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FRACTIONAL INTEGRAL OPERATORS IN
GENERALIZED MORREY SPACES DEFINED ON METRIC

MEASURE SPACES

ERIDANI AND Y. SAWANO

Abstract. We derive some necessary and sufficient conditions for
the boundedness of fractional integral operators in generalized Morrey
spaces defined on metric measure spaces.

îâäæñéâ. áŽéðçæùâĲñèæŽ äëéæŽê éâðîæçñè ïæãîùââĲäâ àŽêïŽäôã-
îñèæ àŽêäëàŽáëâĲñè ûæèŽáñîæ æêðâàîŽèñîæ ëìâîŽðëîæï öâ-
éëïŽäôãîñèëĲæï ŽñùæèâĲâèæ áŽ ïŽçéŽîæïæ ìæîëĲâĲæ.

1. Introduction

In the present paper we consider the boundedness of the fractional in-
tegral operators on metric measure spaces (X, ρ, µ). By this we mean that
(X, ρ) is a metric space and µ is a Borel measure. By generalizing the under-
lying measures, we seek for a better understanding of the fractional integral
operators. It seems that Morrey spaces can describe the boundedness prop-
erty of fractional integral operators very precisely. The most fundamental
result of this field is due to Adams [1]. Nowadays there are series of papers
that describe the boundedness property of fractional integral operators by
means of (generalized) Morrey spaces (see for example, [5, 4, 7, 10, 15, 17]).
The boundedness of fractional integral operators defined on nonhomoge-
neous spaces on Rn was established in [8] and the same problem on general
nonhomogeneous spaces was investigated in [9]. A remarkable progress on
function spaces on metric measure spaces was made a decade ago, starting
from the papers [11, 18, 19].

To describe our setting, we need some notations. Denote by B(X) the
set of all open balls in X. Throughout the present paper we postulate the
following conditions on φ: Here and below we denote by B(a, r) the open
ball centered at a and of radius r > 0. For a ball B := B(a, r), we sometimes
write φ(a, r) := φ(B). In what follows the letter C will be used to denote
constants that may change from one occurrence to another one.
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(φ1) A set function φ : B(X) → [0,∞) is almost decreasing. Namely,
there exists a constant C > 0 such that φ(B2) ≤ C φ(B1) for all
balls B1 and B2 with B1 ⊆ B2.

(φ2p) Let 1 ≤ p < ∞. The function φ and the measure µ are related as
follows: there exists a constant C > 0 such that φ(B1)pµ(B1) ≤
C φ(B2)pµ(B2) for all pairs of balls B1, B2 such that B1 ⊆ B2.

As a direct consequence of (φ1), there exists a constant C > 0 with the
following properties:

C−1φ(a, 2r) ≤ φ(a, t) ≤ Cφ(a, r),

C−1 φ(a, 2r)
r

≤ φ(a, t)
t

≤ C
φ(a, r)

r
,

C−1 φ(a, 2r) ≤
2r∫

r

φ(a, t)
t

dt ≤ C φ(a, r)

for all 0 < r < t < 2r and a ∈ X.
In the present paper we place ourselves in the setting of generalized Mor-

rey spaces on homegenous or nonhomogeneous spaces.
We say that X := (X, ρ, µ) is a homogeneous metric measure space if µ

satisfies the doubling property. That is, there exists a constant C > 0 such
that for every balls B := B(a, r),

(Dµ) µ(B(a, 2r)) ≤ C µ(B(a, r)).

Otherwise, X := (X, ρ, µ) is said to be a nonhomogeneous space.
If we are given a function φ : B(X) → [0,∞), we define the generalized

Morrey space Lp
φ(ν, µ) as the set f ∈ Lp

loc(ν) satisfying

∥∥f : Lp
φ(ν, µ)

∥∥ := sup
B∈B(X)

1
φ(B)

(
1

µ(B)

∫

B

|f(y)|pdν(y)
)1/p

< ∞.

The measures µ and ν are necessary for the definition in order to cover
plausible weighted settings. If µ = ν, then we abbreviate Lp

φ(ν, µ) to Lp
φ(µ).

As a starting point we prove the theorem, ensuring that Lp
φ(µ) is not empty.

