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ABSTRACT. Let T}, be the generalized fractional integral operator associated to a function
p:(0,00) — (0,00), as defined in [16]. For a function W on R", we shall be interested in
the boundedness of the multiplication operator f +— W T, f on generalized Morrey spaces.
Under some assumptions on p, we obtain an inequality for W - T}, which can be viewed as
an extension of Olsen’s and Kurata-Nishigaki-Sugano’s results.

1. Introduction

For 0 < a < m, let I, denote the Riesz potential or the (classical) fractional
integral operator, which is given by the formula

n o=y

Formally, through its Fourier transform, the operator I, can be recognized as a
@
multiple of the Laplacian to the power of ~3 that is,

Iof = K(~8)"2F,
where k = k(n,a) (see, for instance, [2], [13], [22], [24]). A well-known result for
I, is the Hardy-Littlewood-Sobolev inequality, which was proved by Hardy and
Littlewood [8], [10] and Sobolev [23] around the 1930’s.

Theorem 1.1 (Hardy-Littlewood; Sobolev). Forl < p < E, we have the inequality
«a

(L.1) Haflla < Coll fllp,
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