [11] for potentials on Euclidean spaces. In [12], theorems of Sobolev and Adams type for fractional integrals defined on quasimetric measure spaces were established. For the boundedness of fractional integrals on metric measure spaces we refer also to [7]. Some twoweight norm inequalities for fractional operators on Rn with non-doubling measure were studied in [8]. Further, in the paper [13] necessary and sufficient conditions on measure μ governing the inequality of Stein-Weiss type on non-homogeneous spaces were established. For some properties of fractional integrals defined on Rn in weighted Lebesgue spaces with power type weights see e.g., [16, Chapter 5].

The boundedness of the Riesz potential in Morrey spaces defined on Euclidean spaces was studied in [15], [2]. The same problem for fractional integrals on Rn with non-doubling measure was investigated in [17].

Finally, we mention that necessary and sufficient conditions for the boundedness of maximal operators and Riesz potentials in the local Morrey-type spaces were derived in [3], [4].

The main results of this paper were presented in [6].
It should be emphasized that the results of this work are new even for Euclidean spaces.
Constants (often different constants in the same series of inequalities) will generally be denoted by c or C.

2. Preliminaries

Throughout the paper we assume that $\mathrm{X}:=(\mathrm{X}, \mathrm{\rho}, \mu)$ is a topological space, endowed with a complete measure μ such that the space of compactly supported continuous functions is dense in $I \cdot 1(\mathrm{X} u$) and there exists a fiunction (nulasimetric) $n \cdot X x X \rightarrow[0 \infty$) satisfring the Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
(1) $\rho(x, y)>0$ for all $x \neq y$, and $\rho(x, x)=0$ for all $x \in X$;
(2) there exists a constant $a 0 \geqslant 1$, such that $\rho(x, y) \leqslant a 0 \rho(y, x)$ for all $x, y \in X$;
(3) there exists a constant $\mathrm{a} 1 \geqslant 1$, such that $\rho(\mathrm{x}, \mathrm{y}) \leqslant \mathrm{a} 1(\rho(\mathrm{x}, \mathrm{z})+\rho(\mathrm{z}, \mathrm{y}))$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

We assume that the balls $\mathrm{B}(\mathrm{a}, \mathrm{r}):=\{\mathrm{x} \in \mathrm{X}: \rho(\mathrm{a}, \mathrm{x})<\mathrm{r}\}$ are μ-measurable and $0<\mu(\mathrm{B}(\mathrm{a}, \mathrm{r}))<\infty$ for $\mathrm{a} \in \mathrm{X}, \mathrm{r}>0$. For every neighborhood V of $x \in X$, there exists $r>0$, such that $B(x, r) \subset V$. We also assume that $\mu(X)=\infty, \mu\{a\}=0$, and $B(a, r 2) \backslash B(a, r 1) \neq \varnothing$, for all $a \in X, 0<r 1<r 2<\infty$.

The triple (X, ρ, μ) will be called quasimetric measure space.
Let $0<\alpha<1$. We consider the fractional integral operators I α, and K α given by
$\operatorname{Iaf}(\mathrm{x}):=\int \mathrm{Xf}(\mathrm{y}) \rho(\mathrm{x}, \mathrm{y}) \alpha-1 \mathrm{~d} \mu(\mathrm{y})$,
$\operatorname{Kaf}(\mathrm{x}):=\int \mathrm{Xf}(\mathrm{y})(\mu \mathrm{B}(\mathrm{x}, \rho(\mathrm{x}, \mathrm{y}))) \alpha-1 \mathrm{~d} \mu(\mathrm{y})$,
for suitable f on X.
Suppose that v is another measure on $X, \lambda \geqslant 0$ and $1 \leqslant p<\infty$. We deal with the Morrey space $\mathrm{Lp}, \lambda(\mathrm{X}, \mathrm{v}, \mu)$, which is the set of all functions $f \in \operatorname{Llocp}(\mathrm{X}, \mathrm{v})$ such that
$\|f\| \operatorname{Lp}, \lambda(X, v, \mu):=\operatorname{supB} 1 \mu(B) \lambda \int B|f(y)| p d v(y) 1 / p<\infty$,
where the supremum is taken over all balls B.
If $v=\mu$, then we have the classical Morrey space Lp, $\lambda(X, \mu)$ with measure μ. When $\lambda=0$, then $L p, \lambda(X, v, \mu)=\operatorname{Lp}(X, v)$ is the Lebesgue space with measure v.

Further, suppose that $\beta \in \mathrm{R}$. We are also interested in weighted Morrey space $\mathrm{M} \beta \mathrm{p}, \lambda(\mathrm{X}, \mu)$ which is the set of all μ-measurable functions f such that
$\|f\| M \beta p, \lambda(X, \mu):=$ supa $\in X ; r>01 r \lambda \int B(a, r)|f(y)| p \rho(a, y) \beta d \mu(y) 1 / p<\infty$.
If $\beta=0$, then we denote $M \beta p, \lambda(X, \mu):=M p, \lambda(X, \mu)$.
We say that a measure μ satisfies the growth condition ($\mu \in(\mathrm{GC})$), if there exists $\mathrm{C} 0>0$ such that $\mu(\mathrm{B}(\mathrm{a}, \mathrm{r})) \leqslant \mathrm{C} 0 \mathrm{r}$; further, μ satisfies the doubling condition $(\mu \in(\mathrm{DC}))$ if $\mu(\mathrm{B}(\mathrm{a}, 2 \mathrm{r})) \leqslant \mathrm{C} 1 \mu(\mathrm{~B}(\mathrm{a}, \mathrm{r}))$ for some $\mathrm{C} 1>1$. If $\mu \in(\mathrm{DC})$, then (X, ρ, μ) is called a space of homogeneous type (SHT). A quasimetric measure space ($\mathrm{X}, \mathrm{\rho}, \mu$), where the doubling condition is not assumed, is also called a nonhomogeneous space.

The measure μ on X satisfies the reverse doubling condition ($\mu \in(\mathrm{RDC})$) if there are constants $\eta 1$ and $\eta 2$ with $\eta 1>1$ and $\eta 2>1$ such that

$$
\begin{equation*}
\mu \mathrm{B}(\mathrm{x}, \eta 1 \mathrm{r}) \geqslant \eta 2 \mu \mathrm{~B}(\mathrm{x}, \mathrm{r}) . \tag{1}
\end{equation*}
$$

The next statements are from [12] (see also [5, Theorem 6.1.1, Corollary 6.1.1] and [11] in the case of Euclidean spaces).

Theorem A

Let $(\mathrm{X}, \mathrm{\rho}, \mu)$ be a quasimetric measure space. Suppose that $1<\mathrm{p}<\mathrm{q}<\infty$ and $0<\alpha<1$. Then I α is bounded from $\mathrm{Lp}(\mathrm{X})$ to $\mathrm{Lq}(\mathrm{X})$ if and only if there exists a positive constant C such that
$\mu(\mathrm{B}(\mathrm{a}, \mathrm{r})) \leqslant \mathrm{Crs}, \mathrm{s}=\mathrm{pq}(1-\alpha) \mathrm{pq}+\mathrm{p}-\mathrm{q}$,
for all $\mathrm{a} \in \mathrm{X}$ and $\mathrm{r}>0$.

Corollary B

Let (X, ρ, μ) be a quasimetric measure space, $1<p<1 / \alpha$ and $1 / q=1 / p-\alpha$. Then Ia is bounded from $\operatorname{Lp}(X)$ to $\mathrm{Lq}(\mathrm{X})$ if and only if $\mu \in(\mathrm{GC})$.

The latter statement by different proof was also derived in [7] for metric spaces.
To prove some of our statements we need the following Hardy-type transform:
$\operatorname{Haf}(x):=\int \rho(a, y) \leqslant \rho(a, x) f(y) d \mu(y)$,
where a is a fixed point of X and $f \in \operatorname{Lloc}(X, \mu)$.

Theorem C

Suppose that $(\mathrm{X}, \mathrm{\rho}, \mu)$ is a quasimetric measure space and $1<\mathrm{p} \leqslant \mathrm{q}<\infty$. Assume that v is another measures on X. Let $\mathrm{V}($ resp. W) be non-negative $v \times v$-measurable (resp. non-negative $\mu \times \mu$-measurable) function on $\mathrm{X} \times \mathrm{X}$. If there exists a positive constant C independent of $\mathrm{a} \in \mathrm{X}$ and $\mathrm{t}>0$ such that
$\int \rho(\mathrm{a}, \mathrm{y}) \geqslant \operatorname{tV}(\mathrm{a}, \mathrm{y}) \mathrm{d} v(\mathrm{y}) 1 / \mathrm{q} \int \rho(\mathrm{a}, \mathrm{y}) \leqslant \mathrm{tW}(\mathrm{a}, \mathrm{y}) 1-\mathrm{p}^{\prime} \mathrm{d} \mu(\mathrm{y}) 1 / \mathrm{p}^{\prime} \leqslant \mathrm{C}<\infty$,
then there exists a positive constant c such that for all μ-measurable non-negative f and $\mathrm{a} \in \mathrm{X}$ the inequality
$\int B(a, r)(\operatorname{Haf}(x)) q V(a, x) d v(x) 1 / q \leqslant c \int B(a, r)(f(x)) p W(a, x) d \mu(x) 1 / p$
holds.

This statement was proved in [5, Section 1.1] for Lebesgue spaces.

Proof of Theorem C

Let $\mathrm{f} \geqslant 0$. We define $\mathrm{S}(\mathrm{s}):=\int \rho(\mathrm{a}, \mathrm{y})<\operatorname{sf}(\mathrm{y}) \mathrm{d} \mu(\mathrm{y})$, for $\mathrm{s} \in[0, \mathrm{r}]$. Suppose $\mathrm{S}(\mathrm{r})<\infty$, then $2 \mathrm{~m}<\mathrm{S}(\mathrm{r}) \leqslant 2 \mathrm{~m}+1$, for some $m \in Z$. Let
$\mathrm{sj}:=\sup \{\mathrm{t}: \mathrm{S}(\mathrm{t}) \leqslant 2 \mathrm{j}\}, \mathrm{j} \leqslant$ mandsm+1:=r.
Then it is easy to see that (see also [5, pp. 5-8] for details) (s) $j=-\infty m+1$ is a non-decreasing

[^0]$2 j \leqslant \int s j \leqslant \rho(a, y) \leqslant s j+1 f(y) d \mu(y)$.
If $\beta:=\operatorname{limj} \rightarrow-\infty$ sj, then
$\rho(\mathrm{a}, \mathrm{x})<\mathrm{r} \Leftrightarrow \rho(\mathrm{a}, \mathrm{x}) \in[0, \beta] \cup \cup j=-\infty \mathrm{m}(\mathrm{sj}, \mathrm{sj}+1]$.
If $S(r)=\infty$, then we may put $m=\infty$. Since
$0 \leqslant \int \rho(a, y)<\beta f(y) d \mu(y) \leqslant S(s j) \leqslant 2 j$,
for every j, therefore $\int \rho(a, y)<\beta f(y) d \mu(y)=0$. From these observations, we have
$\int \rho(\mathrm{a}, \mathrm{x})<\mathrm{r}(\mathrm{Haf}(\mathrm{x})) q \mathrm{q}(\mathrm{a}, \mathrm{x}) \mathrm{dv}(\mathrm{x}) \leqslant \sum \mathrm{j}=-\infty \mathrm{m} \int \mathrm{sj} \leqslant \rho(\mathrm{a}, \mathrm{x}) \leqslant \mathrm{sj}+1(\operatorname{Haf}(\mathrm{x})) q \mathrm{q}(\mathrm{a}, \mathrm{x}) \mathrm{d} v(\mathrm{x}) \leqslant \sum j=-$ $\infty m \int s j \leqslant \rho(\mathrm{a}, \mathrm{x}) \leqslant \mathrm{sj}+1 \mathrm{~V}(\mathrm{a}, \mathrm{x}) \int \rho(\mathrm{a}, \mathrm{y}) \leqslant \mathrm{sj}+1(\mathrm{f}(\mathrm{y})) \mathrm{d} \mu(\mathrm{y}) \mathrm{qdv}(\mathrm{x})$.

