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Abstract. This paper concerns with the fractional integrals, which are also known as the
Riesz potentials. A characterization for the boundedness of the fractional integral operators
on generalized Morrey spaces will be presented. Our results can be viewed as a refinement
of Nakai’s!".
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1 Introduction

For 0 < a < d, we define the fractional integral (also known as the Riesz potential) /I, f by

f(v)

————dy, xeR?,
X—)-‘|d"a . ?

I f(x) == /

JRA

for any suitable function f on RY. Clearly I, f is well-defined for any locally bounded, com-

pactly supported function f on RY. It is well-known that /,, is bounded from L”(R4) to L9(R¥),
that is,

[Hof = LA < CII.f = L7l

if and only if
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1 p :
with 1 < p < (E. This result was proved by Hardy and Littlewood > and Sobolev!!! around
the 1930’s. Further development on the subject can be found in [11, 12].

Next, let R* := (0,00). For 1 < p < oo and a suitable function ¢ : R* — R™, we define the

generalized Morrey space LP? = L7?(R?) to be the set of all functions f € L (R?) for which

loc

y 1/p
I 0l=swp s (o [ 17070y <o

Here the supremum are taken over all open balls B = B(a,r) in RY and ¢(B) = ¢(r), where
r€ RT_ For certain functions ¢, the spaces L”¥ reduce to some classical spaces. For instance,
if 9(r) = FA=4/P where 0 < A < d, then L9 is the classical Morrey space L4, For a brief
history of the Morrey space and related spaces, see [8]. For more recent results, see [9, 13] and
the references therein.

In this short paper, we shall revisit Nakai’s theorems on the fractional integrals on the gen-
eralized Morrey spaces'”). In particular, we find that the sufficient condition imposed by Nakai
for the boundedness of the operator turns out to be necessary. In other words, we obtain a

characterization for which the fractional integral operators are bounded from L”¢ to L4V,

2 Main Results

Let us begin with some assumptions and relevant facts that follow. As customary, the letters
C, Ci, Cp and Cp 4 denote positive constants, which may depend on the parameters such as a,
p.¢ and the dimension d of the ambient space, but not on the function f or the variable x. These
constants may vary from line to line.

In the definition of L”?, the function ¢ is assumed to satisfy the following conditions:

¢ is almost decreasing  : < r= ¢(r) <Ci9(t);
¢(r)? is almostincreasing  : ¢t <r=t'9(t)? <Corio(r)’,
with Cj, G > 0 being independent of r and ¢. These two conditions imply that
" : - .f
¢ satisfies the doubling condition : 1 < <2 => — < E ; <
r r

for some C3 > 0 (which is also independent of r and t). Throughout this paper, we shall always

Gs,

assume that ¢ satisfies these conditions.
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In [7], Nakai showed that /, is bounded from L”*? to L%¥ for

I 1 o

g p d

if ¢ satisfies an additional condition, namely

[m.f“'%(r)dr < Cyr®o(r), (N

and
r®9(r) < CGsy(r), 2)

for every r € R*. By taking ¢(r) = r*~9/? with 0 < 1 < d— ap and w(r) = r%¢(r) with

1 1 «
_—=—— 7 Nakai’s result contains Spanne’s, which states that [, is bounded form LPA o [9H
a

q P
for a = %- % 0<A<d—apand u= %1[8:_ See also [3] for related results.

In the following, we shall show that the condition (2) is necessary for the fractional integral
operator I to be bounded from LP® to L%Y. To do so, we need some lemmas. The first lemma
shows particularly that the space LP+? is not trivial.

Lemma2.1.  [fBy = B(ao, ro), then xp, € L"® where xp, is the characteristic function of

the ball By. Moreover, there exists C > () such that

< ||ZB=J :Lp-‘t” <

]
¢(ro) ¢(ro)

Proof. Let B := B(a,r) denote an arbitrary ball in RY. It is easy to see that

P9 — L(wﬂﬂtﬂ)w I <|BUHBU|)”P= 1
s L7 =swp 55\ ) 25w\ 1Bl o)

Now, if r < ry, then ¢(ry) < C¢(r) and

1/p
;(|Bﬂ30|) < 1 = c
o\ 1Bl 9(r) = ()
On the other hand, if ry < r, we have rgq&(m)f’ < C,A,p(r)p and
I (|Bn30|)m’_ C|BNBy|'/? - C|Bo|\/? - Cr(l}/'" _C
o\ 1Bl Ao(r)  Fe(r) = g () T 900)

This completes the proof.

Lemma 2.2.  If By := B(ag, ro), then r§ < Clyxp,(x) for every x € By.
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Proof. If x,y € By := B(ao,ro), then [x—y| < |x —ao| + |ao — y| < 2rp. If we integrate both
sides of the following inequality rg_d < Clx—y|% ¢ over By, then we get the desired estimate.

The following theorem gives a characterization of the functions ¢ and y for which 7 is
bounded from L7+¢ to L4-¥.

Theorem 2.3. Suppose that

where 1 < p < % Suppose further that ¥* ¢(r) satisfies the integral condition (1). Then, I is
bounded from L0 to L9V if and only if r*¢(r) < Cy(r) for every r € R*.

Proof. The sufficient part is proved in [7]. We shall now prove the necessary part. Assume
that I is bounded from LP? to LY, and let By := B(ag,rg). If x € By, then & < Clgxp,(x).

Integrating over By, we get

1 1/q
7§ <€ (o [ Mata(lax) < Cwl) s 51
Bo| /By

<Cy(r)llxs, : Lyl < Cy(ro) 9 (r0) "

Note that the first inequality follows from Lemma 2.2, while the last one follows from Lemma

2.1. Since this is true for every ro € R™, we are done.

3 Additional Results

In [4], there is the following theorem that serves as an extension of Adams and Chiarenza—
Frasca’s result on the fractional integral operator I [1, 2].
o d . .
Theorem 3.1. (Gunawan-Eridani). Suppose that 1 < p < = and QP satisfies the integral

condition, namely

f w W_;(r) dt < Ce9”(r), ©)

1
foreveryr € R*. If ¢(r) < CrP for —(B < B < —a, then, forg= —aﬁ+pﬁ

. there exisis C, g >0
such that

Maf : L9 S Coplf : 179,

As in the previous part, we also have the characterization of ¢ for which [ is bounded from

179 1o 199"
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d
Theorem 3.2. Suppose that 1 < p < p and @7 satisfies the integral condition (3). If

Bp

d
—— <P < —aandg=
=B 1 a+p

, then 1y is bounded from Lg to L:'; o ifand only if ¢(r) <C B
forevery r € R,
Proof. The proof of the sufficient part can be found in [4]. As for the necessary part, we
have the following observation: if By := B(ag, ry), then
o 1 ‘A vle
75 < (g [ Hem(ler) < Col iz, 14"

< C (o) || xmy : 172 < C9(ro)?/4 9 (ro)~",

which may be rewritten as ¢(rg) < Crg. Since this inequality is valid for every rp € R™, the

theorem is proved.
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