THE FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES OVER Q-HOMOGENEOUS METRIC MEASURE SPACE

Hairur Rahman
Faculty of Science and Technology, Department of Mathematics, Universitas Islam Negeri Maulana Malik Ibrahim, Gajah Yana, 65144 Malang, Indonesia
M. Imam Utoyo
Department of Mathematics, Airlangga University, Mulyorejo, 60115.Surabaya, Indonesia
Eridani
Department of Mathematics, Airlangga University, Mulyorejo, 60115.Surabaya, Indonesia

Abstract

This paper establishes necessary and sufficient condition for the boundedness of the fractional integral operator $I_{\alpha} f$ on Morrey spaces over metric measure spaces which satisfies the Q-homogeneous and its corollary.

Key words: Morrey Space Classic; Metric Measure Space; Q-Homogeneous.
Cite this Article: Hairur Rahman, M. Imam Utoyo and Eridani, The Fractional Integral Operators on Morrey Spaces Over Q-Homogeneous Metric Measure Space, International Journal of Civil Engineering and Technology (IJCIET) 10(1), 2019, pp. 2309-2322.
http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET\&VType=10\&IType=1

1. INTRODUCTION

We consider to a topological space $X:=(X, \delta, \mu)$, endowed with complete measure μ such that the space of compactly supported continuous functions is dense in $L^{1}(X, \mu)$ and there exists a function (metric) $\delta: X \times X \rightarrow[0, \infty)$ satisfying the following conditions.

1. $\delta(x, y)=0$ if and only if $x=y$;
2. $\delta(x, y)>0$ for all $x \neq y, x, y \in X$;
3. $\delta(x, y)=\delta(y, x)$;
4. $\delta(x, y) \leq\{\delta(x, z)+\delta(z, y)\}$
for every $x, y, z \in X$. We have an assumptions that the balls $B(a, r):=\{x \in X: \delta(x, a)<$ $r\}$ are measurable, for $a \in X, r>0$, and $0 \leq \mu(B(a, r))<\infty$. For every neighborhood V of $x \in X$, there exists $r>0$, such that $B(x, r) \subset V$. We also assume that $\mu(X)=\infty, \mu\{a\}=$