Notice that
$\int \rho(a, y) \leqslant s j+1 f d \mu \leqslant S(s j+2) \leqslant 2 j+2 \leqslant C \int s j-1 \leqslant \rho(a, y) \leqslant s j f d \mu$.
Using Hölder's inequality, we find that
$\int \rho(a, x)<r(\operatorname{Haf}(\mathrm{x})) q \mathrm{q}(\mathrm{a}, \mathrm{x}) \mathrm{d} \mu(\mathrm{x}) \leqslant \sum \mathrm{j}=-\infty \mathrm{m} \int \mathrm{sj} \leqslant \rho(\mathrm{a}, \mathrm{x}) \leqslant \operatorname{sj}+1 V(\mathrm{a}, \mathrm{x}) \int \rho(\mathrm{a}, \mathrm{y}) \leqslant \operatorname{sj}+1(\mathrm{f}(\mathrm{y})) \mathrm{d} \mu(\mathrm{y}) q d v(\mathrm{x}) \leqslant \mathrm{C} \sum j=-$
$\infty m \int s j \leqslant \rho(a, x) \leqslant s j+1 V(a, x) \int s j-1 \leqslant \rho(a, y) \leqslant s j(f(y)) d \mu(y) q d v(x) \leqslant C \sum j=-\infty m \int s j \leqslant \rho(a, x) \leqslant s j+1 V(a, x) d v(x) \int s j-$ $1 \leqslant \rho(a, y) \leqslant s j(f(y)) p W(a, y) d \mu(y) q / p x \int s j-1 \leqslant \rho(a, y) \leqslant s j W(a, y) 1-p^{\prime} d \mu(y) q / p^{\prime} \leqslant C \sum j=-$
$\infty m \int s j \leqslant \rho(a, y) V(a, y) d v(y) \int \rho(a, y) \leqslant s j W(a, y) 1-p^{\prime} d \mu(y) q / p^{\prime} \int s j-1 \leqslant \rho(a, y) \leqslant s j(f(y)) p W(a, y) d \mu(y) q / p \leqslant C \sum j=-$ $\infty \mathrm{m} \int \mathrm{sj}-1 \leqslant \rho(\mathrm{a}, \mathrm{y}) \leqslant \mathrm{sj}(\mathrm{f}(\mathrm{y})) \mathrm{pW}(\mathrm{a}, \mathrm{y}) \mathrm{d} \mu(\mathrm{y}) \mathrm{q} / \mathrm{p} \leqslant \mathrm{C} \int \rho(\mathrm{a}, \mathrm{y}) \leqslant \mathrm{r}(\mathrm{f}(\mathrm{y})) \mathrm{pW}(\mathrm{a}, \mathrm{y}) \mathrm{d} \mu(\mathrm{y}) \mathrm{q} / \mathrm{p}$.

This completes the proof of the theorem.
For our purposes we also need the following lemma (see [14] for the case of Rn).

Lemma D

Suppose that $(\mathrm{X}, \mathrm{\rho}, \mu)$ be an SHT. Let $0<\lambda<1 \leqslant \mathrm{p}<\infty$. Then there exists a positive constant C such that for all balls B0,
$\|\chi B 0\| \operatorname{Lp}, \lambda(X, \mu) \leqslant C \mu(B 0)(1-\lambda) / p$.

Proof

Let $\mathrm{B} 0:=\mathrm{B}(\mathrm{x} 0, \mathrm{r} 0)$ and $\mathrm{B}:=\mathrm{B}(\mathrm{a}, \mathrm{r})$. We have
$\|\chi B 0\| \operatorname{Lp}, \lambda(X, \mu)=\operatorname{supB} \mu(B 0 \cap B) \mu(B) \lambda 1 / p$.
Suppose that $\mathrm{B} 0 \cap \mathrm{~B} \neq \emptyset$. Let us assume that $\mathrm{r} \leqslant \mathrm{r} 0$. Then (see [19, Lemma 1] or [10, p. 9]) $\mathrm{B} \subset \mathrm{B}(\mathrm{x} 0, \mathrm{br} 0)$, where $\mathrm{b}=\mathrm{a} 1(1+\mathrm{a} 0)$. By the doubling condition it follows that

$$
\mu(\mathrm{B} \cap \mathrm{~B} 0) \mu(\mathrm{B}) \lambda \leqslant \mu(\mathrm{B}) \mu(\mathrm{B}) \lambda=\mu(\mathrm{B}) 1-\lambda \leqslant \mu(\mathrm{B}(\mathrm{x} 0, \mathrm{br} 0)) 1-\lambda \leqslant \mathrm{C} \mu(\mathrm{~B} 0) 1-\lambda .
$$

[^1]$\mu(\mathrm{B} \cap \mathrm{B} 0) \mu(\mathrm{B}) \lambda \leqslant \mathrm{c} \mu(\mathrm{B} 0) \mu(\mathrm{B} 0) \lambda=c \mu(\mathrm{~B} 0) 1-\lambda . \square$
The next lemma may be well known but we prove it for the completeness.

Lemma E

Let (X, ρ, μ) be a non-homogeneous space with the growth condition. Suppose that $\sigma>-1$. Then there exists a positive constant c such that for all $\mathrm{a} \in \mathrm{X}$ and $\mathrm{r}>0$, the inequality
$\mathrm{I}(\mathrm{a}, \mathrm{r}, \sigma):=\int \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \sigma \mathrm{d} \mu \leqslant \mathrm{cr} \sigma+1$
holds.

Proof

Let $\sigma \geqslant 0$. Then the result is obvious because of the growth condition for μ. Further, assume that $-1<\sigma<0$. We have
$\mathrm{I}(\mathrm{a}, \mathrm{r}, \sigma)=\int 0 \infty \mu\{\mathrm{x} \in \mathrm{B}(\mathrm{a}, \mathrm{r}): \rho(\mathrm{a}, \mathrm{x}) \sigma>\lambda\} \mathrm{d} \lambda=\int 0 \infty \mu(\mathrm{~B}(\mathrm{a}, \mathrm{r}) \cap \mathrm{B}(\mathrm{a}, \lambda 1 / \sigma)) \mathrm{d} \lambda=\int 0 \mathrm{r} \sigma+\int \mathrm{r} \sigma \infty:=\mathrm{I}(1)(\mathrm{a}, \mathrm{r}, \sigma)+\mathrm{I}(2)(\mathrm{a}, \mathrm{r}, \sigma)$.
By the growth condition for μ we have
$\mathrm{I}(1)(\mathrm{a}, \mathrm{r}, \sigma) \leqslant \mathrm{r} \sigma \mu(\mathrm{B}(\mathrm{a}, \mathrm{r})) \leqslant \mathrm{cr} \sigma+1$,
while for $\mathrm{I}(2)(\mathrm{a}, \mathrm{r}, \sigma)$ we find that
$\mathrm{I}(2)(\mathrm{a}, \mathrm{r}, \sigma) \leqslant \mathrm{c} \int \mathrm{r} \sigma \infty \lambda 1 / \sigma \mathrm{d} \lambda=-\mathrm{c}(\sigma+1) \sigma r \sigma+1=c 1 r \sigma+1$
because $1 / \sigma<-1$.
The following statement is the trace inequality for the operator Ka (see [1] for the case of Euclidean spaces and, e.g., [10] or [5, Theorem 6.2.1] for an SHT).

Theorem F

Let $(\mathrm{X}, \mathrm{\rho}, \mu)$ be an SHT. Suppose that $1<\mathrm{p}<\mathrm{q}<\infty$ and $0<\alpha<1 / \mathrm{p}$. Assume that v is another measure on X . Then Ka is bounded from $\mathrm{Lp}(\mathrm{X}, \mu)$ to $\mathrm{Lq}(\mathrm{X}, v)$ if and only if
$v B \leqslant c(\mu B) q(1 / p-\alpha)$,
for all balls B in X.

3. Main results

In this section we formulate the main results of the paper. We begin with the case of an SHT.

Theorem 3.1

Let (X, ρ, μ) be an SHT and let $1<\mathrm{p}<\mathrm{q}<\infty$. Suppose that $0<\alpha<1 / \mathrm{p}, 0<\lambda 1<1-\alpha \mathrm{p}$ and $\lambda 2 / \mathrm{q}=\lambda 1 / \mathrm{p}$. Then Ka is bounded from $\mathrm{Lp}, \lambda 1(\mathrm{X}, \mu)$ to $\mathrm{Lq}, \lambda 2(\mathrm{X}, \mathrm{v}, \mu)$ if and only if there is a positive constant c such that

[^2]for all balls B.
The next statement is a consequence of Theorem 3.1.

Theorem 3.2

Let $(\mathrm{X}, \mathrm{\rho}, \mu)$ be an SHT and let $1<\mathrm{p}<\mathrm{q}<\infty$. Suppose that $0<\alpha<1 / \mathrm{p}, 0<\lambda 1<1-\alpha \mathrm{p}$ and $\lambda 2 / \mathrm{q}=\lambda 1 / \mathrm{p}$. Then for the boundedness of Ka from $\mathrm{Lp}, \lambda 1(\mathrm{X}, \mu)$ to $\mathrm{Lq}, \lambda 2(\mathrm{X}, \mu)$ it is necessary and sufficient that $\mathrm{q}=\mathrm{p} /(1-\alpha \mathrm{p})$.

For non-homogeneous spaces we have the following statements:

Theorem 3.3

Let $(\mathrm{X}, \mathrm{\rho}, \mu)$ be a non-homogeneous space with the growth condition. Suppose that $1<\mathrm{p} \leqslant \mathrm{q}<\infty, 1 / \mathrm{p}$ $1 / q \leqslant \alpha<1$ and $\alpha \neq 1 / p$. Suppose also that $p \alpha-1<\beta<p-1,0<\lambda 1<\beta-\alpha p+1$ and $\lambda 1 q=\lambda 2 p$. Then I α is bounded from $M \beta p, \lambda 1(X, \mu)$ to $M \gamma q, \lambda 2(X, \mu)$, where $\gamma=q(1 / p+\beta / p-\alpha)-1$.

Theorem 3.4

Suppose that (X, ρ, μ) is a quasimetric measure space and μ satisfies condition (2). Let $1<\mathrm{p}<\mathrm{q}<\infty$. Assume that $0<\alpha<1,0<\lambda 1<\mathrm{p} / \mathrm{q}$ and $\mathrm{s} \lambda 1 / \mathrm{p}=\lambda 2 / \mathrm{q}$. Then the operator Ia is bounded from $\mathrm{Mp}, \lambda 1 \mathrm{~s}(\mathrm{X}, \mu)$ to $\mathrm{Mq}, \lambda 2(\mathrm{X}, \mu)$.

4. Proof of the main results

In this section we give the proofs of the main results.

Proof of Theorem 3.1

Necessity: Suppose Ka is bounded from Lp, $\lambda 1(\mu)$ to $\mathrm{Lq}, \lambda 2(\mathrm{X}, \mathrm{v}, \mu)$. Fix B0:=B(x0,r0). For $\mathrm{x}, \mathrm{y} \in \mathrm{B} 0$, we have that
$\mathrm{B}(\mathrm{x}, \rho(\mathrm{x}, \mathrm{y})) \subseteq \mathrm{B}(\mathrm{x}, \mathrm{a} 1(\mathrm{a} 0+1) \mathrm{r} 0) \subseteq \mathrm{B}(\mathrm{x} 0, \mathrm{a} 1(1+\mathrm{a} 1(\mathrm{a} 0+1)) \mathrm{r} 0)$.
Hence using the doubling condition for μ, it is easy to see that

$$
\mu(\mathrm{B} 0) \mathrm{a} \leqslant \mathrm{cKax} \mathrm{~B} 0(\mathrm{x}), \mathrm{x} \in \mathrm{~B} 0
$$

Consequently, using the condition $\lambda 2 / \mathrm{q}=\lambda 1 / \mathrm{p}$, the boundedness of Ka from $\mathrm{Lp}, \lambda(\mathrm{X}, \mu)$ to Lq, $\lambda 2(\mathrm{X}, \mathrm{v}, \mu)$ and Lemma D we find that

$$
\mu(\mathrm{B} 0) \alpha-\lambda 1 / \mathrm{pv}(\mathrm{~B} 0) 1 / \mathrm{q} \leqslant \mathrm{c}\|K \alpha \chi \mathrm{~B} 0\| \mathrm{Lq}, \lambda 2(\mathrm{X}, v, \mu) \leqslant c\|\chi B 0\| \mathrm{Lp}, \lambda 1(\mathrm{X}, \mu) \leqslant \mathrm{c} \mu(\mathrm{~B} 0)(1-\lambda 1) / \mathrm{p} .
$$

