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1. Introduction
The main purpose of this paper is to establish the boundedness of fractional integral
operators in (weighted) Morrey spaces defined on quasimetric measure spaces. We derive
Sobolev, trace and two-weight inequalities for fractional integrals. In particular, we generalize:
(a) Adams [1] trace inequality; (b) the theorem by Stein and Weiss [18] regarding the two-weight
inequality for the Riesz potentials; (c) Sobolev-type inequality. We emphasize that in the most
cases the derived conditions are necessary and sufficient for appropriate inequalities.

In the paper [9] (see also [10, Chapter 2]) integral-type sufficient condition guaranteeing the
two-weight weak-type inequality for integral operator with positive kernel defined on non-
homogeneous spaces was established. In the same paper (see also [10, Chapter 2]) the authors
solved the two-weight problem for kernel operators on spaces of homogeneous type.

In [12] (see also [5, Chapter 6]) a complete description of non-doubling measure μ
guaranteeing the boundedness of fractional integral operator Iα (see the next section for the
definition) from Lp(μ,X) to Lq(μ,X), 1<p<q<∞, was given. We notice that this result was derived
in [11] for potentials on Euclidean spaces. In [12], theorems of Sobolev and Adams type for
fractional integrals defined on quasimetric measure spaces were established. For the
boundedness of fractional integrals on metric measure spaces we refer also to [7]. Some two-
weight norm inequalities for fractional operators on Rn with non-doubling measure were
studied in [8]. Further, in the paper [13] necessary and sufficient conditions on measure μ
governing the inequality of Stein–Weiss type on non-homogeneous spaces were established.
For some properties of fractional integrals defined on Rn in weighted Lebesgue spaces with
power type weights see e.g., [16, Chapter 5].

The boundedness of the Riesz potential in Morrey spaces defined on Euclidean spaces was
studied in [15], [2]. The same problem for fractional integrals on Rn with non-doubling
measure was investigated in [17].

Finally, we mention that necessary and sufficient conditions for the boundedness of maximal
operators and Riesz potentials in the local Morrey-type spaces were derived in [3], [4].

The main results of this paper were presented in [6].

It should be emphasized that the results of this work are new even for Euclidean spaces.

Constants (often different constants in the same series of inequalities) will generally be
denoted by c or C.

2. Preliminaries
Throughout the paper we assume that X≔(X,ρ,μ) is a topological space, endowed with a
complete measure μ such that the space of compactly supported continuous functions is
dense in L1(X,μ) and there exists a function (quasimetric) ρ:X×X⟶[0,∞) satisfying the
conditions:Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
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(1)

(2)

(3)

ρ(x,y)>0 for all x≠y, and ρ(x,x)=0 for all x∈X;

there exists a constant a0⩾1, such that ρ(x,y)⩽a0ρ(y,x) for all x,y∈X;

there exists a constant a1⩾1, such that ρ(x,y)⩽a1(ρ(x,z)+ρ(z,y)) for all x,y,z∈X.

We assume that the balls B(a,r)≔{x∈X:ρ(a,x)<r} are μ-measurable and 0<μ(B(a,r))<∞ for a∈X,r>0.
For every neighborhood V of x∈X, there exists r>0, such that B(x,r)⊂V. We also assume that
μ(X)=∞, μ{a}=0, and B(a,r2)⧹B(a,r1)≠∅, for all a∈X, 0<r1<r2<∞.

The triple (X,ρ,μ) will be called quasimetric measure space.

Let 0<α<1. We consider the fractional integral operators Iα, and Kα given by

for suitable f on X.

Suppose that ν is another measure on X, λ⩾0 and 1⩽p<∞. We deal with the Morrey space
Lp,λ(X,ν,μ), which is the set of all functions f∈Llocp(X,ν) such that

where the supremum is taken over all balls B.

If ν=μ, then we have the classical Morrey space Lp,λ(X,μ) with measure μ. When λ=0, then
Lp,λ(X,ν,μ)=Lp(X,ν) is the Lebesgue space with measure ν.

Further, suppose that β∈R. We are also interested in weighted Morrey space Mβp,λ(X,μ) which
is the set of all μ-measurable functions f such that

If β=0, then we denote Mβp,λ(X,μ)≔Mp,λ(X,μ).

We say that a measure μ satisfies the growth condition (μ∈(GC)), if there exists C0>0 such that
μ(B(a,r))⩽C0r; further, μ satisfies the doubling condition (μ∈(DC)) if μ(B(a,2r))⩽C1μ(B(a,r)) for
some C1>1. If μ∈(DC), then (X,ρ,μ) is called a space of homogeneous type (SHT). A quasimetric
measure space (X,ρ,μ), where the doubling condition is not assumed, is also called a non-
homogeneous space.

The measure μ on X satisfies the reverse doubling condition (μ∈(RDC)) if there are constants
η1 and η2 with η1>1 and η2>1 such that

It is known (see e.g., [19, p. 11]) that if μ∈(DC), then μ∈(RDC).

Iαf(x)≔∫Xf(y)ρ(x,y)α-1dμ(y),

Kαf(x)≔∫Xf(y)(μB(x,ρ(x,y)))α-1dμ(y),

∥f∥Lp,λ(X,ν,μ)≔supB1μ(B)λ∫B|f(y)|pdν(y)1/p<∞,

∥f∥Mβp,λ(X,μ)≔supa∈X;r>01rλ∫B(a,r)|f(y)|pρ(a,y)βdμ(y)1/p<∞.

(1)μB(x,η1r)⩾η2μB(x,r).
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The next statements are from [12] (see also [5, Theorem 6.1.1, Corollary 6.1.1] and [11] in the
case of Euclidean spaces).
Theorem A

Let (X,ρ,μ) be a quasimetric measure space. Suppose that 1<p<q<∞ and 0<α<1. Then Iα is bounded
from Lp(X) to Lq(X) if and only if there exists a positive constant C such that

for all a∈X and r>0.

Corollary B

Let (X,ρ,μ) be a quasimetric measure space, 1<p<1/α and 1/q=1/p-α. Then Iα is bounded from Lp(X) to
Lq(X) if and only if μ∈(GC).

The latter statement by different proof was also derived in [7] for metric spaces.

To prove some of our statements we need the following Hardy-type transform:

where a is a fixed point of X and f∈Lloc(X,μ).
Theorem C

Suppose that (X,ρ,μ) is a quasimetric measure space and 1<p⩽q<∞. Assume that ν is another measures
on X. Let V(resp.W) be non-negative ν×ν-measurable (resp. non-negative μ×μ-measurable) function on
X×X. If there exists a positive constant C independent of a∈X and t>0 such that

then there exists a positive constant c such that for all μ-measurable non-negative f and a∈X the
inequality

holds.