Proposition A. We write B0 := B(a0, r0). If µ and φ satisfy (φ1) and
(Dµ) respectively, then we have

1
φ(B0)

≤
∥∥χB0 : Lp

φ(µ)
∥∥ ≤ C

φ(B0)

for some universal constant C > 1.

Generalized Morrey spaces are nowadays not for the sake of generaliza-
tion, but for its own sake. They come naturally into play for potential
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theory. The classical Morrey space Mp,q(Rn) with 1 < q ≤ p < ∞ is
defined as the set of measurable functions endowed with the norm

‖f‖Mp,q
:= sup

Q∈D(Rn)

|Q| 1p− 1
q

( ∫

Q

|f(x)|qdx

) 1
q

, (1)

where D(Rn) denotes the set of dyadic cubes in Rn. Let 1 < q < p < ∞.
Then there exists a positive constant Cp,q such that

∫

Q

|f(x)|dx ≤ Cp,q|Q|(1 + |Q|)− 1
p log

(
e +

1
|Q|

)∥∥(1−∆)
n
2p f

∥∥
Mp,q

holds for all f ∈Mp,q(Rn) and for all cubes Q ∈ D(Rn).
Let 0 < r < ∞ and Φ : [0,∞) → [0,∞) be a suitable function. For a

function f , locally in Lr(Rn), we set

‖f‖MΦ,r
:= sup

Q∈D(Rn)

Φ(`(Q))
(

1
|Q|

∫

Q

|f(x)|r dx

) 1
r

,

where `(Q) denotes the side-length of the cube Q. Thus in words of this
generalized Morrey norm, by letting

Φ(t) = tn(1 + tn)−
1
p

(
log

(
e +

1
tn

))−1

for t ∈ [0,∞),

and taking (1) into account, we have

‖f‖MΦ,1 ≤ Cp,q

∥∥(1−∆)
n
2p f

∥∥
Mp,q

.

See [16] for details.
This paper is organized as follows: We place ourselves in the different

settings in each section. In Section 2 we investigate the function spaces
endowed with a doubling Radon measure and investigate the boundedness
of fractional integral operators in generalized Morrey spaces. In Section 3
we consider the fractional maximal operator on a metric measure space with
a doubling Radon measure. Finally, in Section 4 we place ourselves in the
setting of a metric measure space with a general Radon measure satisfying
the growth condition. Our result is concerned not with the one in [1] but
with the one of the paper due to Spanne. Note that the result due to Spanne
is contained in [12].

2. Morrey spaces on Homogeneous Spaces

In this section we prove Proposition A and discuss fractional integral
operators in Morrey spaces on homogeneous spaces (X, ρ, µ).
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Proof of Proposition A. It follows immediately from the definition that

∥∥χB0 : Lp
φ(µ)

∥∥ = sup
B∈B(X)

1
φ(B)

(
µ(B ∩B0)

µ(B)

)1/p

=

= sup
B∈B(X)

1
φ(B)

(
µ(B ∩B(a0, r0))

µ(B)

)1/p

.

Although B in the sup above runs over all the balls, we do not have to take B
into account unless B ∩ B0 6= ∅. Keeping this in mind, we let B := B(a, r)
be such a ball. If r ≤ r0, then a geometric observation shows B(a, r) ⊆
B(a0, 3r0). Consequently, by the doubling property of µ,

µ(B(a, r)) ≤ µ(B(a0, 3r0)) ≤ µ(B(a0, 4r0)) ≤ Cµ(B(a0, r0))

and
µ(B(a0, 3r0)) ≥ µ(B0).

So, by (φ1) and (φ2p) together with the doubling property of µ, we have

1
φ(B)

(
µ(B ∩B0)

µ(B)

)1/p

≤ 1
φ(B)

≤ C

φ(B(a0, 3r0))
≤ C

φ(B0)
. (2)

Suppose now that r0 < r. Then we have B0 ⊂ 3B and

µ(3B) ≤ µ(4B) ≤ Cµ(B).