Since c does not depend on B0 we have condition (3).
Sufficiency: Let $\mathrm{B}:=\mathrm{B}(\mathrm{a}, \mathrm{r}), \mathrm{B}^{\sim}:=\mathrm{B}(\mathrm{a}, 2 \mathrm{a} 1 \mathrm{r})$ and $\mathrm{f} \geqslant 0$. Write $\mathrm{f} \in \mathrm{Lp}, \lambda 1(\mu)$ as $\mathrm{f}=\mathrm{f} 1+\mathrm{f} 2:=\mathrm{f} \chi \mathrm{B}^{\sim}+\mathrm{f} \chi \mathrm{B}^{\sim} \mathrm{C}$, where χB is a characteristic function of B. Then we have
$\mathrm{S}:=\int \mathrm{B}(\operatorname{Kaf}(\mathrm{x})) \mathrm{qdv}(\mathrm{x}) \leqslant \mathrm{c} \mathrm{B}(\operatorname{Kaf1}(\mathrm{x})) q \mathrm{qdv}(\mathrm{x})+\int \mathrm{B}(\operatorname{Kaf2}(\mathrm{x})) \mathrm{qdv}(\mathrm{x}):=\mathrm{c}(\mathrm{S} 1+\mathrm{S} 2)$.

```
Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
```

$\mathrm{S} 1 \leqslant \mathrm{X}(\mathrm{Kaf1}) \mathrm{q}(\mathrm{x}) \mathrm{d} v(\mathrm{x}) \leqslant \mathrm{c} \int \mathrm{B}(\mathrm{a}, 2 \mathrm{a} 1 \mathrm{r})(\mathrm{f}(\mathrm{x})) \mathrm{pd} \mu(\mathrm{x}) \mathrm{q} / \mathrm{p}$.
Now observe that if $\rho(\mathrm{a}, \mathrm{x})<\mathrm{r}$ and $\rho(\mathrm{a}, \mathrm{y})>2 \mathrm{a} 1 \mathrm{r}$, then $\rho(\mathrm{a}, \mathrm{y})>2 \mathrm{a} 1 \rho(\mathrm{a}, \mathrm{x})$. Consequently, using the facts $\mu \in($ RDC) (see (1)), $0<\lambda 1<1-\alpha p$ and condition (3) we have
$\mathrm{S} 2 \leqslant \mathrm{c} \mathrm{B}(\mathrm{a}, \mathrm{r}) \int \rho(\mathrm{a}, \mathrm{y})>\mathrm{rf}(\mathrm{y}) \mu \mathrm{B}(\mathrm{a}, \rho(\mathrm{a}, \mathrm{y})) 1-$
$\operatorname{ad} \mu(\mathrm{y}) \mathrm{qdv}(\mathrm{x})=v(\mathrm{~B}) \sum \mathrm{k}=0 \infty \int \mathrm{~B}(\mathrm{a}, \eta 1 \mathrm{k}+1 \mathrm{r}) \backslash \mathrm{B}(\mathrm{a}, \eta 1 \mathrm{kr}) \mathrm{f}(\mathrm{y}) \mu \mathrm{B}(\mathrm{a}, \rho(\mathrm{a}, \mathrm{y})) 1-$
$\alpha d \mu(y) q \leqslant c v(B) \sum \mathrm{k}=0 \infty \int \mathrm{~B}(\mathrm{a}, \eta 1 \mathrm{k}+1 \mathrm{r})(\mathrm{f}(\mathrm{y})) \mathrm{pd} \mu(\mathrm{y}) 1 / \mathrm{p} \times \int \mathrm{B}(\mathrm{a}, \eta 1 \mathrm{k}+1 \mathrm{r})\langle\mathrm{B}(\mathrm{a}, \eta 1 \mathrm{kr}) \mu \mathrm{B}(\mathrm{a}, \rho(\mathrm{a}, \mathrm{y}))$
$(\alpha-1) p^{\prime} d \mu(y) 1 / p^{\prime} q \leqslant c\|f\| L p, \lambda 1(X, \mu) q v(B) \sum k=0 \infty \mu B(a, \eta 1 k+1 r) \lambda 1 / p+\alpha-1+1 / p^{\prime} q \leqslant c\|f\| L p, \lambda 1(X, \mu) q v(B) \mu(B)$ $(\lambda 1 / \mathrm{p}+\alpha-1 / \mathrm{p}) \mathrm{q} \sum \mathrm{k}=0 \infty \eta 2 \mathrm{k}(\lambda 1 / \mathrm{p}+\alpha-1 / \mathrm{p}) \mathrm{q} \leqslant \mathrm{c}\|f\| \mathrm{Lp}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \mu(\mathrm{B}) \mathrm{q} \lambda 1 / \mathrm{p}=\mathrm{c}\|f\| \mathrm{Lp}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \mu(\mathrm{B}) \lambda 2$,
where the positive constant c does not depend on B. Now the result follows immediately.

Proof of Theorem 3.2

Sufficiency: Assuming $\alpha=1 / \mathrm{p}-1 / \mathrm{q}$ and $\mu=v$ in Theorem 3.1 we have that $K \alpha$ is bounded from Lp, $\lambda 1(\mathrm{X}, \mu)$ to $\mathrm{Lq}, \lambda 2(\mathrm{X}, \mu)$.

Necessity: Suppose that $\mathrm{K} \alpha$ is bounded from $\operatorname{Lp}, \lambda 1(\mathrm{X}, \mu)$ to $\mathrm{Lq}, \lambda 2(\mathrm{X}, \mu)$. Then by Theorem 3.1 we have
$\mu(B) 1 / q-1 / p+\alpha \leqslant c$.
The conditions $\mu(X)=\infty$ and $\mu\{x\}=0$, for all $x \in X$, implies that $\alpha=1 / p-1 / q$.

Proof of Theorem 3.3

Let $\mathrm{f} \geqslant 0$. For $\mathrm{x}, \mathrm{a} \in \mathrm{X}$, let us introduce the following notation:
$\mathrm{E} 1(\mathrm{x}):=\mathrm{y}: \rho(\mathrm{a}, \mathrm{y}) \rho(\mathrm{a}, \mathrm{x})<12 \mathrm{a} 1, \mathrm{E} 2(\mathrm{x}):=\mathrm{y}: 12 \mathrm{a} 1 \leqslant \rho(\mathrm{a}, \mathrm{y}) \rho(\mathrm{a}, \mathrm{x}) \leqslant 2 \mathrm{a} 1, \mathrm{E} 3(\mathrm{x}):=\mathrm{y}: 2 \mathrm{a} 1<\rho(\mathrm{a}, \mathrm{y}) \rho(\mathrm{a}, \mathrm{x})$.
For $\mathrm{i}=1,2,3, \mathrm{r}>0$ and $\mathrm{a} \in \mathrm{X}$, we denote
$\mathrm{Si}:=\int \rho(\mathrm{a}, \mathrm{x})<\mathrm{r} \rho(\mathrm{a}, \mathrm{x}) \gamma \int \mathrm{Ei}(\mathrm{x}) \mathrm{f}(\mathrm{y}) \rho(\mathrm{x}, \mathrm{y}) \mathrm{a}-1 \mathrm{~d} \mu(\mathrm{y}) \mathrm{qd} \mu(\mathrm{x})$.
If $y \in E 1(x)$, then $\rho(a, x)<2 a 1 a 0 \rho(x, y)$. Hence, it is easy to see that
$\mathrm{S} 1 \leqslant \mathrm{C} \int \mathrm{B} \rho(\mathrm{a}, \mathrm{x}) \gamma+\mathrm{q}(\alpha-1) \int \rho(\mathrm{a}, \mathrm{y})<\rho(\mathrm{a}, \mathrm{x}) \mathrm{f}(\mathrm{y}) \mathrm{d} \mu(\mathrm{y}) \mathrm{q} d \mu(\mathrm{x})$.
Taking into account the condition $\gamma<(1-\alpha) q-1$ we have
$\left.\int \rho(\mathrm{a}, \mathrm{x})>\operatorname{t\rho }(\mathrm{a}, \mathrm{x}) \gamma+\mathrm{q}(\alpha-1) \mathrm{d} \mu(\mathrm{x})=\sum \mathrm{n}=0 \infty \int \mathrm{~B}(\mathrm{a}, 2 \mathrm{k}+1 \mathrm{t})\right\rangle \mathrm{B}(\mathrm{a}, 2 \mathrm{kt})(\rho(\mathrm{a}, \mathrm{x})) \gamma+$ $(\alpha-1) q d \mu(x) \leqslant c \sum n=0 \infty(2 k t) \gamma+q(\alpha-1)+1=c t \gamma+q(\alpha-1)+1$,
while the condition $\beta<p-1$ implies
$\int \rho(\mathrm{a}, \mathrm{x})<\operatorname{t\rho }(\mathrm{a}, \mathrm{x}) \beta\left(1-\mathrm{p}^{\prime}\right)+1 \mathrm{~d} \mu(\mathrm{x}) \leqslant \mathrm{ct} \beta\left(1-\mathrm{p}^{\prime}\right)+1$.

```
Loading[MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
```

