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ABsTRACT. We derive some necessary and sufficient conditions for
the boundedness of fractional integral operators in generalized Morrey
spaces defined on metric measure spaces.
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1. INTRODUCTION

In the present paper we consider the boundedness of the fractional in-
tegral operators on metric measure spaces (X, p, ). By this we mean that
(X, p) is a metric space and p is a Borel measure. By generalizing the under-
lying measures, we seek for a better understanding of the fractional integral
operators. It seems that Morrey spaces can describe the boundedness prop-
erty of fractional integral operators very precisely. The most fundamental
result of this field is due to Adams [1]. Nowadays there are series of papers
that describe the boundedness property of fractional integral operators by
means of (generalized) Morrey spaces (see for example, [5, 4, 7, 10, 15, 17]).
The boundedness of fractional integral operators defined on nonhomoge-
neous spaces on R™ was established in [8] and the same problem on general
nonhomogeneous spaces was investigated in [9]. A remarkable progress on
function spaces on metric measure spaces was made a decade ago, starting
from the papers [11, 18, 19].

To describe our setting, we need some notations. Denote by B(X) the
set of all open balls in X. Throughout the present paper we postulate the
following conditions on ¢: Here and below we denote by B(a,r) the open
ball centered at a and of radius r > 0. For a ball B := B(a,r). we sometimes
write ¢(a,r) := ¢(B). In what follows the letter C' will be used to denote
constants that may change from one occurrence to another one.
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(1) A set function ¢ : B(X) — [0,0¢) is almost decreasing. Namely,
there exists a constant C' > 0 such that ¢(Bs) < C ¢(B,) for all
balls By and B, with By C Bs.

(#2p) Let 1 < p < oo. The function ¢ and the measure g are related as
follows: there exists a constant C' > 0 such that ¢(B))Pu(B;) <
C' ¢(B2)Pp(Bz) for all pairs of balls By, Bs such that By C Bs.

As a direct consequence of (¢1), there exists a constant C' > 0 with the

following properties:

C~lg(a, 2r) £ #(a,t) < Co(a,r),
1 @la,2r) ” dla,t) <C (;';(u,r).

T t 7

o
2r
C ' o(a,2r) < f@dt < Cola,r)

forall 0 <r <t<2randacX.

In the present paper we place ourselves in the setting of generalized Mor-
rey spaces on homegenous or nonhomogeneous spaces.

We say that X := (X, p, n) is a homogeneous metric measure space if p
satisfies the doubling property. That is, there exists a constant C' > 0 such
that for every balls B := B(a,r),

(D) u(B(a,2r)) < Cu(Bla, 7).
Otherwise, X := (X, p, ) is said to be a nenhomogeneous space.

If we are given a function ¢ : B(X) — [0,00), we define the generalized
Morrey space L (v, p) as the set f € L (v) satisfying

loc

. 1 1 t/p
| f: LE (v, )| :== Bzg&)m(mfIf(y)lpdrf(y)) < 0.
B

The measures p and v are necessary for the definition in order to cover
plausible weighted settings. If g = v, then we abbreviate L’;(v. ©) to LF ().
As a starting point we prove the theorem, ensuring that Lg (1) is not empty.
Proposition A. We write By := Blag, o). If p and ¢ satisfy (¢1) and
(Dp) respectively, then we have
1 C
——— < ||xB, : LE(W|| € =5
&(Bo) e, : L0l ¢(Bo)
for some universal constant C' > 1.
Generalized Morrey spaces are nowadays not for the sake of generaliza-
tion, but for its own sake. They come naturally into play for potential
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theory. The classical Morrey space M, ,(R") with 1 < ¢ < p < oo is
defined as the set of measurable functions endowed with the norm

-1 ( Qf | f(;i.-)rus.c) : (1)

where D(R") denotes the set of dyadic cubes in R". Let 1 < ¢ < p < oc.

Then there exists a positive constant C), , such that

ool
1@l

Ifllm,,, = sup }IQ

QeD(R"

Y- 2)é ¢

My,

[1r@lds < ¢, Qi+ 1@ log (e
Q

holds for all f € M, ,(R") and for all cubes @ € D(R").
Let 0 < r < oo and @ : [0,00) — [0,0¢) be a suitable function. For a
function f, locally in L, (R"), we set

1 L Hi
Iflro,, == _sup )@(f(@))(@ Q/ @) dL) ,

QEeD(Rn

where £(()) denotes the side-length of the cube . Thus in words of this
generalized Morrey norm, by letting

B(t) = ("(1+ )% (log (c+ ;7))_1 for ¢ € [0,00),

and taking (1) into account, we have
Iflatas < Cogll(1 = 2)B 1], .

See [16] for details.

