A CHARACTERIZATION FOR FRACTIONAL INTEGRALS ON GENERALIZED MORREY SPACES

Eridani and M. I. Utoyo

(Airlangga University, Indonesia)

H. Gunawan

(Bandung Institute of Technology, Indonesia)

Received May 22, 2012

Abstract. This paper concerns with the fractional integrals, which are also known as the Riesz potentials. A characterization for the boundedness of the fractional integral operators on generalized Morrey spaces will be presented. Our results can be viewed as a refinement of Nakai's^[7].

Key words: fractional integrals, morrey spaces

AMS (2010) subject classification: 26A33, 42B35, 43A15, 47B38, 47G10

1 Introduction

For $0 < \alpha < d$, we define the fractional integral (also known as the Riesz potential) $I_{\alpha}f$ by

$$I_{\alpha}f(x) := \int_{\mathbf{R}^d} \frac{f(y)}{|x-y|^{d-\alpha}} \mathrm{d}y, \qquad x \in \mathbf{R}^d,$$

for any suitable function f on \mathbf{R}^d . Clearly $I_{\alpha}f$ is well-defined for any locally bounded, compactly supported function f on \mathbf{R}^d . It is well-known that I_{α} is bounded from $L^p(\mathbf{R}^d)$ to $L^q(\mathbf{R}^d)$, that is,

$$||I_{\alpha}f:L^{q}|| \leq C ||f:L^{p}||,$$

if and only if

$$\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{d},$$