supa $\in \mathrm{X}, \mathrm{t}>0 \int \rho(\mathrm{a}, \mathrm{x})>\operatorname{t\rho }(\mathrm{a}, \mathrm{x}) \gamma+\mathrm{q}(\alpha-1) \mathrm{d} \mu(\mathrm{x}) 1 / \mathrm{q} \int \mathrm{B}(\mathrm{a}, \mathrm{t}) \rho(\mathrm{a}, \mathrm{y}) \beta\left(1-\mathrm{p}^{\prime}\right) \mathrm{d} \mu(\mathrm{y}) 1 / \mathrm{p}^{\prime}<\infty$.
Now using Theorem C we have
$S 1 \leqslant c \int B \rho(a, x) \beta(f(y)) d \mu(y) q / p \leqslant c\|f\| M \beta p, \lambda 1(X, \mu) q r \lambda 1 q / p=c\|f\| M \beta p, \lambda 1(X, \mu) q r \lambda 2$.
Further, observe that if $\rho(a, y)>2 a 1 \rho(a, x)$, then $\rho(a, y) \leqslant a 1 \rho(a, x)+a 1 \rho(a, y) \leqslant \rho(a, y) / 2+a 1 \rho(x, y)$. Hence $\rho(a, y) /(2 a 1) \leqslant \rho(x, y)$. Consequently, using the growth condition for μ, the fact $\lambda 1<\beta-\alpha p+1$ and Lemma E we find that
$\mathrm{S} 3 \leqslant \mathrm{c} \int \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \mathrm{Y} \int \rho(\mathrm{a}, \mathrm{y})>\rho(\mathrm{a}, \mathrm{x}) f(\mathrm{y}) \rho(\mathrm{a}, \mathrm{y}) 1-$
$\operatorname{ad} \mu(\mathrm{y}) q \mathrm{~d} \mu(\mathrm{x}) \leqslant \mathrm{c} \int \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \gamma \sum \mathrm{k}=0 \infty \int \mathrm{~B}(\mathrm{a}, 2 \mathrm{k}+1 \rho(\mathrm{a}, \mathrm{x})) \backslash \mathrm{B}(\mathrm{a}, 2 \mathrm{k} \rho(\mathrm{a}, \mathrm{x})) \mathrm{f}(\mathrm{y}) \rho(\mathrm{a}, \mathrm{y}) 1-$
$\alpha d \mu(\mathrm{y}) \mathrm{q} d \mu(\mathrm{x}) \leqslant \mathrm{c} \rho \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \gamma \sum \mathrm{k}=0 \infty \int \mathrm{~B}(\mathrm{a}, 2 \mathrm{k}+1 \rho(\mathrm{a}, \mathrm{x})) f \mathrm{p}(\mathrm{y}) \rho(\mathrm{a}, \mathrm{y}) \beta \mathrm{d} \mu(\mathrm{y}) 1 / \mathrm{p} \times \mathrm{B}(\mathrm{a}, 2 \mathrm{k}+1 \rho(\mathrm{a}, \mathrm{x}))\langle\mathrm{B}(\mathrm{a}, 2 \mathrm{k} \rho(\mathrm{a}, \mathrm{x})) \rho(\mathrm{a}$ $\left.p^{\prime}\right)+(\alpha-1) p^{\prime} d \mu(y) 1 / p^{\prime} q d \mu(x) \leqslant c\|f\| M \beta p, \lambda 1(X, \mu) q \int B(a, r) \rho(a, x) \gamma \times \sum k=0 \infty(2 k \rho(a, x)) \lambda 1 / p+\alpha-1-$
$\beta / \mathrm{p}(\mu \mathrm{B}(\mathrm{a}, 2 \mathrm{k}+1 \rho(\mathrm{a}, \mathrm{x}))) 1 / \mathrm{p}^{\prime} \mathrm{q} \mathrm{d} \mu(\mathrm{x}) \leqslant \mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \beta \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \gamma \sum \mathrm{k}=0 \infty(2 \mathrm{k} \rho(\mathrm{a}, \mathrm{x})) \lambda 1 / \mathrm{p}+\alpha-1 / \mathrm{p}-$
$\beta / \mathrm{pqd} \mu(\mathrm{x}) \leqslant \mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \int \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x})(\lambda 1 / \mathrm{p}+\alpha-1 / \mathrm{p}-$
$\beta / \mathrm{p}) \mathrm{q}+\gamma \mathrm{d} \mu(\mathrm{x})=\mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} / \mathrm{B}(\mathrm{a}, \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \lambda 1 \mathrm{q} / \mathrm{p}-$
$1 d \mu(x) \leqslant c\|f\| M \beta p, \lambda 1(X, \mu) q r \lambda 1 q / p=c\|f\| M \beta p, \lambda 1(X, \mu) q r \lambda 2$.
So, we conclude that
$S 3 \leqslant c\|f\| M \beta p, \lambda 1(X, \mu) q r \lambda 2$.
To estimate S 2 we consider two cases. First assume that $\alpha<1 / \mathrm{p}$. Let
Ek,r: $=\{\mathrm{x}: 2 \mathrm{kr} \leqslant \rho(\mathrm{a}, \mathrm{x})<2 \mathrm{k}+1 \mathrm{r}\}, \mathrm{Fk}, \mathrm{r}:=\{\mathrm{x}: 2 \mathrm{k}-1 \mathrm{r} / \mathrm{a} 1 \leqslant \rho(\mathrm{a}, \mathrm{x})<\mathrm{a} 12 \mathrm{k}+2 \mathrm{r}\}$.
Assume that $p^{*}=p /(1-\alpha p)$. By Hölder's inequality, Corollary B and the assumption $\gamma=q(1 / p+\beta / p-$ a)-1 we have
$\mathrm{S} 2=\sum \mathrm{k}=-\infty-1 \int \mathrm{Ek}, \mathrm{r} \rho(\mathrm{a}, \mathrm{x}) \mathrm{Y} \int \mathrm{E} 2(\mathrm{x}) \mathrm{f}(\mathrm{y}) \rho(\mathrm{x}, \mathrm{y}) \mathrm{a}-1 \mathrm{~d} \mu(\mathrm{y}) \mathrm{qd} \mu(\mathrm{x}) \leqslant \Sigma \mathrm{k}=-$
$\infty-1 \int E k, r \rho(a, x) \gamma \int E 2(x) f(y) \rho(x, y) a-1 d \mu(y) p^{*} d \mu(x) q / p^{\prime} \times \int E k, r \rho(a, x) \gamma p^{*} /\left(p^{*}-q\right) d \mu(x)\left(p^{*}-q\right) / p^{*} \leqslant c \sum k=-$ $\infty-12 k\left(\gamma+\left(p^{*}-q\right) / p^{*}\right) \int X I \alpha(f x F k, r)(x) p^{*} d \mu(x) q / p^{*} \leqslant c \sum k=-\infty-12 k\left(\gamma+\left(p^{*}-\right.\right.$
$\left.\mathrm{q} / \mathrm{p}^{*}\right) \int \mathrm{Fk}, \mathrm{r}(\mathrm{f}(\mathrm{x})) \mathrm{pd} \mu(\mathrm{x}) \mathrm{q} / \mathrm{p} \leqslant \mathrm{c} \int \mathrm{B}(\mathrm{a}, 2 \mathrm{a} 1 \mathrm{r}) \rho(\mathrm{a}, \mathrm{x}) \beta(\mathrm{f}(\mathrm{x})) \mathrm{pd} \mu(\mathrm{x}) \mathrm{q} / \mathrm{p} \leqslant \mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \mathrm{r} \lambda 1 \mathrm{q} / \mathrm{p}=\mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q}$
Let us now consider the case $1 / \mathrm{p}<\alpha<1$.
First notice that (see [13])
$\int E 2(x)\left(\rho(x, y)(\alpha-1) p^{\prime} d \mu(y) \leqslant c \rho(a, x) 1+(\alpha-1) p^{\prime}\right.$,
where the positive constant c does not depend on a and x.
This estimate and Hölder's inequality yield
$\left.\mathrm{S} 2 \leqslant \mathrm{c} \sum \mathrm{k}=-\infty-1 \int \mathrm{Ek}, \mathrm{r} \rho(\mathrm{a}, \mathrm{x}) \gamma^{+}\left[(\alpha-1) \mathrm{p}^{\prime}+1\right)\right] \mathrm{q} / \mathrm{p}^{\prime} \int E 2(\mathrm{x})(\mathrm{f}(\mathrm{y})) \mathrm{pd} \mu(\mathrm{y}) \mathrm{q} / \mathrm{pd} \mu(\mathrm{x}) \mathrm{q} / \mathrm{p}^{\prime} \leqslant \mathrm{c} \sum \mathrm{k}=-\infty-1 \int E k, \mathrm{r} \rho(\mathrm{a}, \mathrm{x}) \gamma^{+}$ $\left.\left.\left\lceil(\alpha-1) p^{\prime}+1\right)\right] q / p^{\prime} d \mu(x) \| F k, r(f(y)) p d \mu(y) q / p \leqslant c \sum k=-\infty-1(2 k r) \gamma+\left[(\alpha-1) p^{\prime}+1\right)\right] q / p^{\prime}$
Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
$+1 \int F k, r(f(y)) p d \mu(y) q / p=c \sum k=-\infty-12 k \beta q / p \int F k, r(f(y)) p d \mu(y) q / p \leqslant c \int B(a, 2 a 1 r)$
$(f(\mathrm{y})) p \rho(\mathrm{a}, \mathrm{y}) \beta \mathrm{d} \mu(\mathrm{y}) \mathrm{q} / \mathrm{p} \leqslant \mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \mathrm{r} \lambda 1 \mathrm{q} / \mathrm{p}=\mathrm{c}\|f\| \mathrm{M} \beta \mathrm{p}, \lambda 1(\mathrm{X}, \mu) \mathrm{q} \mathrm{r} \lambda 2$.
Now the result follows immediately.

Proof of Theorem 3.4

Let $f \geqslant 0$. Suppose that $a \in X$ and $r>0$. Suppose also that $f 1=f \chi B(a, 2 a 1 r)$ and $f 2=f-f 1$. Then Iaf=Iaf1+Iaf2. Consequently,
$\int B(a, r)(\operatorname{Iaf}(x)) q d \mu(x) \leqslant 2 q-1 \int B(a, r)(\operatorname{Iaf1}(x)) q d \mu(x)+\int B(a, r)(\operatorname{Iaf2}(x)) q d \mu(x):=2 q-1(S a, r(1)+\operatorname{Sa}, r(2))$.
Due to Theorem A and the condition $s \lambda 1 / p=\lambda 2 / q$ we have
$\mathrm{Sa}, \mathrm{r}(1) \leqslant \mathrm{c} \beta(\mathrm{a}, 2 \mathrm{a} 1 \mathrm{r})(\mathrm{f}(\mathrm{x})) \mathrm{pd} \mu(\mathrm{x}) \mathrm{q} / \mathrm{p}=\mathrm{c} 1(2 \mathrm{a} 1 \mathrm{r}) \lambda 1 \mathrm{~s} \int \mathrm{~B}(\mathrm{a}, 2 \mathrm{a} 1 \mathrm{r})(\mathrm{f}(\mathrm{x})) \mathrm{pdxq} / \mathrm{pr} \lambda 1 \mathrm{sq} / \mathrm{p} \leqslant \mathrm{c}\|f\| \mathrm{Mp}, \lambda 1 \mathrm{~s}(\mathrm{X}, \mu) \mathrm{qr} \lambda 2$. Now observe that if $x \in B(a, r)$ and $y \in X \backslash B(a, 2 a 1 r)$, then $\rho(a, y) / 2 a 1 \leqslant \rho(x, y)$. Hence Hölder's inequality, condition (2) and the condition $0<\lambda 1<p / q$ yield
$\operatorname{Iaf2}(\mathrm{x})=\int \mathrm{X} \backslash \mathrm{B}(\mathrm{a}, 2 \mathrm{a} 1 \mathrm{r}) \mathrm{f}(\mathrm{y}) / \rho(\mathrm{x}, \mathrm{y}) 1-\alpha \mathrm{d} \mu(\mathrm{y})=\sum \mathrm{k}=0 \infty \int \mathrm{~B}(\mathrm{a}, 2 \mathrm{k}+2 \mathrm{a} 1 \mathrm{r}) \backslash \mathrm{B}(\mathrm{a}, 2 \mathrm{k}+1 \mathrm{a} 1 \mathrm{r})$
(f(y))pd $\mu(\mathrm{y}) 1 / \mathrm{p} \times \rho \mathrm{B}(\mathrm{a}, 2 \mathrm{k}+2 \mathrm{a} 1 \mathrm{r}) \backslash \mathrm{B}(\mathrm{a}, 2 \mathrm{k}+1 \mathrm{a} 1 \mathrm{r}) \rho(\mathrm{a}, \mathrm{y})$
$(\alpha-1) p^{\prime} d \mu(y) 1 / p^{\prime} \leqslant c \sum k=0 \infty 1(2 k+1 a 1 r) \lambda 1 s \int B(a, 2 k+1 a 1 r)$
$(f(y)) p d \mu(y) 1 / p(2 k a 1 r) \lambda 1 s / p+\alpha-1+s / p^{\prime} \leqslant c\|f\| M p, \lambda 1 s(X, \mu) r \lambda 1 s / p+\alpha-1+s / p^{\prime}$.
Consequently, by the assumptions $s \lambda 1 / p=\lambda 2 / q$ and $s=p q(1-\alpha) /(p q+p-q)$ we conclude that $\mathrm{Sa}, \mathrm{r}(2) \leqslant \mathrm{c}\|f\| \mathrm{Mp}, \lambda 1 \mathrm{~s}(\mathrm{X}, \mu) \mathrm{qr}\left(\lambda 1 \mathrm{~s} / \mathrm{p}+\alpha-1+\mathrm{s} / \mathrm{p}^{\prime}\right) \mathrm{q}+\mathrm{s}=\mathrm{c}\|f\| \mathrm{Mp}, \lambda 1 \mathrm{~s}(\mathrm{X}, \mu) \mathrm{qr} \lambda 2$.

Summarizing the estimates derived above we finally have the desired result.

Acknowledgements

The second and third authors were partially supported by the INTAS Grant no. 05-10000088157 and the Georgian National Science Foundation Grant no. GNSF/ST07/3-169.

The authors express their gratitude to the referee and Professor Christian Berg for their remarks and suggestions.