This statement was proved in [5, Section 1.1] for Lebesgue spaces.
Proof of Theorem C

Let f⩾0. We define S(s)≔∫ρ(a,y)<sf(y)dμ(y), for s∈[0,r]. Suppose S(r)<∞, then 2m<S(r)⩽2m+1, for
some m∈Z. Let

Then it is easy to see that (see also [5, pp. 5–8] for details) (sj)j=-∞m+1 is a non-decreasing
sequence, S(sj)⩽2j,S(t)⩾2j for t>sj, and

(2)μ(B(a,r))⩽Crs,s=pq(1-α)pq+p-q,

Haf(x)≔∫ρ(a,y)⩽ρ(a,x)f(y)dμ(y),

∫ρ(a,y)⩾tV(a,y)dν(y)1/q∫ρ(a,y)⩽tW(a,y)1-p′dμ(y)1/p′⩽C<∞,

∫B(a,r)(Haf(x))qV(a,x)dν(x)1/q⩽c∫B(a,r)(f(x))pW(a,x)dμ(x)1/p

sj≔sup{t:S(t)⩽2j},j⩽mandsm+1≔r.
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If β≔limj→-∞sj, then

If S(r)=∞, then we may put m=∞. Since

for every j, therefore ∫ρ(a,y)<βf(y)dμ(y)=0. From these observations, we have

Notice that

Using Hölder's inequality, we find that

This completes the proof of the theorem. □

For our purposes we also need the following lemma (see [14] for the case of Rn).
Lemma D

Suppose that (X,ρ,μ) be an SHT. Let 0<λ<1⩽p<∞. Then there exists a positive constant C such that for
all balls B0,

Proof

Let B0≔B(x0,r0) and B≔B(a,r). We have

Suppose that B0∩B≠∅. Let us assume that r⩽r0. Then (see [19, Lemma 1] or [10, p. 9])
B⊂B(x0,br0), where b=a1(1+a0). By the doubling condition it follows that

Let now r0<r. Then μB0⩽cμB, where the constant c depends only on a1 and a0. Then

2j⩽∫sj⩽ρ(a,y)⩽sj+1f(y)dμ(y).

ρ(a,x)<r⇔ρ(a,x)∈[0,β]∪⋃j=-∞m(sj,sj+1].

0⩽∫ρ(a,y)<βf(y)dμ(y)⩽S(sj)⩽2j,

∫ρ(a,x)<r(Haf(x))qV(a,x)dν(x)⩽∑j=-∞m∫sj⩽ρ(a,x)⩽sj+1(Haf(x))qV(a,x)dν(x)⩽∑j=-
∞m∫sj⩽ρ(a,x)⩽sj+1V(a,x)∫ρ(a,y)⩽sj+1(f(y))dμ(y)qdν(x).

∫ρ(a,y)⩽sj+1fdμ⩽S(sj+2)⩽2j+2⩽C∫sj-1⩽ρ(a,y)⩽sjfdμ.

∫ρ(a,x)<r(Haf(x))qV(a,x)dμ(x)⩽∑j=-∞m∫sj⩽ρ(a,x)⩽sj+1V(a,x)∫ρ(a,y)⩽sj+1(f(y))dμ(y)qdν(x)⩽C∑j=-
∞m∫sj⩽ρ(a,x)⩽sj+1V(a,x)∫sj-1⩽ρ(a,y)⩽sj(f(y))dμ(y)qdν(x)⩽C∑j=-∞m∫sj⩽ρ(a,x)⩽sj+1V(a,x)dν(x)∫sj-
1⩽ρ(a,y)⩽sj(f(y))pW(a,y)dμ(y)q/p×∫sj-1⩽ρ(a,y)⩽sjW(a,y)1-p′dμ(y)q/p′⩽C∑j=-
∞m∫sj⩽ρ(a,y)V(a,y)dν(y)∫ρ(a,y)⩽sjW(a,y)1-p′dμ(y)q/p′∫sj-1⩽ρ(a,y)⩽sj(f(y))pW(a,y)dμ(y)q/p⩽C∑j=-
∞m∫sj-1⩽ρ(a,y)⩽sj(f(y))pW(a,y)dμ(y)q/p⩽C∫ρ(a,y)⩽r(f(y))pW(a,y)dμ(y)q/p.

∥χB0∥Lp,λ(X,μ)⩽Cμ(B0)(1-λ)/p.

∥χB0∥Lp,λ(X,μ)=supBμ(B0∩B)μ(B)λ1/p.

μ(B∩B0)μ(B)λ⩽μ(B)μ(B)λ=μ(B)1-λ⩽μ(B(x0,br0))1-λ⩽Cμ(B0)1-λ.
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The next lemma may be well known but we prove it for the completeness.
Lemma E

Let (X,ρ,μ) be a non-homogeneous space with the growth condition. Suppose that σ>-1. Then there exists
a positive constant c such that for all a∈X and r>0, the inequality

holds.

Proof

Let σ⩾0. Then the result is obvious because of the growth condition for μ. Further, assume
that -1<σ<0. We have

By the growth condition for μ we have

while for I(2)(a,r,σ) we find that

because 1/σ<-1. □

The following statement is the trace inequality for the operator Kα (see [1] for the case of
Euclidean spaces and, e.g., [10] or [5, Theorem 6.2.1] for an SHT).
Theorem F

Let (X,ρ,μ) be an SHT. Suppose that 1<p<q<∞ and 0<α<1/p. Assume that ν is another measure on X.
Then Kα is bounded from Lp(X,μ) to Lq(X,ν) if and only if

for all balls B in X.

3. Main results
In this section we formulate the main results of the paper. We begin with the case of an SHT.
Theorem 3.1

Let (X,ρ,μ) be an SHT and let 1<p<q<∞. Suppose that 0<α<1/p, 0<λ1<1-αp and λ2/q=λ1/p. Then Kα
is bounded from Lp,λ1(X,μ) to Lq,λ2(X,ν,μ) if and only if there is a positive constant c such that

μ(B∩B0)μ(B)λ⩽cμ(B0)μ(B0)λ=cμ(B0)1-λ.□

I(a,r,σ)≔∫B(a,r)ρ(a,x)σdμ⩽crσ+1

I(a,r,σ)=∫0∞μ{x∈B(a,r):ρ(a,x)σ>λ}dλ=∫0∞μ(B(a,r)∩B(a,λ1/σ))dλ=∫0rσ+∫rσ∞≔I(1)(a,r,σ)+I(2)(a,r,σ).

