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Abstract. In this paper, we shall discuss about Bessel-Riesz operators. Kurata et al. have investigated their boundedness on gen-
eralized Morrey spaces with weight. The boundedness of these operators on Lebesgue spaces and Morrey spaces will be reproved
using a different approach. Moreover, we also find the norm of the operators are bounded by the norm of the kernels.
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INTRODUCTION

Let 0 < γ, 0 < α < n and define

Iα,γ f (x) :=
∫
Rn

Kα,γ (x − y) f (y) dy

for every f ∈ Lp
loc (Rn), where p ≥ 1, Kα,γ (x) := |x|α−n

(1+|x|)γ , x ∈ R
n . Here, Kα,γ can be viewed as multiple of two kernels,

Kα,γ (x) = Jγ (x) Kα (x) for every x ∈ Rn. In [1], Jγ and Kα are known as Bessel kernel and Riesz kernel. So, Kα,γ is
called Bessel-Riesz kernel and Iα,γ is called Bessel-Riesz operator.

For γ = 0, we have Iα,0 = Iα (is called fractional integral operator or Riesz potential [1]). Studies about Iα
were started since 1920’s. Hardy-Littlewood [2, 3] and Sobolev [4] proved the boundedness of Iα on Lebesgue spaces
through the inequality ‖Iα f ‖Lq ≤ Cp ‖ f ‖Lp , for every f ∈ Lp (Rn), 1 < p < α

n , and 1
q = 1

p −
α
n .

For 1 ≤ p ≤ q, the (classical) Morrey space Lp,q (Rn) is defined by

Lp,q (Rn) :=
{
f ∈ Lp

loc (Rn) : ‖ f ‖Lp,q < ∞
}
,

where ‖ f ‖Lp,q := supr>0,a∈Rn rn(1/q−1/p)
(∫
|x−a|<r | f (x)|p dx

)1/p
. We have an inclusion property for Morrey spaces

Lq (Rn) = Lq,q (Rn) ⊆ Lp,q (Rn) ⊆ L1,q (Rn).
On Morrey spaces, Spanne [5] has shown that Iα is bounded form Lp1,q1 (Rn) to Lp2,q2 (Rn) for 1 < p1 < q1 <

n
α

,
1
p2

= 1
p1
− α

n , and 1
q2

= 1
q1
− α

n . Furthermore, Adams [6] and Chiarenza-Frasca [7] obtained a stronger result.

Theorem 1 [Adams, Chiarenza-Frasca ] If 0 < α < n then we have

‖Iα f ‖Lp2 ,q2 ≤ Cp1,q1 ‖ f ‖Lp1 ,q1 ,

for every f ∈ Lp1,q1 (Rn) where 1 < p1 < q1 <
n
α

, 1
p2

= 1
p1

(
1 − αq1

n

)
, and 1

q2
= 1

q1
− α

n .

Meanwhile, we have
∣∣∣Iα,γ f (x)

∣∣∣ ≤ |Iα f (x)| , for every f ∈ Lp
loc (Rn). Using this inequality, Iα,γ is bounded on these

spaces. In 1999, Kurata et. al [8] have proved that W · Iα,γ is bounded on generalized Morrey spaces where W is a
multiplication operator. Here, we shall discuss about the boundedness of Iα,γ on Lebesgue spaces and Morrey spaces.
We shall see the influence of Kα,γ for the boundedness of Iα,γ.
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