Recommended articles

References

[1] D.R. Adams
A trace inequality for generalized potentials
Studia Math., 48 (1973), pp. 99-105
Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
[2] D.R. Adams
A note on Riesz potentials
Duke Math. J., 42 (4) (1975), pp. 765-778
CrossRef View Record in Scopus Google Scholar
[3] V. Burenkov, H.V. Guliyev
Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces
Studia Math., 163 (2) (2004), pp. 157-176
CrossRef View Record in Scopus Google Scholar
[4] I.V. Burenkov, H.V. Guliyev, V.S. Guliyev
Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces
Dokl. Akad. Nauk, 409 (4) (2006), pp. 443-447
(in Russian)
Google Scholar
[5] D. Edmunds, V. Kokilashvili, A. Meskhi
Bounded and Compact Integral Operators, Mathematics and its Applications, vol. 543, Kluwer Academic Publishers, Dordrecht, Boston, London (2002)
[6] Eridani, V. Kokilashvili, A. Meskhi, Morrey spaces and fractional integral operators, Preprint No. 65, School of Mathematical Sciences, GC University, Lahore, 2007.
Google Scholar
[7] J. García-Cuerva, A.E. Gatto
Boundedness properties of fractional integral operators associated to non-doubling measures
Studia Math., 162 (3) (2004), pp. 245-261
CrossRef View Record in Scopus Google Scholar
[8] J. García-Cuerva, J.M. Martell
Two-weight norm inequalities for maximal operators and fractional integrals on nonhomogeneous spaces
Indiana Univ. Math. J., 50 (3) (2001), pp. 1241-1280
View Record in Scopus Google Scholar
[9] I. Genebashvili, A. Gogatishvili, V. Kokilashvili
Solution of two-weight problems for integral transforms with positive kernels
Georgian Math. J., 3 (1) (1996), pp. 319-342
View Record in Scopus Google Scholar
[10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec

[^3](1998)
[11] V. Kokilashvili, Weighted estimates for classical integral operators, in: Nonlinear Analysis, Function Spaces and Applications IV, Roudnice nad Labem, vol. 119, TeubnerTexte Math, Leipzig, 1990, pp. 86-103.
Google Scholar
[12] V. Kokilashvili, A. Meskhi

Fractional integrals on measure spaces

Frac. Calc. Appl. Anal., 4 (4) (2001), pp. 1-24
View Record in Scopus Google Scholar
[13] V. Kokilashvili, A. Meskhi
On some weighted inequalities for fractional integrals on non-homogeneous spaces
Z. Anal. Anwend., 24 (4) (2005), pp. 871-885

CrossRef View Record in Scopus Google Scholar
[14] Y. Komori, T. Mizuhara
Notes on commutators and Morrey spaces
Hokkaido Math. J., 32 (2003), pp. 345-353
CrossRef View Record in Scopus Google Scholar
[15] J. Peetre
On the theory of $L p, \lambda$ spaces
J. Funct. Anal., 4 (1969), pp. 71-87

Article Download PDF View Record in Scopus Google Scholar
[16] S. Samko, A.A. Kilbas, O.I. Marichev
Fractional Integrals and Derivatives. Theory and Applications
Gordon and Breach, London (1993)
Google Scholar
[17] Y. Sawano, H. Tanaka
Morrey spaces for nondoubling measures
Acta Math. Sinica, 21 (6) (2005), pp. 1535-1544
CrossRef View Record in Scopus Google Scholar
[18] E.M. Stein, G. Weiss
Fractional integrals on \boldsymbol{n}-dimensional Euclidean spaces
J. Math. Mech., 7 (4) (1958), pp. 503-514

View Record in Scopus Google Scholar
[19] J.O. Strömberg, A. Torchinsky
Weighted Hardy Spaces, Lecture Notes in Mathematics, vol. 1381, Springer, Berlin (1non)
Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js

View Abstract

Copyright © 2009 Elsevier GmbH. All rights reserved.

About ScienceDirect

Remote access

Shopping cart

Advertise

Contact and support

Terms and conditions

Privacy policy

We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the use of cookies.
Copyright © 2020 Elsevier B.V. or its licensors or contributors. ScienceDirect © is a registered trademark of Elsevier B.V.
ScienceDirect ${ }^{\circledR}$ is a registered trademark of Elsevier B.V.
QRELX" ${ }^{\text {m }}$

Morrey spaces and fractional integral operators

A. Eridani ${ }^{\text {a,b }}$, Vakhtang Kokilashvili ${ }^{\text {c }}$, Alexander Meskhi ${ }^{\text {b, }, \text {, } * ~}$
${ }^{\text {a }}$ Department of Mathematics, Airlangga University, Campus C, Mulyorejo, Surabaya 60115, Indonesia
${ }^{\mathrm{b}}$ School of Mathematical Sciences, Government College University, 68-B New Muslim Town, Lahore, Pakistan
${ }^{\mathrm{c}}$ A. Razmadze Mathematical Institute, M. Aleksidze St., Tbilisi 0193, Georgia

Received 4 July 2008; received in revised form 8 December 2008

Abstract

The present paper is devoted to the boundedness of fractional integral operators in Morrey spaces defined on quasimetric measure spaces. In particular, Sobolev, trace and weighted inequalities with power weights for potential operators are established. In the case when measure satisfies the doubling condition the derived conditions are simultaneously necessary and sufficient for appropriate inequalities.

© 2009 Elsevier GmbH. All rights reserved.
MSC 2000: primary 26A33; secondary 42B35; 47B38
Keywords: Fractional integrals; Morrey spaces; Non-homogeneous spaces; Trace inequality; Two-weight inequality

1. Introduction

The main purpose of this paper is to establish the boundedness of fractional integral operators in (weighted) Morrey spaces defined on quasimetric measure spaces. We derive Sobolev, trace and two-weight inequalities for fractional integrals. In particular, we

[^4]generalize: (a) Adams [1] trace inequality; (b) the theorem by Stein and Weiss [18] regarding the two-weight inequality for the Riesz potentials; (c) Sobolev-type inequality. We emphasize that in the most cases the derived conditions are necessary and sufficient for appropriate inequalities.

In the paper [9] (see also [10, Chapter 2]) integral-type sufficient condition guaranteeing the two-weight weak-type inequality for integral operator with positive kernel defined on non-homogeneous spaces was established. In the same paper (see also [10, Chapter 2]) the authors solved the two-weight problem for kernel operators on spaces of homogeneous type.

In [12] (see also [5, Chapter 6]) a complete description of non-doubling measure μ guaranteeing the boundedness of fractional integral operator I_{α} (see the next section for the definition) from $L^{p}(\mu, X)$ to $L^{q}(\mu, X), 1<p<q<\infty$, was given. We notice that this result was derived in [11] for potentials on Euclidean spaces. In [12], theorems of Sobolev and Adams type for fractional integrals defined on quasimetric measure spaces were established. For the boundedness of fractional integrals on metric measure spaces we refer also to [7]. Some two-weight norm inequalities for fractional operators on \mathbf{R}^{n} with non-doubling measure were studied in [8]. Further, in the paper [13] necessary and sufficient conditions on measure μ governing the inequality of Stein-Weiss type on non-homogeneous spaces were established. For some properties of fractional integrals defined on \mathbf{R}^{n} in weighted Lebesgue spaces with power type weights see e.g., [16, Chapter 5].

The boundedness of the Riesz potential in Morrey spaces defined on Euclidean spaces was studied in [15,2]. The same problem for fractional integrals on \mathbb{R}^{n} with non-doubling measure was investigated in [17].

Finally, we mention that necessary and sufficient conditions for the boundedness of maximal operators and Riesz potentials in the local Morrey-type spaces were derived in [3,4].

The main results of this paper were presented in [6].
It should be emphasized that the results of this work are new even for Euclidean spaces.
Constants (often different constants in the same series of inequalities) will generally be denoted by c or C.

2. Preliminaries

Throughout the paper we assume that $X:=(X, \rho, \mu)$ is a topological space, endowed with a complete measure μ such that the space of compactly supported continuous functions is dense in $L^{1}(X, \mu)$ and there exists a function (quasimetric) $\rho: X \times X \longrightarrow[0, \infty)$ satisfying the conditions:
(1) $\rho(x, y)>0$ for all $x \neq y$, and $\rho(x, x)=0$ for all $x \in X$;
(2) there exists a constant $a_{0} \geqslant 1$, such that $\rho(x, y) \leqslant a_{0} \rho(y, x)$ for all $x, y \in X$;
(3) there exists a constant $a_{1} \geqslant 1$, such that $\rho(x, y) \leqslant a_{1}(\rho(x, z)+\rho(z, y))$ for all $x, y, z \in X$.

We assume that the balls $B(a, r):=\{x \in X: \rho(a, x)<r\}$ are μ-measurable and $0<\mu(B(a, r))<\infty$ for $a \in X, r>0$. For every neighborhood V of $x \in X$, there exists $r>0$, such that $B(x, r) \subset V$. We also assume that $\mu(X)=\infty, \mu\{a\}=0$, and $B\left(a, r_{2}\right) \backslash$ $B\left(a, r_{1}\right) \neq \emptyset$, for all $a \in X, 0<r_{1}<r_{2}<\infty$.

The triple (X, ρ, μ) will be called quasimetric measure space.
Let $0<\alpha<1$. We consider the fractional integral operators I_{α}, and K_{α} given by

$$
\begin{aligned}
& I_{\alpha} f(x):=\int_{X} f(y) \rho(x, y)^{\alpha-1} d \mu(y) \\
& K_{\alpha} f(x):=\int_{X} f(y)(\mu B(x, \rho(x, y)))^{\alpha-1} d \mu(y)
\end{aligned}
$$

for suitable f on X.
Suppose that v is another measure on $X, \lambda \geqslant 0$ and $1 \leqslant p<\infty$. We deal with the Morrey space $L^{p, \lambda}(X, v, \mu)$, which is the set of all functions $f \in L_{\mathrm{loc}}^{p}(X, v)$ such that

$$
\|f\|_{L^{p, \lambda}(X, v, \mu)}:=\sup _{B}\left(\frac{1}{\mu(B)^{\lambda}} \int_{B}|f(y)|^{p} d v(y)\right)^{1 / p}<\infty
$$

where the supremum is taken over all balls B.
If $v=\mu$, then we have the classical Morrey space $L^{p, \lambda}(X, \mu)$ with measure μ. When $\lambda=0$, then $L^{p, \lambda}(X, v, \mu)=L^{p}(X, v)$ is the Lebesgue space with measure v.

Further, suppose that $\beta \in \mathbf{R}$. We are also interested in weighted Morrey space $M_{\beta}^{p, \lambda}(X, \mu)$ which is the set of all μ-measurable functions f such that

$$
\|f\|_{M_{\beta}^{p, \lambda}(X, \mu)}:=\sup _{a \in X ; r>0}\left(\frac{1}{r^{\lambda}} \int_{B(a, r)}|f(y)|^{p} \rho(a, y)^{\beta} d \mu(y)\right)^{1 / p}<\infty
$$

If $\beta=0$, then we denote $M_{\beta}^{p, \lambda}(X, \mu):=M^{p, \lambda}(X, \mu)$.
We say that a measure μ satisfies the growth condition $(\mu \in(G C)$), if there exists $C_{0}>0$ such that $\mu(B(a, r)) \leqslant C_{0} r$; further, μ satisfies the doubling condition $(\mu \in(D C))$ if $\mu(B(a, 2 r)) \leqslant C_{1} \mu(B(a, r))$ for some $C_{1}>1$. If $\mu \in(D C)$, then (X, ρ, μ) is called a space of homogeneous type (SHT). A quasimetric measure space (X, ρ, μ), where the doubling condition is not assumed, is also called a non-homogeneous space.

The measure μ on X satisfies the reverse doubling condition $(\mu \in(R D C))$ if there are constants η_{1} and η_{2} with $\eta_{1}>1$ and $\eta_{2}>1$ such that

$$
\begin{equation*}
\mu B\left(x, \eta_{1} r\right) \geqslant \eta_{2} \mu B(x, r) \tag{1}
\end{equation*}
$$

It is known (see e.g., [19, p. 11]) that if $\mu \in(D C)$, then $\mu \in(R D C)$.
The next statements are from [12] (see also [5, Theorem 6.1.1, Corollary 6.1.1] and [11] in the case of Euclidean spaces).

Theorem A. Let (X, ρ, μ) be a quasimetric measure space. Suppose that $1<p<q<\infty$ and $0<\alpha<1$. Then I_{α} is bounded from $L^{p}(X)$ to $L^{q}(X)$ if and only if there exists a positive constant C such that

$$
\begin{equation*}
\mu(B(a, r)) \leqslant C r^{s}, \quad s=\frac{p q(1-\alpha)}{p q+p-q}, \tag{2}
\end{equation*}
$$

for all $a \in X$ and $r>0$.

Corollary B. Let (X, ρ, μ) be a quasimetric measure space, $1<p<1 / \alpha$ and $1 / q=1 / p-\alpha$. Then I_{α} is bounded from $L^{p}(X)$ to $L^{q}(X)$ if and only if $\mu \in(G C)$.

