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Abstract. In this paper, we shall discuss about Bessel-Riesz operators. Kurata e al. have investigated their boundedness on gen-
eralized Morrey spaces with weight. The boundedness of these operators on Lebesgue spaces and Morrey spaces will be reproved
using a different approach. Moreover, we also find the norm of the operators are bounded by the norm of the kernels.
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INTRODUCTION

Let0 <y,0 <@ <n and define

Itr.'yf (x) := f Kuf,y = ,'l’]f(‘l’] d}’

"

forevery f € Lj:n_ (R"), where p = 1, Ky (x) = #. x € R" . Here, K, , can be viewed as multiple of two kernels,
Koy (x) = Jy (x) K, (x) for every x € R". In [1], J, and K|, are known as Bessel kernel and Riesz kernel. So, K, ,, is
called Bessel-Riesz kernel and 1,y is called Bessel-Riesz operator.

For y = 0, we have I,y = [, (is called fractional integral operator or Riesz potential [1]). Studies about [,
were started since 1920°s. Hardy-Littlewood [2, 3] and Sobolev [4] proved the boundedness of [, on Lebesgue spaces
through the inequality [[7, 1. < Cp I, . forevery f € LP (R"), 1 < p < £, and é = }, -2,

For 1 < p < g, the (classical) Morrey space L' (R") is defined by

ARY = {f €Ll ®") : (|fllps < o),

loc
where ||fll e = SUP,wqges P"91P ( fl\'—frlﬁr If ()P dx)”p. We have an inclusion property for Morrey spaces
LI(R")y = L#9(R") C LPA(R") C L (B™).
On Morrey spaces, Spanne [5] has shown that /, is bounded form L9 (E") to LP2%2 (R") for 1 < py < ¢y < E

Pl‘ = t—:l - and qi = qll - £ Furthermore, Adams [6] and Chiarenza-Frasca [7] obtained a stronger result.

Theorem 1 [Adams, Chiarenza-Frasca | If 0 < @ < n then we have

Mo Allrar = Cpygy I llgpran s
P

Jorevery f € LM (RM where | < py < g < 2,1 =1 (l - %), and L =L ¢

a’p: " €2 Ll "’

Meanwhile, we have |.’¢,yf (x)| < [of (x|, forevery f € L;:,t, (®"). Using this inequality, /,, is bounded on these
spaces. In 1999, Kurata er. al [8] have proved that W - [, , is bounded on generalized Morrey spaces where W is a
multiplication operator. Here, we shall discuss about the boundedness of [, , on Lebesgue spaces and Morrey spaces.

We shall see the influence of K, for the boundedness of /.
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PRELIMINARY RESULTS

We can see that the Bessel-Riesz kernel vanishes faster at infinity than that the Riesz kernel. From this fact, we
can show that the kernel of Bessel-Riesz is a member of some Lebesgue spaces. We begin with the following lemma.

Lemma 2 Ifb>a>0then ¥z —ﬂ:)r < co, foreveryu > 1 and R > 0.
I:r: R)" R u‘.‘?)

Proof. Let b > a > 0, so that b — a > 0. We write } .z ——— T k=t (LamRy

s —ta s
i, 0 <y, () <o 33 T <

Lemma 2 is useful to prove the membership of K, , in some Lebesgue spaces.

[r: RY g
+ 2o Ty . Next, we estimate
(u*R)”

(144 R)

- A=
Yo (;."‘R) < co. Hence, we obtain 3 .» . m

ik (ax—n)t+n r
Theorem3  If0 < a <nand0 <y then Koy € L' (R") and |[Ko |, ~ ():;.53 %] Jor o <1< A

Proof. Suppose

L

<t< - where0 <y, 0 <a <n,sothat (@ —n)t+n > 0. For arbitrary R > 0, write

H+]" ¥ n=a

(a—n)t (a—n)i+n-1 la—n)i+n—1
' ¥l r ¥
Koy O dy = '—d==Cf L ar=c §f L, ci>o
Ol d e DD e A ' g (L+1)" ‘

R (a-mh+
Z5) —C2 =

o] (2!:J—mrru_ ])
(1+2'R)

(ar=m)i+n and

I - -
Koy )| dy < C Zkez(lTlR]rr J;ikirdgh-lk Aamitn=ldy = C Thez
Wk {ar=m)r+n
_[;_ |k (2'R)

Al 7 Cy 1 la—np+n—1 = _ Ci (2‘”““" l)
:r.y(})| dy = brg Zkez (1+2R)" j;iﬂgi.(zirlk" dr = C3 Ziez (2R Cy = 'n—a'm T Therefore

& pyle-nien
Ktr.y()“)r dy - Yiez % for every R > 0. Using Lemma 2, take ¢ € ( 2 ) choose u = 2, and de-

Y= ? =i
& pylr=nem

finea :=(@—n)t+n b=yt Weget Yjez ((HT]" < oo, Hence Kpy € L' (R™). m

In this study, the membership of K|, , in Lebesgue spaces is an important result. With the result, we can use Young
inequality [9] to prove the boundedness of I, ,, on Lebesgue spaces.

Theorem 4 (Young's inequality) Let 1 < p,q,t < co satisfy # +1=

g = fllpe < Ngllge 1A

1 1 ,
Rl then we have
forevery g € L'(R™), fe LP(R").