This paper is organized as follows: We place ourselves in the different
settings in each section. In Section 2 we investigate the function spaces
endowed with a doubling Radon measure and investigate the boundedness
of fractional integral operators in generalized Morrey spaces. In Section 3
we consider the fractional maximal operator on a metric measure space with
a doubling Radon measure. Finally, in Section 4 we place ourselves in the
setting of a metric measure space with a general Radon measure satisfying
the growth condition. Our result is concerned not with the one in [1] but
with the one of the paper due to Spanne. Note that the result due to Spanne
is contained in [12].

2. MORREY SPACES ON HOMOGENEOUS SPACES

In this seetion we prove Proposition A and discuss fractional integral
operators in Morrey spaces on homogeneous spaces (X, p, p1).
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Proof of Proposition A. It follows immediately from the definition that

p 1 Ii(BnBu))Up
xg, : Ly(p)|| = sup —— (— =
5o s LWl per(x) ¢(B)\ p(B)
= s : (#‘(B N Blag, ro)) ) >
pes(x) 0(B) n(B)

Although B in the sup above runs over all the balls, we do not have to take B
into account unless B N By # 0. Keeping this in mind, we let B := B(a,r)
be such a ball. If » < rg, then a geometric observation shows Bla,r) C
B(ap, 3rg). Consequently, by the doubling property of .

p(B(a,r)) < p(Blag, 3ro)) < p(Blag, 4r)) < Cpu(Blag.ro))
and

p(B(ag, 3ro)) = p(By).

So, by (#1) and (¢2p) together with the doubling property of p, we have

e
.1 (IL[BﬂBo)) < 1 e C' < _C ) (2)
(B)\ p(B) &(B) ~ ¢(B(ag,3r0)) ~ ¢(Bo)
Suppose now that ro < . Then we have By C 3B and
1(3B) < pu(4B) < Cu(B).
Consequently, by virtue of (¢2p) we have
1 (;»(B nBuJ)‘*’" - (y(Bu))‘”’ < 4 (M(Bu))”*’ -
o(B)\  n(B) ~ o(B)\ u(B) ~ @(B) \u(3B) -
C
< : 3
= 5B &

Inequalities (2) and (3) yield the upper bound of |xg, : L% (11)]-
Meanwhile, if we let B = By, then we obtain the left-hand side inequal-
ity. O

Consider, for 0 < a < 1, the following fractional integral operator

Koflz) = /f(y)n(B(:mp(fv,y)))"_l dp(y).
X

For the related definitions of this type of operators, we refer to [13, 14]. In
particular, the following theorem holds (see [3, Theorem 6.2.1]).

Theorem A. Suppose that 1 <p < g < oc and 0 < o < 1/p. Let p and
v be Radon measures on X. Then K, is bounded from LP(X, ) to L(X,v)
if and only if there exists C > 0 such that

v(8) < Cu(B)™/P=)
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for all balls B.
In analogy with Theorem A, we prove the following result below.

Theorem B. Letl < p < g < oo anda € (0,1/p). Assume in addition
that: 1/p—1/q = a, that ¢ fulfills (¢1) and (¢2p) and there exists a constant
C' > 0 such that

O-1y(B) < u(B)~Ma+1/2y(B) < C¥(B) )
and
f w(B( a))“ﬂ%ﬂ Bec.Bl) @ Bcx, §>0, (5

o
then the necessary and sufficient condition for the boundedness of Ko from
L) to Ly (v, ) is

v(B) < Cu(B) forall Be B(X)
for some constant C' > (0.

Remark. Theorem B can be considered as a generalization of [3, The-
orem 3.1] in the special case when p is a metric, 1/p — 1/q = a, ¢(B) =
w(BYOr /2 4 BY = pu(B)P*2=1/9 where 0 < \; < 1—ap, Aafq = A/p.

Proof. Sufficiency. Let f € LE(p). Fix a ball B = B(a,r) in X. Denote by
B the double of B; B = B(a, 2r). We decompose

f=h+f=Ffxp+ fxpe. (6)

From the definition of the Morrey norm || : LL(p)||, we have fi € LP(p).
More quantitatively, we have

171 22(0)|| < n(B)"/P(a, || = LE(w)]| < oc. )

If we invoke Theorem A,
1 5 1/4’ 1
— K . 5 < u(B) YUK, f : LY <
(“(B)Bfi wh(@)' (@) < W)V Kofi 19|

< wW(B) Y Kall o= Lol 1 : ZPw)|-

By using (7), we obtain

(ﬁlB_J lf |Kaf1(a=)|qdl’($))1/q <

< 1K alleu—rso)u(B) /P~ 96(B) || f : L5 ().