The latter statement by different proof was also derived in [7] for metric spaces.
To prove some of our statements we need the following Hardy-type transform:

$$
H_{a} f(x):=\int_{\rho(a, y) \leqslant \rho(a, x)} f(y) d \mu(y)
$$

where a is a fixed point of X and $f \in L_{\mathrm{loc}}(X, \mu)$.
Theorem C. Suppose that (X, ρ, μ) is a quasimetric measure space and $1<p \leqslant q<\infty$. Assume that v is another measures on X. Let $V(r e s p . W)$ be non-negative $v \times v$-measurable (resp. non-negative $\mu \times \mu$-measurable) function on $X \times X$. If there exists a positive constant C independent of $a \in X$ and $t>0$ such that

$$
\left(\int_{\rho(a, y) \geqslant t} V(a, y) d v(y)\right)^{1 / q}\left(\int_{\rho(a, y) \leqslant t} W(a, y)^{1-p^{\prime}} d \mu(y)\right)^{1 / p^{\prime}} \leqslant C<\infty
$$

then there exists a positive constant c such that for all μ-measurable non-negative f and $a \in X$ the inequality

$$
\left(\int_{B(a, r)}\left(H_{a} f(x)\right)^{q} V(a, x) d v(x)\right)^{1 / q} \leqslant c\left(\int_{B(a, r)}(f(x))^{p} W(a, x) d \mu(x)\right)^{1 / p}
$$

holds.
This statement was proved in [5, Section 1.1] for Lebesgue spaces.
Proof of Theorem C. Let $f \geqslant 0$. We define $S(s):=\int_{\rho(a, y)<s} f(y) d \mu(y)$, for $s \in[0, r]$. Suppose $S(r)<\infty$, then $2^{m}<S(r) \leqslant 2^{m+1}$, for some $m \in \mathbb{Z}$. Let

$$
s_{j}:=\sup \left\{t: S(t) \leqslant 2^{j}\right\}, \quad j \leqslant m \quad \text { and } \quad s_{m+1}:=r
$$

Then it is easy to see that (see also [5, pp. 5-8] for details) $\left(s_{j}\right)_{j=-\infty}^{m+1}$ is a non-decreasing sequence, $S\left(s_{j}\right) \leqslant 2^{j}, S(t) \geqslant 2^{j}$ for $t>s_{j}$, and

$$
2^{j} \leqslant \int_{s_{j} \leqslant \rho(a, y) \leqslant s_{j+1}} f(y) d \mu(y)
$$

If $\beta:=\lim _{j \rightarrow-\infty} s_{j}$, then

$$
\rho(a, x)<r \Leftrightarrow \rho(a, x) \in[0, \beta] \cup \bigcup_{j=-\infty}^{m}\left(s_{j}, s_{j+1}\right] .
$$

If $S(r)=\infty$, then we may put $m=\infty$. Since

$$
0 \leqslant \int_{\rho(a, y)<\beta} f(y) d \mu(y) \leqslant S\left(s_{j}\right) \leqslant 2^{j}
$$

for every j, therefore $\int_{\rho(a, y)<\beta} f(y) d \mu(y)=0$. From these observations, we have

$$
\begin{aligned}
& \int_{\rho(a, x)<r}\left(H_{a} f(x)\right)^{q} V(a, x) d v(x) \\
& \leqslant \sum_{j=-\infty}^{m} \int_{s_{j} \leqslant \rho(a, x) \leqslant s_{j+1}}\left(H_{a} f(x)\right)^{q} V(a, x) d v(x) \\
& \leqslant \sum_{j=-\infty}^{m} \int_{s_{j} \leqslant \rho(a, x) \leqslant s_{j+1}} V(a, x)\left(\int_{\rho(a, y) \leqslant s_{j+1}}(f(y)) d \mu(y)\right)^{q} d v(x)
\end{aligned}
$$

Notice that

$$
\int_{\rho(a, y) \leqslant s_{j+1}} f d \mu \leqslant S\left(s_{j+2}\right) \leqslant 2^{j+2} \leqslant C \int_{s_{j-1} \leqslant \rho(a, y) \leqslant s_{j}} f d \mu
$$

Using Hölder's inequality, we find that

$$
\begin{aligned}
& \int_{\rho(a, x)<r}\left(H_{a} f(x)\right)^{q} V(a, x) d \mu(x) \\
& \leqslant \sum_{j=-\infty}^{m} \int_{s_{j} \leqslant \rho(a, x) \leqslant s_{j+1}} V(a, x)\left(\int_{\rho(a, y) \leqslant s_{j+1}}(f(y)) d \mu(y)\right)^{q} d v(x) \\
& \leqslant C \sum_{j=-\infty}^{m} \int_{s_{j} \leqslant \rho(a, x) \leqslant s_{j+1}} V(a, x)\left(\int_{s_{j-1} \leqslant \rho(a, y) \leqslant s_{j}}(f(y)) d \mu(y)\right)^{q} d v(x) \\
& \leqslant C \sum_{j=-\infty}^{m} \int_{s_{j} \leqslant \rho(a, x) \leqslant s_{j+1}} V(a, x) d v(x) \\
& \quad \times\left(\int_{s_{j-1} \leqslant \rho(a, y) \leqslant s_{j}}(f(y))^{p} W(a, y) d \mu(y)\right)^{q / p} \\
& \quad \times\left(\int_{s_{j-1} \leqslant \rho(a, y) \leqslant s_{j}} W(a, y)^{1-p^{\prime}} d \mu(y)\right)^{q / p^{\prime}} \\
& \leqslant C \sum_{j=-\infty}^{m} \int_{s_{j} \leqslant \rho(a, y)} V(a, y) d v(y)\left(\int_{\rho(a, y) \leqslant s_{j}} W(a, y)^{1-p^{\prime}} d \mu(y)\right)^{q / p^{\prime}} \\
&\left(\int_{s_{j-1} \leqslant \rho(a, y) \leqslant s_{j}}(f(y))^{p} W(a, y) d \mu(y)\right)^{q / p} \\
& \leqslant C \sum_{j=-\infty}^{m}\left(\int_{s_{j-1} \leqslant \rho(a, y) \leqslant s_{j}}(f(y))^{p} W(a, y) d \mu(y)\right)^{q / p} \\
& \leqslant C\left(\int_{\rho(a, y) \leqslant r}(f(y))^{p} W(a, y) d \mu(y)\right)^{q / p} .
\end{aligned}
$$

This completes the proof of the theorem.

For our purposes we also need the following lemma (see [14] for the case of \mathbf{R}^{n}).
Lemma D. Suppose that (X, ρ, μ) be an SHT. Let $0<\lambda<1 \leqslant p<\infty$. Then there exists a positive constant C such that for all balls B_{0},

$$
\left\|\chi_{B_{0}}\right\|_{L^{p, \lambda}(X, \mu)} \leqslant C \mu\left(B_{0}\right)^{(1-\lambda) / p}
$$

Proof. Let $B_{0}:=B\left(x_{0}, r_{0}\right)$ and $B:=B(a, r)$. We have

$$
\left\|\chi_{B_{0}}\right\|_{L^{p, \lambda}(X, \mu)}=\sup _{B}\left(\frac{\mu\left(B_{0} \cap B\right)}{\mu(B)^{\lambda}}\right)^{1 / p}
$$

Suppose that $B_{0} \cap B \neq \emptyset$. Let us assume that $r \leqslant r_{0}$. Then (see [19, Lemma 1] or [10, p. 9]) $B \subset B\left(x_{0}, b r_{0}\right)$, where $b=a_{1}\left(1+a_{0}\right)$. By the doubling condition it follows that

$$
\begin{aligned}
\frac{\mu\left(B \cap B_{0}\right)}{\mu(B)^{\lambda}} \leqslant \frac{\mu(B)}{\mu(B)^{\lambda}} & =\mu(B)^{1-\lambda} \leqslant \mu\left(B\left(x_{0}, b r_{0}\right)\right)^{1-\lambda} \\
& \leqslant C \mu\left(B_{0}\right)^{1-\lambda}
\end{aligned}
$$

Let now $r_{0}<r$. Then $\mu B_{0} \leqslant c \mu B$, where the constant c depends only on a_{1} and a_{0}. Then

$$
\frac{\mu\left(B \cap B_{0}\right)}{\mu(B)^{\lambda}} \leqslant c \frac{\mu\left(B_{0}\right)}{\mu\left(B_{0}\right)^{\lambda}}=c \mu\left(B_{0}\right)^{1-\lambda}
$$

The next lemma may be well known but we prove it for the completeness.
Lemma E. Let (X, ρ, μ) be a non-homogeneous space with the growth condition. Suppose that $\sigma>-1$. Then there exists a positive constant c such that for all $a \in X$ and $r>0$, the inequality

$$
I(a, r, \sigma):=\int_{B(a, r)} \rho(a, x)^{\sigma} d \mu \leqslant c r^{\sigma+1}
$$

holds.
Proof. Let $\sigma \geqslant 0$. Then the result is obvious because of the growth condition for μ. Further, assume that $-1<\sigma<0$. We have

$$
\begin{aligned}
I(a, r, \sigma) & =\int_{0}^{\infty} \mu\left\{x \in B(a, r): \rho(a, x)^{\sigma}>\lambda\right\} d \lambda \\
& =\int_{0}^{\infty} \mu\left(B(a, r) \cap B\left(a, \lambda^{1 / \sigma}\right)\right) d \lambda=\int_{0}^{r^{\sigma}}+\int_{r^{\sigma}}^{\infty}:=I^{(1)}(a, r, \sigma)+I^{(2)}(a, r, \sigma) .
\end{aligned}
$$

By the growth condition for μ we have

$$
I^{(1)}(a, r, \sigma) \leqslant r^{\sigma} \mu(B(a, r)) \leqslant c r^{\sigma+1}
$$

while for $I^{(2)}(a, r, \sigma)$ we find that

$$
I^{(2)}(a, r, \sigma) \leqslant c \int_{r^{\sigma}}^{\infty} \lambda^{1 / \sigma} d \lambda=\frac{-c(\sigma+1)}{\sigma} r^{\sigma+1}=c_{1} r^{\sigma+1}
$$

because $1 / \sigma<-1$.

The following statement is the trace inequality for the operator K_{α} (see [1] for the case of Euclidean spaces and, e.g., [10] or [5, Theorem 6.2.1] for an SHT).

Theorem F. Let (X, ρ, μ) be an SHT. Suppose that $1<p<q<\infty$ and $0<\alpha<1 / p$.Assume that v is another measure on X. Then K_{α} is bounded from $L^{p}(X, \mu)$ to $L^{q}(X, v)$ if and only if

$$
v B \leqslant c(\mu B)^{q(1 / p-\alpha)}
$$

for all balls B in X.

3. Main results

In this section we formulate the main results of the paper. We begin with the case of an SHT.

Theorem 3.1. Let (X, ρ, μ) be an SHT and let $1<p<q<\infty$. Suppose that $0<\alpha<1 / p$, $0<\lambda_{1}<1-\alpha p$ and $\lambda_{2} / q=\lambda_{1} / p$. Then K_{α} is bounded from $L^{p, \lambda_{1}}(X, \mu)$ to $L^{q, \lambda_{2}}(X, v, \mu)$ if and only if there is a positive constant c such that

$$
\begin{equation*}
v(B) \leqslant c \mu(B)^{q(1 / p-\alpha)}, \tag{3}
\end{equation*}
$$

for all balls B.
The next statement is a consequence of Theorem 3.1.
Theorem 3.2. Let (X, ρ, μ) be an SHT and let $1<p<q<\infty$. Suppose that $0<\alpha<1 / p$, $0<\lambda_{1}<1-\alpha p$ and $\lambda_{2} / q=\lambda_{1} / p$. Then for the boundedness of K_{α} from $L^{p, \lambda_{1}}(X, \mu)$ to $L^{q, \lambda_{2}}(X, \mu)$ it is necessary and sufficient that $q=p /(1-\alpha p)$.

For non-homogeneous spaces we have the following statements:
Theorem 3.3. Let (X, ρ, μ) be a non-homogeneous space with the growth condition. Suppose that $1<p \leqslant q<\infty, 1 / p-1 / q \leqslant \alpha<1$ and $\alpha \neq 1 / p$. Suppose also that $p \alpha-1<\beta<p-$ $1,0<\lambda_{1}<\beta-\alpha p+1$ and $\lambda_{1} q=\lambda_{2} p$. Then I_{α} is bounded from $M_{\beta}^{p, \lambda_{1}}(X, \mu)$ to $M_{\gamma}^{q, \lambda_{2}}(X, \mu)$, where $\gamma=q(1 / p+\beta / p-\alpha)-1$.

Theorem 3.4. Suppose that (X, ρ, μ) is a quasimetric measure space and μ satisfies condition (2). Let $1<p<q<\infty$. Assume that $0<\alpha<1,0<\lambda_{1}<p / q$ and $s \lambda_{1} / p=\lambda_{2} / q$. Then the operator I_{α} is bounded from $M^{p, \lambda_{1} s}(X, \mu)$ to $M^{q, \lambda_{2}}(X, \mu)$.