Corollary 5 ForO<a <n,y>0, wehave

oyl < |1 Kaol . W11

<t<t lig=

forevery f e LP (R")where 1 < p <1, “w_” e g ;L

+ 1.
By the above corollary, we can say that /, , is bounded from L (R") to L7 (R"). Moreover, norm of kernel Bessel-Riesz
dominates norm of [, f. Consequently in Lebesgue spaces, we obtain H"ﬂ-?” < ||K(,_1,n o

We shall extend the boundedness of I, on Morrey spaces, but Young’s inequality is not available on Morrey
spaces. Using the Hardy-Liitlewood maximal operator M, the boundedness of I, , can be reproved on Lebesgue spaces
and Morrey spaces. The operator M is defined by

Mf(x) -supﬁflf(ﬂld) x €R,

forevery f € L‘{:M_ (R") where |B| denotes Lebesgue measure of ball B = B (a, r) (centered at a € R" with radius r > 0).
The supremum is taken over all open balls in E". It is well known that the operator M is bounded on Lebesgue spaces
(L7 (R"), p > 1)[1, 10] and Morrey spaces [7].
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MAIN RESULTS

In this section, we are going to discuss about the b()undedne‘is of the Bessel-Riesz operators on Morrey spaces.
In the previous section, we have Koy € L' (R") where < 1 < % and the inclusion property of Morrey spaces,

n+ )’—t?’ n=

s0 K, € L™ (R") where 1 < s < 1. Accordingly, we have the following theorem.

Theorem 6 Let 0 <a <n, 0 <y, then we have

ayllpma < Cria [[Kall L
Wiy llpsr < Corn | Kl 1A

Pran (TR ’ /NN R B 1 =1l_1
Jorevery [ € LPvh (R where | <p) <q, <t, 1 <s<1, "” sStg, =2 .n.r"md o

Proof. Suppose 0 < a < n, 0 <y and take <t<,l<s<tLet fe LM (R"),1<p <q <. Forevery

H+}' (3 =

x € R", write oy f () 1= I (x) + I (x) where I (x) := [ B0 gy and I (x) := I, L0 gy R > 0. To

x=yl<R (1+[x=y)" x=ylzR  (1+|x=y)"
estimate I and I, we use dyadic decomposition. Now, estimate [;

(2"R)a n+nfs (sz)"‘f";
(1+2*R)

=dd 2‘R a—n
Ll < ¢ Z (( ) f SOl dy < CaMf (%) Z
HR<|x-y]<24+IR

1 + 25R) ~

By using Holder’s inequality, we get

oo (Z*R)‘"—"JH" s s s
e < CMIW| Y S {Z(Q‘R)"]

k=1

I/s
Ur—_\-wﬂ Koy Gz dy)
Ri1/s=1{1)

< C4Mf (I) Rii(”."—”ﬂRﬂ';"."' < C4 nKﬁr.}'”L\.J Mf ().') Ril;"f'.

Holder’s inequality is used again to estimate /5:

r=n F=n
>, (2'R) > (2*R) p: e
3 < Ndy < S Wrdy)  (2%R)".
e G Z (1 +2¢R)Y fzwsmah'k Feilay=Cs Z (1+2kR)” (jz:RsL\-kzMleml )) ( )

k=0r

Next, we write

(o-n}s /s
Aa=nEn=njq /s 1x=1 :
I < C Zm (ZAR) (L‘Rﬁl.\'l-ﬂ}‘flk d—") <C Zm (fzinsl.rl <R (T+l—)™ d)')
() = 6 ”f"l.""‘" (] + sz)T (sz)J’r.lr.\' ==6 ”f””““ (sz)m’fh =n (2J;R)HJ’S

k=0 k=0

A 5 RN 7] - A
and we obtain |12 ()] < Co If llpran |[Kay]l Zizo (Z*R) T < Cr||Kag]l o 1Al R¥VE=140, Summing the two

estimates, we get |I,,_),f [.x]l <C ||K},_),||Lh, (Mf(x) R 4 1 f v R"’”f_““f‘“), for each x € R".
Assume that f is not identically 0 and M f is finite everywhere. Choose R > 0 such that R/ = lU””" “ . We get

[Tasf (0] < C||Kay lL ||fI|‘£',.’,rf.;, MF ()"0 Define Pi = "P_]—:_‘:'] and % = % — L For arbitrary r > 0, we have

1/ps (1/ps)
( f [Za f | dx) 8 %], 1P05,5R ( f IMf (o) dx) .
I <r |xl<r

Divide by /7274 and take supremum to get

la
- (_[\.|q| 2 (x)

ol pa=niq

” d..’l.') 1/p2

Il

||1“-Tf||b|13 e

r=()

U[k, IMf () d )( Ip2)

ppa=nig

1A

k.

I=py [p2 I=py/p2 ez
| s MG Eae e g up = C||Ka| . A2 1M AN
>

020006-3




Using the boundedness of M on Morrey spaces (Chiarenza-Frasca’s Theorem [7]), we obtain an inequality

o fllpoer < Coras K|l 1N r1r -
By Theorem 6 and the inclusion property of Morrey spaces, for 1 < s <, we have

e Nurser < Cona WKl WMirr < o WKl WA

where —— < 1 < -, We also obtain f;— = f’—: It is similar with Chiarenza-Frasca’s result for the boundedness of

n+y—a n—a'

fractional integral operators on Morrey spaces.

CONCLUDING REMARK

From the results of this study, we have seen that the norm of the Bessel-Riesz kernel dominates the norm of [, , f
for every f in Morrey space L" (R") (p and g are suitable numbers). Moreover, using K, , € L™ (R"), 1 < s <1,
M;_" <t < %=, the norm of the Bessel-Riesz kernel is closer to the norm of /,,.f than using K,, € L' (R"). In the
future, we shall continue this study to prove the boundedness of generalized Bessel-Riesz operators on Morrey spaces

and generalized Morrey spaces.
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