Efek Parameter Proses Freeze Drying Terhadap Biokompatibilitas Kolagen-Hidroksiapatit Yang Didoping ZNO

Sinta Purwaningtyas (2020) Efek Parameter Proses Freeze Drying Terhadap Biokompatibilitas Kolagen-Hidroksiapatit Yang Didoping ZNO. Skripsi thesis, UNIVERSITAS AIRLANGGA.

[img] Text (HALAMAN JUDUL)

Download (437kB)
[img] Text (ABSTRAK)
2. ABSTRAK.pdf

Download (349kB)
[img] Text (DAFTAR ISI)

Download (371kB)
[img] Text (BAB I)

Download (234kB)
[img] Text (BAB II)
Restricted to Registered users only until 7 January 2024.

Download (632kB) | Request a copy
[img] Text (BAB III)
Restricted to Registered users only until 7 January 2024.

Download (437kB) | Request a copy
[img] Text (BAB IV)
Restricted to Registered users only until 7 January 2024.

Download (1MB) | Request a copy
[img] Text (BAB V)
Restricted to Registered users only until 7 January 2024.

Download (219kB) | Request a copy

Download (340kB)
Restricted to Registered users only

Download (362kB) | Request a copy
Official URL: http://www.lib.unair.ac.id


Damage to bones can occur due to several things such as defects, accidents, lack of minerals in the bones due to diet, even the effects of unfavorable activities. Efforts made in dealing with damage to the bone required biomaterials as bone substitutes. The ingredients used in making scaffold are hydroxyapatite and collagen which are doped with ZnO using the freeze drying process. This review article aims to determine the effect of time and temperature variations of the hydroxyapatite composite on the freeze drying method on biocompatibility characteristics for bone scaffold applications. The method used to find out which scaffold is good for the body by conducting a review of 10 international journals. Review 10 of this journal include several characterization tests to determine physical properties, namely the FTIR test, SEM test, and porosity test. In addition, biocompatibility tests are performed through the MTT Assay test. Variations in temperature and freezing time result in an increase in pores in the hydroxyapatite-collagen composite scaffold. Increased pore size can affect cell viability. Based on the results of a review of 10 journals, hydroxyapatite-collagen composite scaffold produced a large pore diameter size of ± 200-500 μm, porosity of ± 50%, and the percentage of living cells above 100%, while the addition of alginate to hydroxyapatite resulted in a pore size of ± 200-500 μm and the percentage of living cells is 70-100%, and the addition of chitosan to hydroxyapatite produces a pore size of 30-129%, porosity of 40-80%, and the percentage of living cells above 90-120%. The addition of ZnO to hydroxyapatite composites results in a decrease in pore size and increased porosity because small zinc ions can occupy small volumes Aminatun, M.Husni, Jan Ady, Dyah H.2019. Synthesis and Characterization of Nano-Hidroxyapatite/Chitosan/Carboxymethyl Cellulose Composite Scaffold. Journal of International Dental and Medical Research. Vol. 12 No.1. pp:32-37. Aminatun, Yunita I, Dyah H. 2019. Fabrication of Chitosan-Chondroitin Sulfate/Hydroxyapatite Composite Scaffold by Freeze Drying Method. Journal of International Dental and Medical Research. Vol 12. No. 4. Pp: 1355-1361. Andersen T, Strand F, Alsberg C. 2012. Alginates as biomaterials in tissue engineering, J Carbohydrate Chem; 37: 227-58. Andrenoscu E, G. Voicu, M. Ficai, I. Anita, R. Trusca. A. Ficai. Collagen/hydroxyapatite composite materials with desired ceramic properties. Journal of Electron Microscopy 60(3). Pp: 253-259. Belbachir,K.et al. 2009. Collagen Types Analysis and Differentiation byFTIR Spectroscopy. Analytical and Bioanalytical Chemistry, 395(3). Pp:829-837. Chen G, Ushida T, and Tateishi T. 2002. Scaffold design for tissue engineering. Macromol Biosci. 2. pp. 68-9. Cholas R, Sanosh KP, Francesca G, Gayatri U, Graziana M, Alessandro S, Antonio L. 2016. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Materials Sains and Engineering. 63:499-505. Italy. Cuozzo, R, C,. Miguez M,H,. Andrade L,. Navarro D,. Elmassalami N,M,. Trindade W,. Costa A,M,. Prado M,H. 2014. Zinc Alginate Hydroxyapatite Composite Microspheres for Bone Repair. Ceramics International, 40:11369-11375. Brazil. D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini, Progress in Polymer Science 35 (2010) 403–440. F. Wang, M. Li, Y. Liu, Y. Qi, Y. Liu. Synthesis and Microstructure of Hydroxyapatite Nanofibers. Synthesized at 37°C, Mater. Chem. Phys. 95 (2006) 145–149. Ficai, A et al. 2007. Advances in Collagen/Hydroxyapatite Composite Materials. G. Oner, B.Bhaumick,R. M.Bala. Effect Of Zinc Deficiency On Serum Somatomedin Levels And Skeletal Growth In Young Rats. Endocrinology. 