4. Proof of the main results

In this section we give the proofs of the main results.
Proof of Theorem 3.1. Necessity: Suppose K_{α} is bounded from $L^{p, \lambda_{1}}(\mu)$ to $L^{q, \lambda_{2}}(X, v, \mu)$. Fix $B_{0}:=B\left(x_{0}, r_{0}\right)$. For $x, y \in B_{0}$, we have that

$$
B(x, \rho(x, y)) \subseteq B\left(x, a_{1}\left(a_{0}+1\right) r_{0}\right) \subseteq B\left(x_{0}, a_{1}\left(1+a_{1}\left(a_{0}+1\right)\right) r_{0}\right)
$$

Hence using the doubling condition for μ, it is easy to see that

$$
\mu\left(B_{0}\right)^{\alpha} \leqslant c K_{\alpha} \chi_{B_{0}}(x), \quad x \in B_{0}
$$

Consequently, using the condition $\lambda_{2} / q=\lambda_{1} / p$, the boundedness of K_{α} from $L^{p, \lambda}(X, \mu)$ to $L^{q, \lambda_{2}}(X, v, \mu)$ and Lemma D we find that

$$
\begin{aligned}
\mu\left(B_{0}\right)^{\alpha-\lambda_{1} / p} v\left(B_{0}\right)^{1 / q} & \leqslant c\left\|K_{\alpha} \chi_{B_{0}}\right\|_{L^{q, \lambda_{2}(X, v, \mu)}} \\
& \leqslant c\left\|\chi_{B_{0}}\right\|_{L^{p, \lambda_{1}}(X, \mu)} \leqslant c \mu\left(B_{0}\right)^{\left(1-\lambda_{1}\right) / p}
\end{aligned}
$$

Since c does not depend on B_{0} we have condition (3).
Sufficiency: Let $B:=B(a, r), \tilde{B}:=B\left(a, 2 a_{1} r\right)$ and $f \geqslant 0$. Write $f \in L^{p, \lambda_{1}}(\mu)$ as $f=f_{1}+f_{2}:=f \chi_{\tilde{B}}+f \chi_{\tilde{B}^{\mathrm{C}}}$, where χ_{B} is a characteristic function of B. Then we have

$$
\begin{aligned}
S & :=\int_{B}\left(K_{\alpha} f(x)\right)^{q} d v(x) \leqslant c\left(\int_{B}\left(K_{\alpha} f_{1}(x)\right)^{q} d v(x)+\int_{B}\left(K_{\alpha} f_{2}(x)\right)^{q} d v(x)\right) \\
& :=c\left(S_{1}+S_{2}\right)
\end{aligned}
$$

Applying Theorem F and the fact $\mu \in(D C)$ we find that

$$
S_{1} \leqslant \int_{X}\left(K_{\alpha} f_{1}\right)^{q}(x) d v(x) \leqslant c\left(\int_{B\left(a, 2 a_{1} r\right)}(f(x))^{p} d \mu(x)\right)^{q / p}
$$

Now observe that if $\rho(a, x)<r$ and $\rho(a, y)>2 a_{1} r$, then $\rho(a, y)>2 a_{1} \rho(a, x)$. Consequently, using the facts $\mu \in(R D C)$ (see (1)), $0<\lambda_{1}<1-\alpha p$ and condition (3) we have

$$
\begin{aligned}
S_{2} \leqslant & c \int_{B(a, r)}\left(\int_{\rho(a, y)>r} \frac{f(y)}{\mu B(a, \rho(a, y))^{1-\alpha}} d \mu(y)\right)^{q} d v(x) \\
= & v(B)\left[\sum_{k=0}^{\infty} \int_{B\left(a, \eta_{1}^{k+1} r\right) \backslash B\left(a, \eta_{1}^{k} r\right)} \frac{f(y)}{\mu B(a, \rho(a, y))^{1-\alpha}} d \mu(y)\right]^{q} \\
\leqslant & c v(B)\left[\sum_{k=0}^{\infty}\left(\int_{B\left(a, \eta_{1}^{k+1} r\right)}(f(y))^{p} d \mu(y)\right)^{1 / p}\right. \\
& \left.\times\left(\int_{B\left(a, \eta_{1}^{k+1} r\right) \backslash B\left(a, \eta_{1}^{k r)}\right.} \mu B(a, \rho(a, y))^{(\alpha-1) p^{\prime}} d \mu(y)\right)^{1 / p^{\prime}}\right]^{q} \\
\leqslant & c\|f\|_{L^{p, \lambda_{1}}(X, \mu)}^{q} v(B)\left(\sum_{k=0}^{\infty} \mu B\left(a, \eta_{1}^{k+1} r\right)^{\lambda_{1} / p+\alpha-1+1 / p^{\prime}}\right)^{q} \\
\leqslant & c\|f\|_{L^{p, \lambda_{1}(X, \mu)}}^{q} v(B) \mu(B)^{\left(\lambda_{1} / p+\alpha-1 / p\right) q}\left(\sum_{k=0}^{\infty} \eta_{2}^{k\left(\lambda_{1} / p+\alpha-1 / p\right)}\right)^{q} \\
\leqslant & c\|f\|_{L^{p, \lambda_{1}(X, \mu)}}^{q} \mu(B)^{q \lambda_{1} / p}=c\|f\|_{L^{p, \lambda_{1}}(X, \mu)}^{q} \mu(B)^{\lambda_{2}},
\end{aligned}
$$

where the positive constant c does not depend on B. Now the result follows immediately.

Proof of Theorem 3.2. Sufficiency: Assuming $\alpha=1 / p-1 / q$ and $\mu=v$ in Theorem 3.1 we have that K_{α} is bounded from $L^{p, \lambda_{1}}(X, \mu)$ to $L^{q, \lambda_{2}}(X, \mu)$.

Necessity: Suppose that K_{α} is bounded from $L^{p, \lambda_{1}}(X, \mu)$ to $L^{q, \lambda_{2}}(X, \mu)$. Then by Theorem 3.1 we have

$$
\mu(B)^{1 / q-1 / p+\alpha} \leqslant c .
$$

The conditions $\mu(X)=\infty$ and $\mu\{x\}=0$, for all $x \in X$, implies that $\alpha=1 / p-1 / q$.
Proof of Theorem 3.3. Let $f \geqslant 0$. For $x, a \in X$, let us introduce the following notation:

$$
\begin{aligned}
& E_{1}(x):=\left\{y: \frac{\rho(a, y)}{\rho(a, x)}<\frac{1}{2 a_{1}}\right\}, \quad E_{2}(x):=\left\{y: \frac{1}{2 a_{1}} \leqslant \frac{\rho(a, y)}{\rho(a, x)} \leqslant 2 a_{1}\right\}, \\
& E_{3}(x):=\left\{y: 2 a_{1}<\frac{\rho(a, y)}{\rho(a, x)}\right\} .
\end{aligned}
$$

For $i=1,2,3, r>0$ and $a \in X$, we denote

$$
S_{i}:=\int_{\rho(a, x)<r} \rho(a, x)^{\gamma}\left(\int_{E_{i}(x)} f(y) \rho(x, y)^{\alpha-1} d \mu(y)\right)^{q} d \mu(x)
$$

If $y \in E_{1}(x)$, then $\rho(a, x)<2 a_{1} a_{0} \rho(x, y)$. Hence, it is easy to see that

$$
S_{1} \leqslant C \int_{B} \rho(a, x)^{\gamma+q(\alpha-1)}\left(\int_{\rho(a, y)<\rho(a, x)} f(y) d \mu(y)\right)^{q} d \mu(x)
$$

Taking into account the condition $\gamma<(1-\alpha) q-1$ we have

$$
\begin{aligned}
\int_{\rho(a, x)>t} \rho(a, x)^{\gamma+q(\alpha-1)} d \mu(x) & =\sum_{n=0}^{\infty} \int_{B\left(a, 2^{k+1} t\right) \backslash B\left(a, 2^{k} t\right)}(\rho(a, x))^{\gamma+(\alpha-1) q} d \mu(x) \\
& \leqslant c \sum_{n=0}^{\infty}\left(2^{k} t\right)^{\gamma+q(\alpha-1)+1}=c t^{\gamma+q(\alpha-1)+1}
\end{aligned}
$$

while the condition $\beta<p-1$ implies

$$
\int_{\rho(a, x)<t} \rho(a, x)^{\beta\left(1-p^{\prime}\right)+1} d \mu(x) \leqslant c t^{\beta\left(1-p^{\prime}\right)+1}
$$

Hence

$$
\begin{aligned}
& \sup _{a \in X, t>0}\left(\int_{\rho(a, x)>t} \rho(a, x)^{\gamma+q(\alpha-1)} d \mu(x)\right)^{1 / q}\left(\int_{B(a, t)} \rho(a, y)^{\beta\left(1-p^{\prime}\right)} d \mu(y)\right)^{1 / p^{\prime}} \\
& <\infty
\end{aligned}
$$

Now using Theorem C we have

$$
S_{1} \leqslant c\left(\int_{B} \rho(a, x)^{\beta}(f(y)) d \mu(y)\right)^{q / p} \leqslant c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} r^{\lambda_{1} q / p}=c\|f\|_{M_{\beta}^{p, \lambda_{1}(X, \mu)}}^{q} r^{\lambda_{2}} .
$$

Further, observe that if $\rho(a, y)>2 a_{1} \rho(a, x)$, then $\rho(a, y) \leqslant a_{1} \rho(a, x)+a_{1} \rho(a, y) \leqslant$ $\rho(a, y) / 2+a_{1} \rho(x, y)$. Hence $\rho(a, y) /\left(2 a_{1}\right) \leqslant \rho(x, y)$. Consequently, using the growth condition for μ, the fact $\lambda_{1}<\beta-\alpha p+1$ and Lemma E we find that

$$
\begin{aligned}
S_{3} \leqslant & c \int_{B(a, r)} \rho(a, x)^{\gamma}\left(\int_{\rho(a, y)>\rho(a, x)} \frac{f(y)}{\rho(a, y)^{1-\alpha}} d \mu(y)\right)^{q} d \mu(x) \\
\leqslant & c \int_{B(a, r)} \rho(a, x)^{\gamma}\left(\sum_{k=0}^{\infty} \int_{B\left(a, 2^{k+1} \rho(a, x)\right) \backslash B\left(a, 2^{k} \rho(a, x)\right)} \frac{f(y)}{\rho(a, y)^{1-\alpha}} d \mu(y)\right)^{q} d \mu(x) \\
\leqslant & c \int_{B(a, r)} \rho(a, x)^{\gamma}\left[\sum_{k=0}^{\infty}\left(\int_{B\left(a, 2^{k+1} \rho(a, x)\right)} f^{p}(y) \rho(a, y)^{\beta} d \mu(y)\right)^{1 / p}\right. \\
& \left.\times\left(\int_{B\left(a, 2^{k+1} \rho(a, x)\right) \backslash B\left(a, 2^{k} \rho(a, x)\right)} \rho(a, y)^{\beta\left(1-p^{\prime}\right)+(\alpha-1) p^{\prime}} d \mu(y)\right)^{1 / p^{\prime}}\right]^{q} d \mu(x) \\
\leqslant & c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} \int_{B(a, r)} \rho(a, x)^{\gamma} \\
& \times\left(\sum_{k=0}^{\infty}\left(2^{k} \rho(a, x)\right)^{\lambda_{1} / p+\alpha-1-\beta / p}\left(\mu B\left(a, 2^{k+1} \rho(a, x)\right)\right)^{1 / p^{\prime}}\right)^{q} d \mu(x) \\
\leqslant & c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} \int_{B(a, r)} \rho(a, x)^{\gamma}\left(\sum_{k=0}^{\infty}\left(2^{k} \rho(a, x)\right)^{\lambda_{1} / p+\alpha-1 / p-\beta / p}\right)^{q} d \mu(x) \\
\leqslant & c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} \int_{B(a, r)} \rho(a, x)^{\left(\lambda_{1} / p+\alpha-1 / p-\beta / p\right) q+\gamma} d \mu(x) \\
= & c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} \int_{B(a, r)} \rho(a, x)^{\lambda_{1} q / p-1} d \mu(x) \leqslant c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} r^{\lambda_{1} q / p} \\
= & c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} r^{\lambda_{2}} .
\end{aligned}
$$

So, we conclude that

$$
S_{3} \leqslant c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} r^{\lambda_{2}} .
$$

To estimate S_{2} we consider two cases. First assume that $\alpha<1 / p$. Let

$$
\begin{aligned}
E_{k, r} & :=\left\{x: 2^{k} r \leqslant \rho(a, x)<2^{k+1} r\right\}, \\
F_{k, r} & :=\left\{x: 2^{k-1} r / a_{1} \leqslant \rho(a, x)<a_{1} 2^{k+2} r\right\}
\end{aligned}
$$