Consequently, by virtue of (φ2p) we have

1
φ(B)

(
µ(B ∩B0)

µ(B)

)1/p

≤ 1
φ(B)

(
µ(B0)
µ(B)

)1/p

≤ C

φ(B)

(
µ(B0)
µ(3B)

)1/p

≤

≤ C

φ(B0)
. (3)

Inequalities (2) and (3) yield the upper bound of ‖χB0 : Lp
φ(µ)‖.

Meanwhile, if we let B =B0, then we obtain the left-hand side inequal-
ity. ¤

Consider, for 0 < α < 1, the following fractional integral operator

Kαf(x) :=
∫

X

f(y)µ
(
B(x, ρ(x, y))

)α−1
dµ(y).

For the related definitions of this type of operators, we refer to [13, 14]. In
particular, the following theorem holds (see [3, Theorem 6.2.1]).

Theorem A. Suppose that 1 < p < q < ∞ and 0 < α < 1/p. Let µ and
ν be Radon measures on X. Then Kα is bounded from Lp(X,µ) to Lq(X, ν)
if and only if there exists C > 0 such that

ν(B) ≤ Cµ(B)q(1/p−α)
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for all balls B.

In analogy with Theorem A, we prove the following result below.

Theorem B. Let 1 < p < q < ∞ and α ∈ (0, 1/p). Assume in addition
that: 1/p−1/q = α, that φ fulfills (φ1) and (φ2p) and there exists a constant
C > 0 such that

C−1ψ(B) ≤ µ(B)−1/q+1/pφ(B) ≤ Cψ(B) (4)

and
∞∫

r

µ(B(a, t))α φ(a, t)
t

dt ≤ Cµ(B(a, r))αφ(a, r), a ∈ X, r > 0, (5)

then the necessary and sufficient condition for the boundedness of Kα from
Lp

φ(µ) to Lq
ψ(ν, µ) is

ν(B) ≤ Cµ(B) for all B ∈ B(X)

for some constant C > 0.

Remark. Theorem B can be considered as a generalization of [3, The-
orem 3.1] in the special case when ρ is a metric, 1/p − 1/q = α, φ(B) =
µ(B)(λ1−1)/p, ψ(B) = µ(B)(λ2−1)/q, where 0 < λ1 < 1− αp, λ2/q = λ1/p.

Proof. Sufficiency. Let f ∈ Lp
φ(µ). Fix a ball B = B(a, r) in X. Denote by

B̃ the double of B; B̃ = B(a, 2r). We decompose

f = f1 + f2 := fχB̃ + fχB̃C . (6)

From the definition of the Morrey norm ‖· : Lp
φ(µ)‖, we have f1 ∈ Lp(µ).

More quantitatively, we have
∥∥f1 : Lp(µ)

∥∥ ≤ µ(B)1/pφ(a, r)
∥∥f : Lp

φ(µ)
∥∥ < ∞. (7)

If we invoke Theorem A,
(

1
µ(B)

∫

B

∣∣Kαf1(x)
∣∣q dν(x)

)1/q

≤ µ(B)−1/q
∥∥Kαf1 : Lq(ν)

∥∥ ≤

≤ µ(B)−1/q‖Kα‖Lp(µ)→Lq(ν)

∥∥f1 : Lp(µ)
∥∥.

By using (7), we obtain
(

1
µ(B)

∫

B

∣∣Kαf1(x)
∣∣q dν(x)

)1/q

≤

≤ ‖Kα‖Lp(µ)→Lq(ν)µ(B)1/p−1/qφ(B)
∥∥f : Lp

φ(µ)
∥∥.
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Finally, by virtue of (4), it follows that

(
1

µ(B)

∫

B

∣∣Kαf1(x)
∣∣q dν(x)

)1/q

≤ C‖Kα‖Lp(µ)→Lq(ν)ψ(B)
∥∥f : Lp

φ(µ)
∥∥.

Thus, the estimate of Kαf1 is valid, and now we have

1
ψ(B)

(
1

µ(B)

∫

B

∣∣Kαf1(x)
∣∣q dν(x)

)1/q

≤

≤ C‖Kα‖Lp(µ)→Lq(ν)

∥∥f : Lp
φ(µ)

∥∥. (8)

Now we estimate Kαf2. We proceed as in [6]. For each t ∈ B = B(a, r),
we have uniform over t estimate

∣∣Kαf2(t)
∣∣ ≤

∞∑

k=1

∫

2kr≤ρ(t,y)<2k+1r

|f(y)|
µ(B(t, ρ(t, y)))1−α

dµ(y).