18 ERIDANI AND Y. SAWANO

Finally, by virtue of (4), it follows that

(ﬁﬁ[“(ﬂfl(f)

Thus, the estimate of K, f is valid, and now we have

ﬁ(ﬁ f Ko fi(a)]" du(a:))w <
B

< C||I(rr||i.*‘(.rt}—~£.’!(u) ”f : Li;(#)” {8)

1/q
g du(m)) < CllKall ooy $(B) || £ = 5w

Now we estimate K, fo. We proceed as in [6]. For each t € B = Bla,r),
we have uniform over ¢ estimate

o0

. If @)l
il =2 BT

2k L p(ty) <2kt

dp(y).

On each integral domain 257 < p(t,y) < 2545 of ¢, we find
o0
[Kafa(®)| < ||f s L ()| D w(B(t, 257))* u(B(a, 26 17)) b(a, 2+ 7).
k=1

By the doubling property of p, we have

oo

|Kafo(t)] < C|f : 5] Y n(B(,257))*6(a, 28 7).

k=1
26 p
t
Taking now into account that / - log2 (b > 0) and (5), we have

b

|Kafalt)] < C

8

75 2| [ uBla ) 2 ds <

£+ I ()| u(Bla, 1)) dla ).

So, for every ball B, by virtue of the assumption 1/¢ = 1/p — a, we derive

(s

<C

1/q
I\’nfztfv]lqtiv(:v)) < C|f - L5(w)||u(B)"6(B) <

< C||f : Ly(w)||v(B).
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Consequently, we obtain

1 ( 1 f

Y(B) \ u(B)
B

If we put (8) and (9) together, we will have

1/q
Ko f2(@))* d.'/(;r;)) <

= C”I{rr”i.“(,r{}—i-" ()

W ()

1 i q
=5 (E |Kn-f(a:)\"dv(m)) < ClKallzriyortotn I = EE@)|I
' B

Thus, it follows that K, is bounded from L (1) to LY (v, ).
Necessity. Assume instead that K, is bounded from L% () to L (v, p).
Our current testing condition is

||K"“XBl'HL"f_(U.p} bt ‘II{€YI|L11(;:}4~L1,(V,u)“r‘(ﬂu |ILL‘_(1A)' {10)
From the definition of the integral operator K, we have
- a—1 ool
Kaxi,@) = [ n(Blopla )™ duty) > [ (Bl ro)™ duts) =

.".in By
= pu(Bo)”,

for all @ € By := B(ap,ro). Consequently, by the definition of the Morrey
norm |- = LI (v, p)|| and (10), we find that

1/q
1 s
By)* < | —= [ |Kaxg, (2)|* dv(z <
o) < (g [ IKaxm@l' (@) <
B(I
< u(Bo) ™/ Uu(Bo)"/9|| Kaxs, : L% (v, )| |4(Bo) <
< N Kall 2 )= L5 gy (Bo) ™ p(Bo) || x 0 : L (1) [[(Bo)-
If we use Proposition A, then we have
1(Bo)™ < CllKallL (L gy (Bo) ™/ (Bo) 96 (Bo) ~'4(Bo).
Arranging this inequality and (4), we obtain

v(Bo) < (CllKallLr )= () 1(Bo).

which completes the proof of the sufficiency. O
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3. FRACTIONAL MAXIMAL FUNCTION ON HOMOGENEOUS SPACES

We now consider the following (centered) fractional maximal operator

M, f(z) := sup

sup W f [fw)ldu(y), 0<a<l.

B(z,r)

For any positive measurable function f : X — [0, 00, we have a pointwise
estimate
M, f(z) < Ko f(x) (11)

for some constant, independent of f.
Qur aim here is to prove the following result.

Theorem C. Let 1 < p < g < oo and v € (0,1/p). Assume that
1/p—1/q = o, (4) and (5) hold and that ¢ fulfills (¢1) and (¢2p). Then the
necessary and sufficient condition for the boundedness of M, from LT (p) to
L,(v, ) is that there exists C' > 0 such that

v(B) < Cp(B) for all B € B(X). (12)
Proof. Necessity. Suppose @ € By i= Blag,ry). and M, is bounded from

L¥(p) to Ly (v, p). Directly from the definition of the fractional maximal
operator, we have

#(Bo)* < Maxp, ().
Also, by the definition of the Morrey norm ||- : Lg’_(u, )|, we have

1 g 1/q
1(Bo)* < (m/wﬂn‘(ﬁu(m” dU(-’!’)) <
Bo

< U(Bo)Y9u(Bo) /|| Maxs, : L% (v, )| |/(Bo).
If we use the boundedness of M, then we will have
p(Bo)™ < || Mall L2y L (i) (Bo) ™"/ 2(Bo) '/
By invoking now Proposition A, we deduce

p(Bo)* < C"ﬂ‘rcr||L:;(_u}—~L‘:,(u.u)y(BU)_llq.r'-"-(Bﬂ)l/qf.-'j(Bﬂ)_l'ﬁ'}(BO)-

XBo : LE (12)||¢(Bo).