114 (1984)1860–1863. Gheisari., H, Karamian E, and Abdellahi M. 2015. A Novel Hydroxyapatite- Hardystonite Nanocomposite Ceramic. Ceramic International. Elsevier. Vol:41,No:4. Pp:5967-5975. Huang, T. S., Rahaman, M. N., Doiphode, N. D., Leu, M. C., Bal, B. S., Day, D. E., & Liu, X. (2011). Porous and Strong Bioactive Glass (13–93) Scaffolds Fabricated by Freeze Extrusion Technique. Materials Science and Engineering C, Vol. 31, 1482-1489. Inkson, B.J. 2016. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopu (TEM) for Materials Charachetrization. Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Elsevier Ltd. Kalfas IH. 2001. Principles of bone healing. Neuroaurg Foc .10:7-10. Karageorgiou V, Kaplan D .2005. Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials. Vol 26. pp:5474-5491. Lu JX, Flautre B et al. 1999. Role of interconnections in porous bioceramics on bone recolonization in vitro and vivo. J Mater Sci Mater Med 10:111–120. Loh QL, Choong C, Oxon D, Hons M, Mimmm C. Three-Dimensional Scaffolds for Tissue Engineering Applications : Tissue Eng Part B. 2013;19(6):485– 502. M. Wisniewski, A. Sionkowska, H. Kaczmarek, S. Lazare, V. Tokarev, B. Belin, Photochemistry and Photobiology A 188 (2007) 192–199. Milenko M., Bruce, O.F., And Ming S.T., Preparation and Comprehensive Characterization of a Calsium Hydroxyapatite References Material, J. Of Research of the National Institute of Standards and technology, vol. 109, p. 553-568, 2004. Murphy,C.M., Haugh, M.G. and O’Brien,F.J. 2010. The effect of mean pore size on cell attachment, poliferation and migration in collagen- glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. Elsevier Ltd, 31(3). pp 461-466. doi: 10.1016/j.biomaterials.2009.09.063. Mohamed,M.A.et al. 2017. Spectroscopy, Membrane Characterization. Elsevier B.V. doi: 10.1016/B978-0-444-63776-5.00001-2. Mollazadeh,S., Javaspour, J. and Khavandi, A. 2007. In situ synthesis and characterization of nano-size hydroxyapatite in poly(vinyl alcohol) matrix . Ceramics International. 33(8). Pp. 1579-1583. doi: 10.1016/j.ceramint.2006.06.006. Mondal S, Mondal B, Dey A, Sudit S. 2012. Studies on Processing and Characterization of Hidroxyapatite Biomaerials from Different Bio Wastes. Departement of Biotechnology, National Institute of Technology, India. Journal of Minerals and Materials Engineering. Vol.11, No.1, pp. 55-67. Nasim Annabi, M.S., Jason W. Nichol, Ph.D., Xia Zhong, M.S., Chengdong Ji, M.B.E., Rafal Adam Mickiewicz, Polymer-Calcium Phosphate Composites for Use AsAn Injectable Bone Substitute, American Journal of Biochemistry and Biotechnology 2006 2(2): 41-48. Sai KP, Babu M. 2001. Studies on Rana tigerina skin collagen. Comparative Biochemistry and Physiology Part B. 128: 81–90. Shahbazarab Z, Abbas T, Alireza N, Mochammad A. 2017. Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. 8130(17)32204-3. Sheperd D, Kauppinen K, Brooks R, Best S. 2014. An In Vitro Study into The Effect of Zinc Subtituted Hydroxyapatite on Osteoclast Number and Activity. J Biomaterial Mater Res A. 102:413641. Siswanto, Dyah H, Aminatun, Miranda Z. 2019. Hydroxyapatite-Collagen Composite Made from Coral and Chicken Claws for Bone Implant Application. Materials Science Forum. Vol. 966, pp 145-150. Spielmann, H. Hoffmann, S. Botham, P. Roguet, R. Jones, P. 2007. The ECVAM International Validation Study on In VitroTests for Acute Skin Irritation: Report on the Validity ofthe EPISKIN and EpiDerm Assays and on the Skin IntegrityFunction Test. Germany: ATLA. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano- copper-zinc for bone tissue engineering. Int J Biologic Macromol. 2012;50(1):294-9. Turnbull, G et al. 2018. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioactive Materials. Vol.3 No.3. Pp:278-314. Widiyanti, Prihatini. Composition Variation on Bone Graft Synthesis Based on Hydroxyapatite and Alginate. Journal of Biomimetics, Biomaterials and Biomedical Engineering. Vol. 29. pp 14-21. Ylinen P. 2006. Applications of Coralline Hydroxyapatite With Bioabsorbable Containment and Reinforcement as Bone Graft Subtitute,Rheumatism. Yunoki S, T Ikoma, Monkawa, Ohta, Kikuchi, Sotome, Shinomiya, Tanaka. 2006. Control Of Pore Structure And Mechanical Property In Hydroxyapatite/Collagen Composite Using Unidirectional Ice Growth. Materials Letter. Pp: 999-1002. Yuwono A.H, Ghiska R, Aldi M,Allysia A, Ghifrandy G. 2019. The Study Of Zinc Oxide Addition Into Hydroxyapatite/Chitosan Scaffold For Bone Tissue Engineering Application. Pp: 020016-1–020016-7.

Item Type: Thesis (Skripsi)
Additional Information: KKC KK MPF. 27-20 Pur e
Uncontrolled Keywords: bone, pore, temperature, time, freeze drying, hydroxyapatite.
Subjects: Q Science > QD Chemistry > QD450-801 Physical and theoretical chemistry
Divisions: 08. Fakultas Sains dan Teknologi > Fisika
Sinta PurwaningtyasNIM081611333032
ContributionNameNIDN / NIDK
Thesis advisorSiswantoNIDN0003056406
Thesis advisorJan AdyNIDN0026017202
Depositing User: Tatik Poedjijarti
Date Deposited: 07 Jan 2021 00:13
Last Modified: 07 Jan 2021 00:13
URI: http://repository.unair.ac.id/id/eprint/102649
Sosial Share:

Actions (login required)

View Item View Item