International Journal of Civil Engineering and Technology (IJCIET)

Volume 10, Issue 01, January 2019, pp. 2309–2322, Article ID: IJCIET_10_01_209 Available online at http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType=1 ISSN Print: 0976-6308 and ISSN Online: 0976-6316

©IAEME Publication

Scopus Indexed

THE FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES OVER Q-HOMOGENEOUS METRIC MEASURE SPACE

Hairur Rahman

Faculty of Science and Technology, Department of Mathematics, Universitas Islam Negeri Maulana Malik Ibrahim, Gajah Yana, 65144 Malang, Indonesia

M. Imam Utoyo

Department of Mathematics, Airlangga University, Mulyorejo, 60115.Surabaya, Indonesia

Eridani

Department of Mathematics, Airlangga University, Mulyorejo, 60115.Surabaya, Indonesia

ABSTRACT

This paper establishes necessary and sufficient condition for the boundedness of the fractional integral operator $I_{\alpha}f$ on Morrey spaces over metric measure spaces which satisfies the Q-homogeneous and its corollary.

Key words: Morrey Space Classic; Metric Measure Space; Q-Homogeneous.

Cite this Article: Hairur Rahman, M. Imam Utoyo and Eridani, The Fractional Integral Operators on Morrey Spaces Over Q-Homogeneous Metric Measure Space, *International Journal of Civil Engineering and Technology (IJCIET)* 10(1), 2019, pp. 2309–2322.

http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=10&IType=1

1. INTRODUCTION

We consider to a topological space $X := (X, \delta, \mu)$, endowed with complete measure μ such that the space of compactly supported continuous functions is dense in $L^1(X, \mu)$ and there exists a function (metric) $\delta: X \times X \to [0, \infty)$ satisfying the following conditions.

- 1. $\delta(x,y) = 0$ if and only if x = y;
- 2. $\delta(x,y) > 0$ for all $x \neq y, x, y \in X$;
- 3. $\delta(x, y) = \delta(y, x)$;
- 4. $\delta(x, y) \leq \{\delta(x, z) + \delta(z, y)\}$

for every $x, y, z \in X$. We have an assumptions that the balls $B(a, r) := \{x \in X : \delta(x, a) < r\}$ are measurable, for $a \in X, r > 0$, and $0 \le \mu(B(a, r)) < \infty$. For every neighborhood V of $x \in X$, there exists r > 0, such that $B(x, r) \subset V$. We also assume that $\mu(X) = \infty$, $\mu\{a\} = 0$