Hence, by (5) we have
V(B < Cl\Mall L ()= wany(B) /P

Sufficiency. This is an immediate consequence of Theorem B and (11).
Indeed, assuming (12), we have K, is bounded from L% (p) to LY (v, ), by
virtue of Theorem B.
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oA 3isd 2 ; - ; v q i
Indeed, using (11) and the boundedness of K, from L () to L (v, 1) in
this order, we have

”ﬂ-{c\f“L:I{V.u} = || 'Kr.r“f” ||Lf (142) = C”f“L;[p)' O

4. NONHOMOGENEOUS MORREY SPACES

Let now X := (X, p. ) be a nonhomogeneous measure metric space. We
consider the following fractional integral operator

LJH%=[f®M&w”“@W)&EXL
X

where ) < @ < 1. Here and below to denote a point in X', we use t, while ¢
denotes as usual a positive real number.

In this space, we define the (nonhomogeneous) Morrey space M g (p; 8) as
follows;

feMi(us) e | f: ME(p; )| == sup 1 (i / [f(w)|? d,u(y))”p < oo.
[-Atat -t B (D(?) s J

We assume that ¢ : (0,00) — (0,00) is a decreasing positive function.

The following is proved by Kokilashvili and Meskhi [9]. By Garcia-Cuerva
and Gatto [2] the case where X = R? and s = 1 was studied.

Theorem D. Assume

|
g Pal—a) (13)
pgtp—gq
Let (X, p, i) be a nonhomogeneous space. Then I is bounded from LP(X)
to LX), if and only if p satisfies the growth condition
u(B(t,r)) < Cr®,

for all B = B(t,r) € B(X).

l<p<g<oeoo, D<a<l,

Motivated by the above result, we prove the following

Theorem E. Suppose that 1 < p < g < oo and 0 < o« < 1/p. Assume

pa(1 —c
g PAll—-a) (14)
pq+p—q
Assume that there exists a constant C' > 0 such that
o0
[ e4-20(0) dt < orortgpm), (15)
™

for every r > 0. Assume, in addition, that 1 : (0,00) — (0, 00) satisfies

C™lp(r) < r°t*7lg(r) < C(r) (r>0) (16)
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for some positive constant C. Then the sufficient condition for the bound-
edness of I from MJ(ji;s) to M(j; 5) is that there evists C > 0 such that
the growth condition
u(B(t,r)) < Or*
holds for all B = B(t,r) € B(X).
Note that this generalizes [6, Theorem 3.4].

Proof. Sufficiency. Let B = B(t,r) € B(X) be fixed and denote by B its

double; B = B(t,2r). For every f € M} (), write

f=h+f=Ffxa+ Xae (17)
The treatment of f is simple. Note that f; € LP(u). More quantitatively,
we have

1512 LP@)|| < o()r*/?| £ : ME (w3 8)|| < 0.

Consequently, if we invoke Theorem D, then we will have
1 1/q ’ i
(3 Mo Fs@l1 @) <zl M s )] =
B

= ol (uy— Lag@(r)r* 7| f + ME (ks 8)]-

Consequently from (16), we obtain
1, Ha i
m(;/lfufl (@) fiﬂv(:v)) SClallry—ragollf = MZ(p; s)l. (18)
B

Let us now deal with fs. To this end we fix a point x € B. Then we have

h@is [0 sz ote [ U,

BC =0 plry)<2htir

In view of the definition of the Morrey norm. we have
00
o f2(@)| < C||f : MB(n; 8)|| D_(2Fr)*~1+0(257).
k=0

If we pass to a continuous variable ¢ from the discrete variable k., then we
will have

. 25\+Lr
L,fg(.‘l‘}| < C”f : ME (3 ‘i}” Z / 1T 2g(8) dt =
k=0 g

=C|f: MY (p; s)|| /t"’""s_gé(t) dt < Crots=1o(r).

»
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Here for the last inequality we have used (15). If we apply this pointwise
estimate and (16), then we obtain

/g
(i B[ |fﬂfz(m)\‘1d;.t(a:)) < Comr ot : ME(us )| =
= C(r)

| £ ME(p; 8)|-

Consequently,

P

1 1 & 1/q )
W(r_"’ /|L,f2(.‘l})| dy-(:[:}) <C|f: ME (g s)||- (19)
B
Thus, from (18) and (19)we obtain the boundedness of I,,. O

Remark. If o + s < 1, then the condition

o0
/t”"'"_"!(;‘)(t) dt {_: Cru-{-s—lqb(?,)

ot
follows automatically from the fact that ¢ is almost decreasing. Indeed,

oo
/ 1o+ 2g(t)dt < C / et 2o(r) dt = Crot 1 g(r).

-
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