I(1)(a,r,σ)⩽rσμ(B(a,r))⩽crσ+1,

I(2)(a,r,σ)⩽c∫rσ∞λ1/σdλ=-c(σ+1)σrσ+1=c1rσ+1

νB⩽c(μB)q(1/p-α),

(3)ν(B)⩽cμ(B)q(1/p-α),Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js
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for all balls B.

The next statement is a consequence of Theorem 3.1.
Theorem 3.2

Let (X,ρ,μ) be an SHT and let 1<p<q<∞. Suppose that 0<α<1/p, 0<λ1<1-αp and λ2/q=λ1/p. Then for
the boundedness of Kα from Lp,λ1(X,μ) to Lq,λ2(X,μ) it is necessary and sufficient that q=p/(1-αp).

For non-homogeneous spaces we have the following statements:
Theorem 3.3

Let (X,ρ,μ) be a non-homogeneous space with the growth condition. Suppose that 1<p⩽q<∞, 1/p-
1/q⩽α<1 and α≠1/p. Suppose also that pα-1<β<p-1, 0<λ1<β-αp+1 and λ1q=λ2p. Then Iα is bounded
from Mβp,λ1(X,μ) to Mγq,λ2(X,μ), where γ=q(1/p+β/p-α)-1.

Theorem 3.4

Suppose that (X,ρ,μ) is a quasimetric measure space and μ satisfies condition (2). Let 1<p<q<∞. Assume
that 0<α<1, 0<λ1<p/q and sλ1/p=λ2/q. Then the operator Iα is bounded from Mp,λ1s(X,μ) to
Mq,λ2(X,μ).

4. Proof of the main results
In this section we give the proofs of the main results.
Proof of Theorem 3.1

Necessity: Suppose Kα is bounded from Lp,λ1(μ) to Lq,λ2(X,ν,μ). Fix B0≔B(x0,r0). For x,y∈B0, we
have that

Hence using the doubling condition for μ, it is easy to see that

Consequently, using the condition λ2/q=λ1/p, the boundedness of Kα from Lp,λ(X,μ) to
Lq,λ2(X,ν,μ) and Lemma D we find that

Since c does not depend on B0 we have condition (3).

Sufficiency: Let B≔B(a,r), B˜≔B(a,2a1r) and f⩾0. Write f∈Lp,λ1(μ) as f=f1+f2≔fχB˜+fχB˜C, where
χB is a characteristic function of B. Then we have

Applying Theorem F and the fact μ∈(DC) we find that

B(x,ρ(x,y))⊆B(x,a1(a0+1)r0)⊆B(x0,a1(1+a1(a0+1))r0).

μ(B0)α⩽cKαχB0(x),x∈B0.

μ(B0)α-λ1/pν(B0)1/q⩽c∥KαχB0∥Lq,λ2(X,ν,μ)⩽c∥χB0∥Lp,λ1(X,μ)⩽cμ(B0)(1-λ1)/p.

S≔∫B(Kαf(x))qdν(x)⩽c∫B(Kαf1(x))qdν(x)+∫B(Kαf2(x))qdν(x)≔c(S1+S2).
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Now observe that if ρ(a,x)<r and ρ(a,y)>2a1r, then ρ(a,y)>2a1ρ(a,x). Consequently, using the facts
μ∈(RDC) (see (1)), 0<λ1<1-αp and condition (3) we have

where the positive constant c does not depend on B. Now the result follows immediately. □

Proof of Theorem 3.2

Sufficiency: Assuming α=1/p-1/q and μ=ν in Theorem 3.1 we have that Kα is bounded from
Lp,λ1(X,μ) to Lq,λ2(X,μ).

Necessity: Suppose that Kα is bounded from Lp,λ1(X,μ) to Lq,λ2(X,μ). Then by Theorem 3.1 we
have

The conditions μ(X)=∞ and μ{x}=0, for all x∈X, implies that α=1/p-1/q. □

Proof of Theorem 3.3

Let f⩾0. For x,a∈X, let us introduce the following notation:

For i=1,2,3, r>0 and a∈X, we denote

If y∈E1(x), then ρ(a,x)<2a1a0ρ(x,y). Hence, it is easy to see that

Taking into account the condition γ<(1-α)q-1 we have

while the condition β<p-1 implies

Hence

S1⩽∫X(Kαf1)q(x)dν(x)⩽c∫B(a,2a1r)(f(x))pdμ(x)q/p.

S2⩽c∫B(a,r)∫ρ(a,y)>rf(y)μB(a,ρ(a,y))1-
αdμ(y)qdν(x)=ν(B)∑k=0∞∫B(a,η1k+1r)⧹B(a,η1kr)f(y)μB(a,ρ(a,y))1-
αdμ(y)q⩽cν(B)∑k=0∞∫B(a,η1k+1r)(f(y))pdμ(y)1/p×∫B(a,η1k+1r)⧹B(a,η1kr)μB(a,ρ(a,y))
(α-1)p′dμ(y)1/p′q⩽c∥f∥Lp,λ1(X,μ)qν(B)∑k=0∞μB(a,η1k+1r)λ1/p+α-1+1/p′q⩽c∥f∥Lp,λ1(X,μ)qν(B)μ(B)
(λ1/p+α-1/p)q∑k=0∞η2k(λ1/p+α-1/p)q⩽c∥f∥Lp,λ1(X,μ)qμ(B)qλ1/p=c∥f∥Lp,λ1(X,μ)qμ(B)λ2,

μ(B)1/q-1/p+α⩽c.

E1(x)≔y:ρ(a,y)ρ(a,x)<12a1,E2(x)≔y:12a1⩽ρ(a,y)ρ(a,x)⩽2a1,E3(x)≔y:2a1<ρ(a,y)ρ(a,x).

Si≔∫ρ(a,x)<rρ(a,x)γ∫Ei(x)f(y)ρ(x,y)α-1dμ(y)qdμ(x).

S1⩽C∫Bρ(a,x)γ+q(α-1)∫ρ(a,y)<ρ(a,x)f(y)dμ(y)qdμ(x).

∫ρ(a,x)>tρ(a,x)γ+q(α-1)dμ(x)=∑n=0∞∫B(a,2k+1t)⧹B(a,2kt)(ρ(a,x))γ+
(α-1)qdμ(x)⩽c∑n=0∞(2kt)γ+q(α-1)+1=ctγ+q(α-1)+1,

∫ρ(a,x)<tρ(a,x)β(1-p′)+1dμ(x)⩽ctβ(1-p′)+1.

Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/SuppMathOperators.js



9/8/2020 Morrey spaces and fractional integral operators - ScienceDirect

https://www.sciencedirect.com/science/article/pii/S0723086909000176 9/13

Now using Theorem C we have

Further, observe that if ρ(a,y)>2a1ρ(a,x), then ρ(a,y)⩽a1ρ(a,x)+a1ρ(a,y)⩽ρ(a,y)/2+a1ρ(x,y). Hence
ρ(a,y)/(2a1)⩽ρ(x,y). Consequently, using the growth condition for μ, the fact λ1<β-αp+1 and
Lemma E we find that

So, we conclude that

To estimate S2 we consider two cases. First assume that α<1/p. Let

Assume that p*=p/(1-αp). By Hölder's inequality, Corollary B and the assumption γ=q(1/p+β/p-
α)-1 we have

Let us now consider the case 1/p<α<1.

First notice that (see [13])

where the positive constant c does not depend on a and x.

This estimate and Hölder's inequality yield

supa∈X,t>0∫ρ(a,x)>tρ(a,x)γ+q(α-1)dμ(x)1/q∫B(a,t)ρ(a,y)β(1-p′)dμ(y)1/p′<∞.

S1⩽c∫Bρ(a,x)β(f(y))dμ(y)q/p⩽c∥f∥Mβp,λ1(X,μ)qrλ1q/p=c∥f∥Mβp,λ1(X,μ)qrλ2.

S3⩽c∫B(a,r)ρ(a,x)γ∫ρ(a,y)>ρ(a,x)f(y)ρ(a,y)1-
αdμ(y)qdμ(x)⩽c∫B(a,r)ρ(a,x)γ∑k=0∞∫B(a,2k+1ρ(a,x))⧹B(a,2kρ(a,x))f(y)ρ(a,y)1-
αdμ(y)qdμ(x)⩽c∫B(a,r)ρ(a,x)γ∑k=0∞∫B(a,2k+1ρ(a,x))fp(y)ρ(a,y)βdμ(y)1/p×∫B(a,2k+1ρ(a,x))⧹B(a,2kρ(a,x))ρ(a
p′)+(α-1)p′dμ(y)1/p′qdμ(x)⩽c∥f∥Mβp,λ1(X,μ)q∫B(a,r)ρ(a,x)γ×∑k=0∞(2kρ(a,x))λ1/p+α-1-
β/p(μB(a,2k+1ρ(a,x)))1/p′qdμ(x)⩽c∥f∥Mβp,λ1(X,μ)q∫B(a,r)ρ(a,x)γ∑k=0∞(2kρ(a,x))λ1/p+α-1/p-
β/pqdμ(x)⩽c∥f∥Mβp,λ1(X,μ)q∫B(a,r)ρ(a,x)(λ1/p+α-1/p-
β/p)q+γdμ(x)=c∥f∥Mβp,λ1(X,μ)q∫B(a,r)ρ(a,x)λ1q/p-
1dμ(x)⩽c∥f∥Mβp,λ1(X,μ)qrλ1q/p=c∥f∥Mβp,λ1(X,μ)qrλ2.

S3⩽c∥f∥Mβp,λ1(X,μ)qrλ2.

Ek,r≔{x:2kr⩽ρ(a,x)<2k+1r},Fk,r≔{x:2k-1r/a1⩽ρ(a,x)<a12k+2r}.

S2=∑k=-∞-1∫Ek,rρ(a,x)γ∫E2(x)f(y)ρ(x,y)α-1dμ(y)qdμ(x)⩽∑k=-
∞-1∫Ek,rρ(a,x)γ∫E2(x)f(y)ρ(x,y)α-1dμ(y)p*dμ(x)q/p′×∫Ek,rρ(a,x)γp*/(p*-q)dμ(x)(p*-q)/p*⩽c∑k=-
∞-12k(γ+(p*-q)/p*)∫XIα(fχFk,r)(x)p*dμ(x)q/p*⩽c∑k=-∞-12k(γ+(p*-
q)/p*)∫Fk,r(f(x))pdμ(x)q/p⩽c∫B(a,2a1r)ρ(a,x)β(f(x))pdμ(x)q/p⩽c∥f∥Mβp,λ1(X,μ)qrλ1q/p=c∥f∥Mβp,λ1(X,μ)qr

∫E2(x)(ρ(x,y)(α-1)p′dμ(y)⩽cρ(a,x)1+(α-1)p′,

S2⩽c∑k=-∞-1∫Ek,rρ(a,x)γ+[(α-1)p′+1)]q/p′∫E2(x)(f(y))pdμ(y)q/pdμ(x)q/p′⩽c∑k=-∞-1∫Ek,rρ(a,x)γ+
[(α-1)p′+1)]q/p′dμ(x)∫Fk,r(f(y))pdμ(y)q/p⩽c∑k=-∞-1(2kr)γ+[(α-1)p′+1)]q/p′
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[1]

Now the result follows immediately. □

Proof of Theorem 3.4

Let f⩾0. Suppose that a∈X and r>0. Suppose also that f1=fχB(a,2a1r) and f2=f-f1. Then
Iαf=Iαf1+Iαf2. Consequently,

Due to Theorem A and the condition sλ1/p=λ2/q we have

Now observe that if x∈B(a,r) and y∈X⧹B(a,2a1r), then ρ(a,y)/2a1⩽ρ(x,y). Hence Hölder's
inequality, condition (2) and the condition 0<λ1<p/q yield

Consequently, by the assumptions sλ1/p=λ2/q and s=pq(1-α)/(pq+p-q) we conclude that

Summarizing the estimates derived above we finally have the desired result. □
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Abstract

The present paper is devoted to the boundedness of fractional integral operators in Morrey spaces
defined on quasimetric measure spaces. In particular, Sobolev, trace and weighted inequalities with
power weights for potential operators are established. In the case when measure satisfies the dou-
bling condition the derived conditions are simultaneously necessary and sufficient for appropriate
inequalities.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

The main purpose of this paper is to establish the boundedness of fractional integral
operators in (weighted) Morrey spaces defined on quasimetric measure spaces. We de-
rive Sobolev, trace and two-weight inequalities for fractional integrals. In particular, we
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generalize: (a) Adams [1] trace inequality; (b) the theorem by Stein and Weiss [18] re-
garding the two-weight inequality for the Riesz potentials; (c) Sobolev-type inequality. We
emphasize that in the most cases the derived conditions are necessary and sufficient for
appropriate inequalities.

In the paper [9] (see also [10, Chapter 2]) integral-type sufficient condition guaranteeing
the two-weight weak-type inequality for integral operator with positive kernel defined on
non-homogeneous spaces was established. In the same paper (see also [10, Chapter 2]) the
authors solved the two-weight problem for kernel operators on spaces of homogeneous type.