On each integral domain 2kr ≤ ρ(t, y) < 2k+1r of t, we find

∣∣Kαf2(t)
∣∣ ≤

∥∥f : Lp
φ(µ)

∥∥
∞∑

k=1

µ(B(t, 2kr))α−1µ(B(a, 2k+1r))φ(a, 2k+1r).

By the doubling property of µ, we have

∣∣Kαf2(t)
∣∣ ≤ C

∥∥f : Lp
φ(µ)

∥∥
∞∑

k=1

µ(B(t, 2kr))αφ(a, 2k+1r).

Taking now into account that

2b∫

b

dt

t
= log 2 (b > 0) and (5), we have

∣∣Kαf2(t)
∣∣ ≤ C

∥∥f : Lp
φ(µ)

∥∥
∞∫

r

µ(B(a, s))α φ(a, s)
s

ds ≤

≤ C
∥∥f : Lp

φ(µ)
∥∥µ(B(a, r))αφ(a, r).

So, for every ball B, by virtue of the assumption 1/q = 1/p− α, we derive

(
1

µ(B)

∫

B

∣∣Kαf2(x)
∣∣q dν(x)

)1/q

≤ C
∥∥f : Lp

φ(µ)
∥∥µ(B)αφ(B) ≤

≤ C
∥∥f : Lp

φ(µ)
∥∥ψ(B).
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Consequently, we obtain

1
ψ(B)

(
1

µ(B)

∫

B

∣∣Kαf2(x)
∣∣q dν(x)

)1/q

≤

≤ C‖Kα‖Lp(µ)→Lq(ν)

∥∥f : Lp
φ(µ)

∥∥. (9)

If we put (8) and (9) together, we will have

1
ψ(B)

(
1

µ(B)

∫

B

∣∣Kαf(x)
∣∣q dν(x)

)1/q

≤ C‖Kα‖Lp(µ)→Lq(ν)

∥∥f : Lp
φ(µ)

∥∥.

Thus, it follows that Kα is bounded from Lp
φ(µ) to Lq

ψ(ν, µ).
Necessity. Assume instead that Kα is bounded from Lp

φ(µ) to Lq
ψ(ν, µ).

Our current testing condition is
∥∥KαχB0

∥∥
Lq

ψ(ν,µ)
≤ ‖Kα‖Lp

φ(µ)→Lq
ψ(ν,µ)‖χB0‖Lp

φ(µ). (10)

From the definition of the integral operator Kα, we have

KαχB0(x) =
∫

B0

µ
(
B(x, ρ(x, y))

)α−1
dµ(y) ≥

∫

B0

µ(B(x, r0))α−1 dµ(y) =

= µ(B0)α,

for all x ∈ B0 := B(a0, r0). Consequently, by the definition of the Morrey
norm ‖· : Lq

ψ(ν, µ)‖ and (10), we find that

µ(B0)α ≤
(

1
ν(B0)

∫

B0

∣∣KαχB0(x)
∣∣q dν(x)

)1/q

≤

≤ ν(B0)−1/qµ(B0)1/q
∥∥KαχB0 : Lq

ψ(ν, µ)
∥∥ψ(B0) ≤

≤ ‖Kα‖Lp
φ(µ)→Lq

ψ(ν,µ)ν(B0)−1/qµ(B0)1/q
∥∥χB0 : Lp

φ(µ)
∥∥ψ(B0).

If we use Proposition A, then we have

µ(B0)α ≤ C‖Kα‖Lp
φ(µ)→Lq

ψ(ν,µ)ν(B0)−1/qµ(B0)1/qφ(B0)−1ψ(B0).

Arranging this inequality and (4), we obtain

ν(B0) ≤ (C‖Kα‖Lp
φ(µ)→Lq

ψ(ν,µ))
qµ(B0),

which completes the proof of the sufficiency. ¤
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3. Fractional Maximal Function on Homogeneous Spaces

We now consider the following (centered) fractional maximal operator

Mαf(x) := sup
r>0

1
µ(B(x, r))1−α

∫

B(x,r)

|f(y)| dµ(y), 0 < α < 1.

