KYUNGPOOK Math. J. 49(2009), 31-39

Fractional Integrals and Generalized Olsen Inequalities

Hendra Gunawan*

Department of Mathematics, Bandung Institute of Technology, Bandung 40132, Indonesia

e-mail: hgunawan@math.itb.ac.id

Eridani

Department of Mathematics, Airlangga University Surabaya 60115, Indonesia e-mail: eridaniQunair.ac.id

ABSTRACT. Let T_{ρ} be the generalized fractional integral operator associated to a function $\rho: (0, \infty) \to (0, \infty)$, as defined in [16]. For a function W on \mathbb{R}^n , we shall be interested in the boundedness of the multiplication operator $f \mapsto W \cdot T_{\rho} f$ on generalized Morrey spaces. Under some assumptions on ρ , we obtain an inequality for $W \cdot T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.

1. Introduction

For $0 < \alpha < n$, let I_{α} denote the Riesz potential or the (classical) fractional integral operator, which is given by the formula

$$I_{\alpha}f(x) := \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy.$$

Formally, through its Fourier transform, the operator I_{α} can be recognized as a multiple of the Laplacian to the power of $-\frac{\alpha}{2}$, that is,

$$I_{\alpha}f = \kappa(-\Delta)^{-\alpha/2}f,$$

where $\kappa = \kappa(n, \alpha)$ (see, for instance, [2], [13], [22], [24]). A well-known result for I_{α} is the Hardy-Littlewood-Sobolev inequality, which was proved by Hardy and Littlewood [8], [10] and Sobolev [23] around the 1930's.

Theorem 1.1 (Hardy-Littlewood; Sobolev). For 1 , we have the inequality

(1.1)
$$||I_{\alpha}f||_q \le C_p ||f||_p,$$

^{*} Corresponding author.

Received 23 April 2007; received in revised form 24 April 2007; accepted 1 May 2007. 2000 Mathematics Subject Classification: 26A33, 47B38, 42B20, 42B25, 26D10.

Key words and phrases: Fractional integral operators, Hardy-Littlewood maximal operators, multiplication operators, Olsen inequality, Morrey spaces.

³¹