In [12] (see also [5, Chapter 6]) a complete description of non-doubling measure �
guaranteeing the boundedness of fractional integral operator I� (see the next section for the
definition) from L p(�, X ) to Lq (�, X ), 1< p< q < ∞,was given.We notice that this result
was derived in [11] for potentials on Euclidean spaces. In [12], theorems of Sobolev and
Adams type for fractional integrals defined on quasimetricmeasure spaceswere established.
For the boundedness of fractional integrals on metric measure spaces we refer also to
[7]. Some two-weight norm inequalities for fractional operators on Rn with non-doubling
measure were studied in [8]. Further, in the paper [13] necessary and sufficient conditions
on measure � governing the inequality of Stein–Weiss type on non-homogeneous spaces
were established. For some properties of fractional integrals defined on Rn in weighted
Lebesgue spaces with power type weights see e.g., [16, Chapter 5].

The boundedness of the Riesz potential in Morrey spaces defined on Euclidean spaces
was studied in [15,2]. The same problem for fractional integrals on Rn with non-doubling
measure was investigated in [17].

Finally, we mention that necessary and sufficient conditions for the boundedness of max-
imal operators and Riesz potentials in the local Morrey-type spaces were derived in [3,4].

The main results of this paper were presented in [6].
It should be emphasized that the results of this work are new even for Euclidean spaces.
Constants (often different constants in the same series of inequalities) will generally be

denoted by c or C.

2. Preliminaries

Throughout the paperwe assume that X := (X, �, �) is a topological space, endowedwith
a complete measure � such that the space of compactly supported continuous functions is
dense in L1(X, �) and there exists a function (quasimetric) � : X×X −→ [0, ∞) satisfying
the conditions:

(1) �(x, y)> 0 for all x � y, and �(x, x) = 0 for all x ∈ X ;
(2) there exists a constant a0�1, such that �(x, y)�a0�(y, x) for all x, y ∈ X;
(3) there exists a constanta1�1, such that�(x, y)�a1(�(x, z)+�(z, y)) for all x, y, z ∈ X.

We assume that the balls B(a, r ) := {x ∈ X : �(a, x)< r} are �-measurable and
0< �(B(a, r ))<∞ for a ∈ X, r > 0. For every neighborhood V of x ∈ X, there ex-
ists r > 0, such that B(x, r ) ⊂ V . We also assume that �(X )= ∞, �{a} = 0, and B(a, r2)\
B(a, r1) � ∅, for all a ∈ X , 0< r1 < r2 < ∞.
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The triple (X, �, �) will be called quasimetric measure space.
Let 0< � < 1. We consider the fractional integral operators I�, and K� given by

I� f (x) :=
∫
X
f (y)�(x, y)�−1 d�(y),

K� f (x) :=
∫
X
f (y)(�B(x, �(x, y)))�−1 d�(y),

for suitable f on X.
Suppose that � is another measure on X, ��0 and 1� p< ∞. We deal with the Morrey

space L p,�(X, �, �), which is the set of all functions f ∈ L p
loc(X, �) such that

‖ f ‖L p,�(X,�,�) := sup
B

(
1

�(B)�

∫
B

| f (y)|p d�(y)

)1/p

< ∞,

where the supremum is taken over all balls B.
If �=�, then we have the classical Morrey space L p,�(X, �) with measure �. When �=0,

then L p,�(X, �, �) = L p(X, �) is the Lebesgue space with measure �.

Further, suppose that � ∈ R.Weare also interested inweightedMorrey spaceMp,�
� (X, �)

which is the set of all �-measurable functions f such that

‖ f ‖
Mp,�

� (X,�)
:= sup

a∈X;r>0

(
1

r�

∫
B(a,r )

| f (y)|p�(a, y)� d�(y)

)1/p

< ∞.

If � = 0, then we denote Mp,�
� (X, �) := Mp,�(X, �).

We say that a measure � satisfies the growth condition (� ∈ (GC)), if there exists
C0 > 0 such that �(B(a, r ))�C0r ; further, � satisfies the doubling condition (� ∈ (DC)) if
�(B(a, 2r ))�C1 �(B(a, r )) for some C1 > 1. If � ∈ (DC), then (X, �, �) is called a space
of homogeneous type (SHT). A quasimetric measure space (X, �, �), where the doubling
condition is not assumed, is also called a non-homogeneous space.

The measure � on X satisfies the reverse doubling condition (� ∈ (RDC)) if there are
constants �1 and �2 with �1 > 1 and �2 > 1 such that

�B(x, �1r )��2�B(x, r ). (1)

It is known (see e.g., [19, p. 11]) that if � ∈ (DC), then � ∈ (RDC).
The next statements are from [12] (see also [5, Theorem 6.1.1, Corollary 6.1.1] and [11]

in the case of Euclidean spaces).

Theorem A. Let (X, �, �) be a quasimetric measure space. Suppose that 1< p< q < ∞
and 0< � < 1. Then I� is bounded from L p(X ) to Lq (X ) if and only if there exists a positive
constant C such that

�(B(a, r ))�Crs, s = pq(1 − �)

pq + p − q
, (2)

for all a ∈ X and r > 0.
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Corollary B. Let (X, �, �) be a quasimetricmeasure space, 1< p< 1/� and 1/q=1/p−�.

Then I� is bounded from L p(X ) to Lq (X ) if and only if � ∈ (GC).

The latter statement by different proof was also derived in [7] for metric spaces.
To prove some of our statements we need the following Hardy-type transform:

Ha f (x) :=
∫
�(a,y)��(a,x)

f (y)d�(y),

where a is a fixed point of X and f ∈ L loc(X, �).

Theorem C. Suppose that (X, �, �) is a quasimetric measure space and 1< p�q <∞.
Assume that � is another measures on X. Let V (resp. W ) be non-negative �× �-measurable
(resp. non-negative �×�-measurable) function on X × X . If there exists a positive constant
C independent of a ∈ X and t > 0 such that(∫

�(a,y)� t
V (a, y)d�(y)

)1/q(∫
�(a,y)� t

W (a, y)1−p′
d�(y)

)1/p′

�C < ∞,

then there exists a positive constant c such that for all �-measurable non-negative f and
a ∈ X the inequality(∫

B(a,r )
(Ha f (x))

qV (a, x)d�(x)

)1/q

�c

(∫
B(a,r )

( f (x))pW (a, x)d�(x)

)1/p

holds.

This statement was proved in [5, Section 1.1] for Lebesgue spaces.

Proof of Theorem C. Let f �0. We define S(s) := ∫
�(a,y)<s f (y)d�(y), for s ∈ [0, r ].