For any positive measurable function f : X → [0,∞], we have a pointwise
estimate

Mαf(x) ≤ Kαf(x) (11)

for some constant, independent of f .
Our aim here is to prove the following result.

Theorem C. Let 1 < p < q < ∞ and α ∈ (0, 1/p). Assume that
1/p−1/q = α, (4) and (5) hold and that φ fulfills (φ1) and (φ2p). Then the
necessary and sufficient condition for the boundedness of Mα from Lp

φ(µ) to
Lq

ψ(ν, µ) is that there exists C > 0 such that

ν(B) ≤ Cµ(B) for all B ∈ B(X). (12)

Proof. Necessity. Suppose x ∈ B0 := B(a0, r0), and Mα is bounded from
Lp

φ(µ) to Lq
ψ(ν, µ). Directly from the definition of the fractional maximal

operator, we have
µ(B0)α ≤ MαχB0(x).

Also, by the definition of the Morrey norm ‖· : Lq
ψ(ν, µ)‖, we have

µ(B0)α ≤
(

1
ν(B0)

∫

B0

∣∣MαχB0(x)
∣∣q dν(x)

)1/q

≤

≤ ν(B0)−1/qµ(B0)1/q
∥∥MαχB0 : Lq

ψ(ν, µ)
∥∥ψ(B0).

If we use the boundedness of Mα, then we will have

µ(B0)α ≤ ‖Mα‖Lp
φ(µ)→Lq

ψ(ν,µ)ν(B0)−1/qµ(B0)1/q
∥∥χB0 : Lp

φ(µ)
∥∥ψ(B0).

By invoking now Proposition A, we deduce

µ(B0)α ≤ C‖Mα‖Lp
φ(µ)→Lq

ψ(ν,µ)ν(B0)−1/qµ(B0)1/qφ(B0)−1ψ(B0).

Hence, by (5) we have

ν(B)1/q ≤ C‖Mα‖Lp
φ(µ)→Lq

ψ(ν,µ)µ(B)1/p−α.

Sufficiency. This is an immediate consequence of Theorem B and (11).
Indeed, assuming (12), we have Kα is bounded from Lp

φ(µ) to Lq
ψ(ν, µ), by

virtue of Theorem B.
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Indeed, using (11) and the boundedness of Kα from Lp
φ(µ) to Lq

ψ(ν, µ) in
this order, we have

‖Mαf‖Lq
ψ(ν,µ) ≤

∥∥Kα[|f |]
∥∥

Lq
ψ(ν,µ)

≤ C‖f‖Lp
φ(µ). ¤

4. Nonhomogeneous Morrey Spaces

Let now X := (X, ρ, µ) be a nonhomogeneous measure metric space. We
consider the following fractional integral operator

Iαf(t) :=
∫

X

f(y)ρ(t, y)α−1 dµ(y) (t ∈ X),

where 0 < α < 1. Here and below to denote a point in X, we use t, while t
denotes as usual a positive real number.

In this space, we define the (nonhomogeneous) Morrey space Mp
φ(µ; s) as

follows;

f ∈ Mp
φ(µ; s) ⇔ ∥∥f : Mp

φ(µ; s)
∥∥ := sup

B

1
φ(r)

(
1
rs

∫

B

|f(y)|p dµ(y)
)1/p

< ∞.

We assume that φ : (0,∞) → (0,∞) is a decreasing positive function.
The following is proved by Kokilashvili and Meskhi [9]. By Garćıa-Cuerva

and Gatto [2] the case where X = Rd and s = 1 was studied.

Theorem D. Assume

1 < p < q < ∞, 0 < α < 1, s =
pq(1− α)
pq + p− q

. (13)

Let (X, ρ, µ) be a nonhomogeneous space. Then Iα is bounded from Lp(X)
to Lq(X), if and only if µ satisfies the growth condition

µ(B(t, r)) ≤ Crs,

for all B = B(t, r) ∈ B(X).