Assume that $p^{*}=p /(1-\alpha p)$. By Hölder's inequality, Corollary B and the assumption $\gamma=q(1 / p+\beta / p-\alpha)-1$ we have

$$
\begin{aligned}
S_{2}= & \sum_{k=-\infty}^{-1} \int_{E_{k, r}} \rho(a, x)^{\gamma}\left(\int_{E_{2}(x)} f(y) \rho(x, y)^{\alpha-1} d \mu(y)\right)^{q} d \mu(x) \\
\leqslant & \sum_{k=-\infty}^{-1}\left(\int_{E_{k, r}} \rho(a, x)^{\gamma}\left(\int_{E_{2}(x)} f(y) \rho(x, y)^{\alpha-1} d \mu(y)\right)^{p^{*}} d \mu(x)\right)^{q / p^{\prime}} \\
& \times\left(\int_{E_{k, r}} \rho(a, x)^{\gamma p^{*} /\left(p^{*}-q\right)} d \mu(x)\right)^{\left(p^{*}-q\right) / p^{*}} \\
\leqslant & c \sum_{k=-\infty}^{-1} 2^{k\left(\gamma+\left(p^{*}-q\right) / p^{*}\right)}\left(\int_{X} I_{\alpha}\left(f \chi_{F_{k, r}}\right)(x)^{p^{*}} d \mu(x)\right)^{q / p^{*}} \\
\leqslant & c \sum_{k=-\infty}^{-1} 2^{k\left(\gamma+\left(p^{*}-q\right) / p^{*}\right)}\left(\int_{F_{k, r}}(f(x))^{p} d \mu(x)\right)^{q / p} \\
\leqslant & c\left(\int_{B\left(a, 2 a_{1} r\right)} \rho(a, x)^{\beta}(f(x))^{p} d \mu(x)\right)^{q / p} \\
\leqslant & c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{r_{1} q / p}=c\|f\|_{M_{\beta}^{q}}^{q, \lambda_{1}(X, \mu)} r^{\lambda_{2}} .
\end{aligned}
$$

Let us now consider the case $1 / p<\alpha<1$.
First notice that (see [13])

$$
\int_{E_{2}(x)}\left(\rho(x, y)^{(\alpha-1) p^{\prime}} d \mu(y) \leqslant c \rho(a, x)^{1+(\alpha-1) p^{\prime}}\right.
$$

where the positive constant c does not depend on a and x.
This estimate and Hölder's inequality yield

$$
\begin{aligned}
S_{2} & \leqslant c \sum_{k=-\infty}^{-1}\left(\int_{E_{k, r}} \rho(a, x)^{\left.\gamma+\left[(\alpha-1) p^{\prime}+1\right)\right] q / p^{\prime}}\left(\int_{E_{2}(x)}(f(y))^{p} d \mu(y)\right)^{q / p} d \mu(x)\right)^{q / p^{\prime}} \\
& \leqslant c \sum_{k=-\infty}^{-1}\left(\int_{E_{k, r}} \rho(a, x)^{\left.\gamma+\left[(\alpha-1) p^{\prime}+1\right)\right] q / p^{\prime}} d \mu(x)\right)\left(\int_{F_{k, r}}(f(y))^{p} d \mu(y)\right)^{q / p} \\
& \leqslant c \sum_{k=-\infty}^{-1}\left(2^{k} r\right)^{\left.\gamma+\left[(\alpha-1) p^{\prime}+1\right)\right] q / p^{\prime}+1}\left(\int_{F_{k, r}}(f(y))^{p} d \mu(y)\right)^{q / p} \\
& =c \sum_{k=-\infty}^{-1} 2^{k \beta q / p}\left(\int_{F_{k, r}}(f(y))^{p} d \mu(y)\right)^{q / p} \leqslant c\left(\int_{B\left(a, 2 a_{1} r\right)}(f(y))^{p} \rho(a, y)^{\beta} d \mu(y)\right)^{q / p} \\
& \leqslant c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} r^{\lambda_{1} q / p}=c\|f\|_{M_{\beta}^{p, \lambda_{1}}(X, \mu)}^{q} r^{\lambda_{2}} .
\end{aligned}
$$

Now the result follows immediately.

Proof of Theorem 3.4. Let $f \geqslant 0$. Suppose that $a \in X$ and $r>0$. Suppose also that $f_{1}=$ $f \chi_{B\left(a, 2 a_{1} r\right)}$ and $f_{2}=f-f_{1}$. Then $I_{\alpha} f=I_{\alpha} f_{1}+I_{\alpha} f_{2}$. Consequently,

$$
\begin{aligned}
& \int_{B(a, r)}\left(I_{\alpha} f(x)\right)^{q} d \mu(x) \leqslant 2^{q-1}\left(\int_{B(a, r)}\left(I_{\alpha} f_{1}(x)\right)^{q} d \mu(x)+\int_{B(a, r)}\left(I_{\alpha} f_{2}(x)\right)^{q} d \mu(x)\right) \\
& \quad:=2^{q-1}\left(S_{a, r}^{(1)}+S_{a, r}^{(2)}\right)
\end{aligned}
$$

Due to Theorem A and the condition $s \lambda_{1} / p=\lambda_{2} / q$ we have

$$
\begin{aligned}
S_{a, r}^{(1)} & \leqslant c\left(\int_{B\left(a, 2 a_{1} r\right)}(f(x))^{p} d \mu(x)\right)^{q / p} \\
& =c\left(\frac{1}{\left(2 a_{1} r\right)^{\lambda_{1} s}} \int_{B\left(a, 2 a_{1} r\right)}(f(x))^{p} d x\right)^{q / p} r^{\lambda_{1} s q / p} \leqslant c\|f\|_{M^{p, \lambda_{1} s}(X, \mu)}^{q} r^{\lambda_{2}} .
\end{aligned}
$$

Now observe that if $x \in B(a, r)$ and $y \in X \backslash B\left(a, 2 a_{1} r\right)$, then $\rho(a, y) / 2 a_{1} \leqslant \rho(x, y)$. Hence Hölder's inequality, condition (2) and the condition $0<\lambda_{1}<p / q$ yield

$$
\begin{aligned}
I_{\alpha} f_{2}(x)= & \int_{X \backslash B\left(a, 2 a_{1} r\right)} f(y) / \rho(x, y)^{1-\alpha} d \mu(y) \\
= & \sum_{k=0}^{\infty}\left(\int_{B\left(a, 2^{k+2} a_{1} r\right) \backslash B\left(a, 2^{k+1} a_{1} r\right)}(f(y))^{p} d \mu(y)\right)^{1 / p} \\
& \times\left(\int_{B\left(a, 2^{k+2} a_{1} r\right) \backslash B\left(a, 2^{k+1} a_{1} r\right)} \rho(a, y)^{(\alpha-1) p^{\prime}} d \mu(y)\right)^{1 / p^{\prime}} \\
\leqslant & c \sum_{k=0}^{\infty}\left(\frac{1}{\left(2^{k+1} a_{1} r\right)^{\lambda_{1} s}} \int_{B\left(a, 2^{k+1} a_{1} r\right)}(f(y))^{p} d \mu(y)\right)^{1 / p} \\
& \times\left(2^{k} a_{1} r\right)^{\lambda_{1} s / p+\alpha-1+s / p^{\prime}} \\
\leqslant & c\|f\|_{M^{p, \lambda_{1} s}(X, \mu)} r^{\lambda_{1} s / p+\alpha-1+s / p^{\prime}} .
\end{aligned}
$$

Consequently, by the assumptions $s \lambda_{1} / p=\lambda_{2} / q$ and $s=p q(1-\alpha) /(p q+p-q)$ we conclude that

$$
S_{a, r}^{(2)} \leqslant c\|f\|_{M^{p, \lambda_{1} s(X, \mu)}}^{q} r^{\left(\lambda_{1} s / p+\alpha-1+s / p^{\prime}\right) q+s}=c\|f\|_{M^{p, \lambda_{1} s}(X, \mu)}^{q} r^{\lambda_{2}} .
$$

Summarizing the estimates derived above we finally have the desired result.

Acknowledgements

The second and third authors were partially supported by the INTAS Grant no. 05-1000008-8157 and the Georgian National Science Foundation Grant no. GNSF/ST07/3169.

The authors express their gratitude to the referee and Professor Christian Berg for their remarks and suggestions.

References

[1] D.R. Adams, A trace inequality for generalized potentials, Studia Math. 48 (1973) 99-105.
[2] D.R. Adams, A note on Riesz potentials, Duke Math. J. 42 (4) (1975) 765-778.
[3] V. Burenkov, H.V. Guliyev, Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces, Studia Math. 163 (2) (2004) 157-176.
[4] I.V. Burenkov, H.V. Guliyev, V.S. Guliyev, Necessary and sufficient conditions for the boundedness of the fractional maximal operator in local Morrey-type spaces, Dokl. Akad. Nauk 409 (4) (2006) 443-447 (in Russian).
[5] D. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and Compact Integral Operators, Mathematics and its Applications, vol. 543, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
[6] Eridani, V. Kokilashvili, A. Meskhi, Morrey spaces and fractional integral operators, Preprint No. 65, School of Mathematical Sciences, GC University, Lahore, 2007.
[7] J. García-Cuerva, A.E. Gatto, Boundedness properties of fractional integral operators associated to nondoubling measures, Studia Math. 162 (3) (2004) 245-261.
[8] J. García-Cuerva, J.M. Martell, Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous spaces, Indiana Univ. Math. J. 50 (3) (2001) 1241-1280.
[9] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, Solution of two-weight problems for integral transforms with positive kernels, Georgian Math. J. 3 (1) (1996) 319-342.
[10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight Theory for Integral Transforms on Spaces of Homogeneous Type, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 92, Longman, Harlow, 1998.
[11] V. Kokilashvili, Weighted estimates for classical integral operators, in: Nonlinear Analysis, Function Spaces and Applications IV, Roudnice nad Labem, vol. 119, Teubner-Texte Math, Leipzig, 1990, pp. 86-103.
[12] V. Kokilashvili, A. Meskhi, Fractional integrals on measure spaces, Frac. Calc. Appl. Anal. 4 (4) (2001) 1-24.
[13] V. Kokilashvili, A. Meskhi, On some weighted inequalities for fractional integrals on non-homogeneous spaces, Z. Anal. Anwend. 24 (4) (2005) 871-885.
[14] Y. Komori, T. Mizuhara, Notes on commutators and Morrey spaces, Hokkaido Math. J. 32 (2003) 345-353.
[15] J. Peetre, On the theory of $\mathscr{L}^{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969) 71-87.
[16] S. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, London, 1993.
[17] Y. Sawano, H. Tanaka, Morrey spaces for nondoubling measures, Acta Math. Sinica 21 (6) (2005) 1535-1544.
[18] E.M. Stein, G. Weiss, Fractional integrals on n-dimensional Euclidean spaces, J. Math. Mech. 7 (4) (1958) 503-514.
[19] J.O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics, vol. 1381, Springer, Berlin, 1989.

Expositiones Mathematicae

Country	Netherlands - III SIR Ranking of Netherlands Subject Area and Category
Mathematics Mathematics (miscellaneous) Publisher Elsevier BV	
ISSN	07230869
Coverage	2004-ongoing
Scope	Our aim is to publish papers of interest to a wide mathematical audience, such as expository articles that make research results more widely accessible, and papers on topics with fairly broad appeal. Main articles must be written in such a way that a research student interested in the topic of the paper can read them profitably. Mathematical notes can be at a slightly higher level. Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. All paper are refereed.

Citations per document

Citable documents Non-citable documents +
1.25
0.75

Expositiones Mathematicae

Expositiones Mathematicae	Show this widget in your own website
Mathematics (miscellaneous)	Just copy the code below and paste within your html code:
SJR 2017	<a href="https://www.scimas

Leave a comment

Name

Email
(will not be published)

Submit

The users of Scimago Journal \& Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor

Developed by:

Scopus

Follow us on @ScimagoJR
Scimago Lab, Copyright 2007-2018. Data Source: Scopus®

EST MODUS IN REBUS

Horatio (Satire 1, 1, 106)

[^0]: Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js

[^1]: Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
 Then

[^2]: Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js

[^3]: Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js pe, Pitman
 Monographs and Surveys in Pure and Applied Mathematics, vol. 92, Longman, Harlow

[^4]: * Corresponding author at: School of Mathematical Sciences, Government College University, 68-B New Muslim Town, Lahore, Pakistan. Tel.: +99532326247; fax: +99532364086.

 E-mail addresses: keumala_ikhsanti@yahoo.com (A. Eridani), kokil@rmi.acnet.ge (V. Kokilashvili), meskhi@rmi.acnet.ge (A. Meskhi).