Suppose S(r )<∞, then 2m < S(r )�2m+1, for some m ∈ Z. Let

s j := sup{t : S(t)�2 j }, j�m and sm+1 := r .

Then it is easy to see that (see also [5, pp. 5–8] for details) (s j )
m+1
j=−∞ is a non-decreasing

sequence, S(s j )�2 j , S(t)�2 j for t > s j , and

2 j
�

∫
s j ��(a,y)� s j+1

f (y)d�(y).

If � := lim j→−∞ s j , then

�(a, x)< r ⇔ �(a, x) ∈ [0, �] ∪
m⋃

j=−∞
(s j , s j+1].

If S(r ) = ∞, then we may put m = ∞. Since

0�

∫
�(a,y)<�

f (y)d�(y)� S(s j )�2 j ,
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for every j, therefore
∫
�(a,y)<� f (y)d�(y) = 0. From these observations, we have∫

�(a,x)<r
(Ha f (x))

qV (a, x)d�(x)

�

m∑
j=−∞

∫
s j ��(a,x)� s j+1

(Ha f (x))
qV (a, x)d�(x)

�

m∑
j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)

(∫
�(a,y)� s j+1

( f (y))d�(y)

)q

d�(x).

Notice that∫
�(a,y)� s j+1

f d�� S(s j+2)�2 j+2
�C

∫
s j−1 ��(a,y)� s j

f d�.

Using Hölder’s inequality, we find that∫
�(a,x)<r

(Ha f (x))
qV (a, x)d�(x)

�

m∑
j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)

(∫
�(a,y)� s j+1

( f (y))d�(y)

)q

d�(x)

�C
m∑

j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)

(∫
s j−1 ��(a,y)� s j

( f (y))d�(y)

)q

d�(x)

�C
m∑

j=−∞

∫
s j ��(a,x)� s j+1

V (a, x)d�(x)

×
(∫

s j−1 ��(a,y)� s j
( f (y))pW (a, y)d�(y)

)q/p

×
(∫

s j−1 ��(a,y)� s j
W (a, y)1−p′

d�(y)

)q/p′

�C
m∑

j=−∞

∫
s j ��(a,y)

V (a, y)d�(y)

(∫
�(a,y)� s j

W (a, y)1−p′
d�(y)

)q/p′

(∫
s j−1 ��(a,y)� s j

( f (y))pW (a, y)d�(y)

)q/p

�C
m∑

j=−∞

(∫
s j−1 ��(a,y)� s j

( f (y))pW (a, y)d�(y)

)q/p

�C

(∫
�(a,y)�r

( f (y))pW (a, y)d�(y)

)q/p

.

This completes the proof of the theorem. �
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For our purposes we also need the following lemma (see [14] for the case of Rn).

Lemma D. Suppose that (X, �, �) be an SHT. Let 0< �< 1� p<∞. Then there exists a
positive constant C such that for all balls B0,

‖	B0‖L p,�(X,�)�C�(B0)
(1−�)/p.

Proof. Let B0 := B(x0, r0) and B := B(a, r ). We have

‖	B0‖L p,�(X,�) = sup
B

(
�(B0 ∩ B)

�(B)�

)1/p

.

Suppose that B0 ∩ B � ∅. Let us assume that r�r0. Then (see [19, Lemma 1] or [10, p.
9]) B ⊂ B(x0, br0), where b = a1(1 + a0). By the doubling condition it follows that

�(B ∩ B0)

�(B)�
�

�(B)

�(B)�
= �(B)1−�

��(B(x0, br0))
1−�

� C�(B0)
1−�.

Let now r0 < r . Then �B0�c�B, where the constant c depends only on a1 and a0. Then

�(B ∩ B0)

�(B)�
�c

�(B0)

�(B0)�
= c�(B0)

1−�. �

The next lemma may be well known but we prove it for the completeness.

Lemma E. Let (X, �, �) be a non-homogeneous space with the growth condition. Suppose
that 
> − 1. Then there exists a positive constant c such that for all a ∈ X and r > 0, the
inequality

I (a, r, 
) :=
∫
B(a,r )

�(a, x)
 d��cr
+1

holds.

Proof. Let 
�0. Then the result is obvious because of the growth condition for �. Further,
assume that −1< 
< 0. We have

I (a, r, 
) =
∫ ∞

0
�{x ∈ B(a, r ) : �(a, x)
 > �}d�

=
∫ ∞

0
�(B(a, r ) ∩ B(a, �1/
))d�=

∫ r


0
+
∫ ∞

r

:= I (1)(a, r, 
)+I (2)(a, r, 
).

By the growth condition for � we have

I (1)(a, r, 
)�r
�(B(a, r ))�cr
+1,

while for I (2)(a, r, 
) we find that

I (2)(a, r, 
)�c
∫ ∞

r

�1/
 d� = −c(
 + 1)



r
+1 = c1r


+1

because 1/
 < − 1. �
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The following statement is the trace inequality for the operator K� (see [1] for the case
of Euclidean spaces and, e.g., [10] or [5, Theorem 6.2.1] for an SHT).

Theorem F. Let (X, �, �)beanSHT. Suppose that1< p< q < ∞and0< �< 1/p.Assume
that � is another measure on X. Then K� is bounded from L p(X, �) to Lq (X, �) if and only if

�B�c(�B)q(1/p−�),

for all balls B in X.

3. Main results

In this section we formulate the main results of the paper. We begin with the case of an
SHT.

Theorem 3.1. Let (X, �, �) be an SHT and let 1< p< q < ∞. Suppose that 0< � < 1/p,
0< �1 < 1− �p and �2/q = �1/p. Then K� is bounded from L p,�1 (X, �) to Lq,�2 (X, �, �)
if and only if there is a positive constant c such that

�(B)�c�(B)q(1/p−�), (3)

for all balls B.

The next statement is a consequence of Theorem 3.1.

Theorem 3.2. Let (X, �, �) be an SHT and let 1< p< q < ∞. Suppose that 0< � < 1/p,
0< �1 < 1 − �p and �2/q = �1/p. Then for the boundedness of K� from L p,�1 (X, �) to
Lq,�2 (X, �) it is necessary and sufficient that q = p/(1 − �p).

For non-homogeneous spaces we have the following statements:

Theorem 3.3. Let (X, �, �) be a non-homogeneous space with the growth condition. Sup-
pose that 1< p�q <∞, 1/p−1/q��< 1 and � � 1/p.Suppose also that p�−1< �< p−
1, 0< �1 < �−�p+1 and �1q=�2 p. Then I� is bounded from M p,�1

� (X, �) to Mq,�2
� (X, �),

where � = q(1/p + �/p − �) − 1.