Motivated by the above result, we prove the following

Theorem E. Suppose that 1 < p < q < ∞ and 0 < α < 1/p. Assume

s =
pq(1− α)
pq + p− q

. (14)

Assume that there exists a constant C > 0 such that
∞∫

r

tα+s−2φ(t) dt ≤ Crα+s−1φ(r), (15)

for every r > 0. Assume, in addition, that ψ : (0,∞) → (0,∞) satisfies

C−1ψ(r) ≤ rα+s−1φ(r) ≤ Cψ(r) (r > 0) (16)
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for some positive constant C. Then the sufficient condition for the bound-
edness of Iα from Mp

φ(µ; s) to Mq
ψ(µ; s) is that there exists C > 0 such that

the growth condition
µ(B(t, r)) ≤ Crs

holds for all B = B(t, r) ∈ B(X).

Note that this generalizes [6, Theorem 3.4].

Proof. Sufficiency. Let B = B(t, r) ∈ B(X) be fixed and denote by B̃ its
double; B̃ = B(t, 2r). For every f ∈ Mp

φ(µ), write

f = f1 + f2 = fχB̃ + fχB̃C . (17)

The treatment of f1 is simple. Note that f1 ∈ Lp(µ). More quantitatively,
we have ∥∥f1 : Lp(µ)

∥∥ ≤ φ(r)rs/p
∥∥f : Mp

φ(µ; s)
∥∥ < ∞.

Consequently, if we invoke Theorem D, then we will have
(

1
rs

∫

B

|Iαf1(x)|q dµ(x)
)1/q

≤‖Iα‖Lp(µ)→Lq(µ)φ(r)rs(1/p−1/q)‖f :Mp
φ(µ; s)‖=

= ‖Iα‖Lp(µ)→Lq(µ)φ(r)rs+α−1
∥∥f : Mp

φ(µ; s)
∥∥.

Consequently from (16), we obtain

1
ψ(r)

(
1
rs

∫

B

|Iαf1(x)|q dµ(x)
)1/q

≤C‖Iα‖Lp(µ)→Lq(µ)‖f : Mp
φ(µ; s)‖. (18)

Let us now deal with f2. To this end we fix a point x ∈ B. Then we have

|Iαf2(x)|≤
∫

B̃C

|f(y)|
ρ(x, y)1−α

dµ(y)≤21−α
∞∑

k=0

1
(2kr)1−α

∫

ρ(x,y)<2k+1r

|f(y)| dµ(y).

In view of the definition of the Morrey norm, we have

|Iαf2(x)| ≤ C
∥∥f : Mp

φ(µ; s)
∥∥
∞∑

k=0

(2kr)α−1+sφ(2kr).

If we pass to a continuous variable t from the discrete variable k, then we
will have

∣∣Iαf2(x)
∣∣ ≤ C

∥∥f : Mp
φ(µ; s)

∥∥
∞∑

k=0

2k+1r∫

2kr

tα+s−2φ(t) dt =

= C
∥∥f : Mp

φ(µ; s)
∥∥
∞∫

r

tα+s−2φ(t) dt ≤ Crα+s−1φ(r).
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Here for the last inequality we have used (15). If we apply this pointwise
estimate and (16), then we obtain

(
1
rs

∫

B

∣∣Iαf2(x)
∣∣q dµ(x)

)1/q

≤ Cφ(r)rs+α−1
∥∥f : Mp

φ(µ; s)
∥∥ =

= Cψ(r)
∥∥f : Mp

φ(µ; s)
∥∥.

Consequently,

1
ψ(r)

(
1
rs

∫

B

∣∣Iαf2(x)
∣∣q dµ(x)

)1/q

≤ C
∥∥f : Mp

φ(µ; s)
∥∥. (19)

Thus, from (18) and (19)we obtain the boundedness of Iα. ¤

Remark. If α + s < 1, then the condition
∞∫

r

tα+s−2φ(t) dt ≤ Crα+s−1φ(r)

follows automatically from the fact that φ is almost decreasing. Indeed,
∞∫

r

tα+s−2φ(t) dt ≤ C

∞∫

r

tα+s−2φ(r) dt = Crα+s−1φ(r).
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