Maria Apriliani Gani, - and Aniek Setiya Budiatin, - and Maria Lucia Ardhani Dwi Lestari, - and Fedik Abdul Rantam, - and Chrismawan Ardianto, - and Junaidi Khotib, - (2022) Fabrication and Characteerization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial. Materials, 15 (6). pp. 1-10. ISSN 1996-1944
Text (FULLTEXT)
C-11 Artikel dan SJR.pdf Download (14MB) |
|
Text (KUALITAS KARIL)
C-11_Kualitas_Karil_001.pdf Download (2MB) |
|
Text (SIMILARITY)
C-11 Similarity_001.pdf Download (4MB) |
|
Text (KORESPONDENSI)
C-11 Korespondensi_001.pdf Download (823kB) |
Abstract
Submicron hydroxyapatite has been reported to have beneficial effects in bone tissue engineering. This study aimed to fabricate submicron-scale bovine hydroxyapatite (BHA) using the high-energy dry ball milling method. Bovine cortical bone was pretreated and calcined to produce BHA powder scaled in microns. BHA was used to fabricate submicron BHA with milling treatment for 3, 6, and 9 h and was characterized by using dynamic light scattering, scanning electron microscope connected with energy dispersive X-Ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometry to obtain its particle size, calcium-to-phosphorus (Ca/P) ratio, functional chemical group, and XRD peaks and crystallinity. Results showed that the particle size of BHA had a wide distribution range, with peaks from ~5 to ~10 µm. Milling treatment for 3, 6, and 9 h successfully gradually reduced the particle size of BHA to a submicron scale. The milled BHA’s hydrodynamic size was significantly smaller compared to unmilled BHA. Milling treatment reduced the crystallinity of BHA. However, the treatment did not affect other characteristics; unmilled and milled BHA was shaped hexagonally, had carbonate and phosphate substitution groups, and the Ca/P ratio ranged from 1.48 to 1.68. In conclusion, the fabrication of submicron-scale BHA was successfully conducted using a high-energy dry ball milling method. The milling treatment did not affect the natural characteristics of BHA. Thus, the submicron-scale BHA may be potentially useful as a biomaterial for bone grafts.
Item Type: | Article | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Uncontrolled Keywords: | submicron material; nanomaterial; bone scaffold; bone graft; calcium phosphate; neglected disease | ||||||||||||||
Subjects: | R Medicine R Medicine > RS Pharmacy and materia medica R Medicine > RS Pharmacy and materia medica > RS1-441 Pharmacy and materia medica R Medicine > RS Pharmacy and materia medica > RS200-201 Pharmaceutical dosage forms |
||||||||||||||
Divisions: | 05. Fakultas Farmasi > Farmasi Klinis | ||||||||||||||
Creators: |
|
||||||||||||||
Depositing User: | Mr M. Fuad Sofyan | ||||||||||||||
Date Deposited: | 04 Jul 2022 04:35 | ||||||||||||||
Last Modified: | 20 Jan 2023 08:28 | ||||||||||||||
URI: | http://repository.unair.ac.id/id/eprint/116898 | ||||||||||||||
Sosial Share: | |||||||||||||||
Actions (login required)
View Item |