Theorem 3.4. Suppose that (X, �, �) is a quasimetric measure space and � satisfies condi-
tion (2). Let 1< p< q < ∞. Assume that 0< �< 1, 0< �1 < p/q and s�1/p= �2/q. Then
the operator I� is bounded from M p,�1s(X, �) to Mq,�2 (X, �).

4. Proof of the main results

In this section we give the proofs of the main results.

Proof of Theorem 3.1. Necessity: Suppose K� is bounded from L p,�1 (�) to Lq,�2 (X, �, �).
Fix B0 := B(x0, r0). For x, y ∈ B0, we have that

B(x, �(x, y)) ⊆ B(x, a1(a0 + 1)r0) ⊆ B(x0, a1(1 + a1(a0 + 1))r0).
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Hence using the doubling condition for �, it is easy to see that

�(B0)
�
�cK �	B0 (x), x ∈ B0.

Consequently, using the condition �2/q =�1/p, the boundedness of K� from L p,�(X, �)
to Lq,�2 (X, �, �) and Lemma D we find that

�(B0)
�−�1/p�(B0)

1/q
�c‖K�	B0‖Lq,�2 (X,�,�)

� c‖	B0‖L p,�1 (X,�)�c�(B0)
(1−�1)/p.

Since c does not depend on B0 we have condition (3).
Sufficiency: Let B := B(a, r ), B̃ := B(a, 2a1r ) and f �0. Write f ∈ L p,�1 (�) as

f = f1 + f2 := f 	B̃ + f 	B̃C , where 	B is a characteristic function of B. Then we have

S :=
∫
B
(K� f (x))

q d�(x)�c

(∫
B
(K� f1(x))

q d�(x) +
∫
B
(K� f2(x))

q d�(x)

)
:= c(S1 + S2).

Applying Theorem F and the fact � ∈ (DC) we find that

S1�

∫
X
(K� f1)

q (x)d�(x)�c

(∫
B(a,2a1r )

( f (x))p d�(x)

)q/p

.

Now observe that if �(a, x)< r and �(a, y)> 2a1r , then �(a, y)> 2a1�(a, x). Conse-
quently, using the facts � ∈ (RDC) (see (1)), 0< �1 < 1 − �p and condition (3) we have

S2�c
∫
B(a,r )

(∫
�(a,y)>r

f (y)

�B(a, �(a, y))1−� d�(y)

)q

d�(x)

= �(B)

[ ∞∑
k=0

∫
B(a,�k+1

1 r )\B(a,�k1r )

f (y)

�B(a, �(a, y))1−� d�(y)

]q

� c�(B)

⎡
⎣ ∞∑
k=0

(∫
B(a,�k+1

1 r )
( f (y))p d�(y)

)1/p

×
(∫

B(a,�k+1
1 r )\B(a,�k1r )

�B(a, �(a, y))(�−1)p′
d�(y)

)1/p′⎤
⎦
q

� c‖ f ‖q
L p,�1 (X,�)

�(B)

( ∞∑
k=0

�B(a, �k+1
1 r )�1/p+�−1+1/p′

)q

� c‖ f ‖q
L p,�1 (X,�)

�(B)�(B)(�1/p+�−1/p)q

( ∞∑
k=0

�k(�1/p+�−1/p)
2

)q

� c‖ f ‖q
L p,�1 (X,�)

�(B)q�1/p = c‖ f ‖q
L p,�1 (X,�)

�(B)�2 ,

where the positive constant c does not depend on B. Now the result follows
immediately. �
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Proof of Theorem 3.2. Sufficiency: Assuming � = 1/p − 1/q and � = � in Theorem 3.1
we have that K� is bounded from L p,�1 (X, �) to Lq,�2 (X, �).
Necessity: Suppose that K� is bounded from L p,�1 (X, �) to Lq,�2 (X, �). Then by

Theorem 3.1 we have

�(B)1/q−1/p+�
�c.

The conditions �(X ) = ∞ and �{x} = 0, for all x ∈ X , implies that � = 1/p − 1/q. �

Proof of Theorem 3.3. Let f �0. For x, a ∈ X, let us introduce the following notation:

E1(x) :=
{
y :

�(a, y)

�(a, x)
<

1

2a1

}
, E2(x) :=

{
y :

1

2a1
�

�(a, y)

�(a, x)
�2a1

}
,

E3(x) :=
{
y : 2a1 <

�(a, y)

�(a, x)

}
.

For i = 1, 2, 3, r > 0 and a ∈ X, we denote

Si :=
∫
�(a,x)<r

�(a, x)�
(∫

Ei (x)
f (y)�(x, y)�−1 d�(y)

)q

d�(x).

If y ∈ E1(x), then �(a, x)< 2a1a0�(x, y). Hence, it is easy to see that

S1�C
∫
B

�(a, x)�+q(�−1)
(∫

�(a,y)<�(a,x)
f (y)d�(y)

)q

d�(x).

Taking into account the condition � < (1 − �)q − 1 we have∫
�(a,x)>t

�(a, x)�+q(�−1) d�(x) =
∞∑
n=0

∫
B(a,2k+1t)\B(a,2k t)

(�(a, x))�+(�−1)q d�(x)

� c
∞∑
n=0

(2k t)�+q(�−1)+1 = ct�+q(�−1)+1,

while the condition � < p − 1 implies∫
�(a,x)<t

�(a, x)�(1−p′)+1 d�(x)�ct�(1−p′)+1.

Hence

sup
a∈X,t>0

(∫
�(a,x)>t

�(a, x)�+q(�−1) d�(x)

)1/q(∫
B(a,t)

�(a, y)�(1−p′) d�(y)

)1/p′

<∞.

Now using Theorem C we have

S1�c

(∫
B

�(a, x)�( f (y))d�(y)

)q/p

�c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p = c‖ f ‖q
M

p,�1
� (X,�)

r�2 .
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Further, observe that if �(a, y)> 2a1�(a, x), then �(a, y)�a1�(a, x) + a1�(a, y)�
�(a, y)/2+a1�(x, y).Hence �(a, y)/(2a1)��(x, y). Consequently, using the growth con-
dition for �, the fact �1 < � − �p + 1 and Lemma E we find that

S3�c
∫
B(a,r )

�(a, x)�
(∫

�(a,y)>�(a,x)

f (y)

�(a, y)1−� d�(y)

)q

d�(x)

� c
∫
B(a,r )

�(a, x)�
( ∞∑
k=0

∫
B(a,2k+1�(a,x))\B(a,2k�(a,x))

f (y)

�(a, y)1−� d�(y)

)q

d�(x)

� c
∫
B(a,r )

�(a, x)�
[ ∞∑
k=0

(∫
B(a,2k+1�(a,x))

f p(y)�(a, y)� d�(y)

)1/p

×
(∫

B(a,2k+1�(a,x))\B(a,2k�(a,x))
�(a, y)�(1−p′)+(�−1)p′

d�(y)

)1/p′]q
d�(x)

� c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)�

×
( ∞∑
k=0

(2k�(a, x))�1/p+�−1−�/p(�B(a, 2k+1�(a, x)))1/p
′
)q

d�(x)

� c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)�
( ∞∑
k=0

(2k�(a, x))�1/p+�−1/p−�/p

)q

d�(x)

� c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)(�1/p+�−1/p−�/p)q+� d�(x)

= c‖ f ‖q
M

p,�1
� (X,�)

∫
B(a,r )

�(a, x)�1q/p−1 d�(x)�c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p

= c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

So, we conclude that

S3�c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

To estimate S2 we consider two cases. First assume that �< 1/p. Let

Ek,r := {x : 2kr��(a, x)< 2k+1r},

Fk,r := {x : 2k−1r/a1��(a, x)< a12
k+2r}.
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Assume that p∗ = p/(1 − �p). By Hölder’s inequality, Corollary B and the assumption
� = q(1/p + �/p − �) − 1 we have

S2 =
−1∑

k=−∞

∫
Ek,r

�(a, x)�
(∫

E2(x)
f (y)�(x, y)�−1 d�(y)

)q

d�(x)

�

−1∑
k=−∞

(∫
Ek,r

�(a, x)�
(∫

E2(x)
f (y)�(x, y)�−1 d�(y)

)p∗

d�(x)

)q/p′

×
(∫

Ek,r

�(a, x)�p
∗/(p∗−q) d�(x)

)(p∗−q)/p∗

� c
−1∑

k=−∞
2k(�+(p∗−q)/p∗)

(∫
X
I�( f 	Fk,r )(x)

p∗
d�(x)

)q/p∗

� c
−1∑

k=−∞
2k(�+(p∗−q)/p∗)

(∫
Fk,r

( f (x))p d�(x)

)q/p

� c

(∫
B(a,2a1r )

�(a, x)�( f (x))p d�(x)

)q/p

� c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p = c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

Let us now consider the case 1/p< � < 1.
First notice that (see [13])∫

E2(x)
(�(x, y)(�−1)p′

d�(y)�c�(a, x)1+(�−1)p′
,

where the positive constant c does not depend on a and x.
This estimate and Hölder’s inequality yield

S2�c
−1∑

k=−∞

(∫
Ek,r

�(a, x)�+[(�−1)p′+1)]q/p′
(∫

E2(x)
( f (y))p d�(y)

)q/p

d�(x)

)q/p′

� c
−1∑

k=−∞

(∫
Ek,r

�(a, x)�+[(�−1)p′+1)]q/p′
d�(x)

)(∫
Fk,r

( f (y))p d�(y)

)q/p

� c
−1∑

k=−∞
(2kr )�+[(�−1)p′+1)]q/p′+1

(∫
Fk,r

( f (y))p d�(y)

)q/p

= c
−1∑

k=−∞
2k�q/p

(∫
Fk,r

( f (y))p d�(y)

)q/p

�c

(∫
B(a,2a1r )

( f (y))p�(a, y)� d�(y)

)q/p

� c‖ f ‖q
M

p,�1
� (X,�)

r�1q/p = c‖ f ‖q
M

p,�1
� (X,�)

r�2 .

Now the result follows immediately. �



Author's personal copy

238 A. Eridani et al. / Expo. Math. 27 (2009) 227–239

Proof of Theorem 3.4. Let f �0. Suppose that a ∈ X and r > 0. Suppose also that f1 =
f 	B(a,2a1r ) and f2 = f − f1. Then I� f = I� f1 + I� f2. Consequently,∫

B(a,r )
(I� f (x))

q d�(x)�2q−1
(∫

B(a,r )
(I� f1(x))

q d�(x) +
∫
B(a,r )

(I� f2(x))
q d�(x)

)

:= 2q−1(S(1)a,r + S(2)a,r ).

Due to Theorem A and the condition s�1/p = �2/q we have

S(1)a,r �c

(∫
B(a,2a1r )

( f (x))p d�(x)

)q/p

= c

(
1

(2a1r )�1s

∫
B(a,2a1r )

( f (x))p dx

)q/p

r�1sq/p
�c‖ f ‖q

M p,�1s (X,�)
r�2 .

Now observe that if x ∈ B(a, r ) and y ∈ X\B(a, 2a1r ), then �(a, y)/2a1��(x, y).
Hence Hölder’s inequality, condition (2) and the condition 0< �1 < p/q yield

I� f2(x) =
∫
X\B(a,2a1r )

f (y)/�(x, y)1−� d�(y)

=
∞∑
k=0

(∫
B(a,2k+2a1r )\B(a,2k+1a1r )

( f (y))p d�(y)

)1/p

×
(∫

B(a,2k+2a1r )\B(a,2k+1a1r )
�(a, y)(�−1)p′

d�(y)

)1/p′

� c
∞∑
k=0

(
1

(2k+1a1r )�1s

∫
B(a,2k+1a1r )

( f (y))p d�(y)

)1/p

× (2ka1r )
�1s/p+�−1+s/p′

� c‖ f ‖Mp,�1s (X,�)r
�1s/p+�−1+s/p′

.

Consequently, by the assumptions s�1/p = �2/q and s = pq(1 − �)/(pq + p − q) we
conclude that

S(2)a,r �c‖ f ‖q
M p,�1s (X,�)

r (�1s/p+�−1+s/p′)q+s = c‖ f ‖q
M p,�1s (X,�)

r�2 .

Summarizing the estimates derived above we finally have the desired result. �
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same journal.

Cites Year Value

External Cites per Doc  Cites per Doc

Evolution of the number of total citation per document
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citations are calculated by subtracting the number of
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International Collaboration accounts for the articles that
have been produced by researchers from several
countries. The chart shows the ratio of a journal's
documents signed by researchers from more than one
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Year International Collaboration
2004 12.50
2005 15 38

Citable documents  Non-citable documents

Not every article in a journal is considered primary
research and therefore "citable", this chart shows the
ratio of a journal's articles including substantial research
(research articles, conference papers and reviews) in
three year windows vs. those documents other than
research articles, reviews and conference papers.

Documents Year Value

Cited documents  Uncited documents

Ratio of a journal's items, grouped in three years
windows, that have been cited at least once vs. those
not cited during the following year.

Documents Year Value
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Uncited documents 2005 12
Uncited documents 2006 34
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